
PACIFIC JOURNAL OF MATHEMATICS
Vol. 34, No. 2, 1970

FINITE TRANSFORMATION FORMULAE

INVOLVING THE LEGENDRE SYMBOL

KENNETH S. WILLIAMS

Let p denote an odd prime. The following three identities

(transformation formulae) involving the Legendre symbol ί — j

are known to be valid for any complex-valued function F de-
fined on the integers, which is periodic with period p:

Σ F(x) + Σ (~V(χ) = Σ *W >
x=0 x = 0 \ P / x = 0
v — i p—i //y.2 An\ P —i / n \

Σ F(x) + Σ 1^—^)F(X) = Σ ^( * + - I a

2-Λ

We consider a general class of transformation formulae,
which includes the above examples.

Let p denote a fixed odd prime and let GF(p) denote the Galois

field with p elements. If X denotes an indeterminate we let

Θ[X] = \θ{X) =
aX2

AX' + BX+C ' ' ' ' '

(aC - cAf - (aB - bA)φC - cB) Φ θl

and

Φ[X] = {φ(X) = qX2 + rX+ s\g,r,se GF(p), r* - Aqs Φ 0} .

Corresponding to any element θ(X)e6[X] (often just written θeθ)

we define

Θ*(X) = DX2 + AX + d ,

where

D = B2 ~ 4AC, J - 4αC - 265 + 4cA, d - δ2 - 4αc .

It is clear that Θ*(X) e Φ[X] as

Δ2 - 4Dd = 16{(αC - cA)2 - (α£ - 6A)(6C - cB)} Φ 0 .

For any element ψ(X) e Φ[X] (often just written φeΦ) its value

at #eGF(;p) is just φ(x) = qx2 + ra; 4- se GF(p). For any element

ΰ(X) eθ[X], θ(x) will be defined provided Ax2 + Bx + C Φ 0 and its

value is

*(*) = T\ + ^ + Gr, = (aχ2 + b x + c)(Aχ2 + B x + C)"1

Aα;2 + 5ίi? + C

559
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Throughout this paper whenever we write Σ the summation is takem
X

over all x e GF(p). If we write Σ ' the summation is over all x e GF(p)
X

for which the summand is defined.
Further we let c^ denote the complex number field and we denote

by ^" the set of all functions with domain GF(p) and range g ^ .
The particular function χ e j ^ ~ defined for any x e GF(p) by

( 0, if x = 0,

χ(x) = j 1, if x Φ 0 and there exists y e GF(p) such that y2 — x,

( —1, if x Φ 0 and no such y exists,

plays a special role in what we do. χ is the Legendre symbol on GF(p).
Finally for (F, θ) e ^~ x Θ we define

nalA) iίAφ0

0 , if A = 0 .
We are now in a position to define what we mean by the trans-

formation formula T(θ, φ).

DEFINITION. If (θ, φ) e Θ x Φ is such that

Σ F(x) + Σ XiΦWWW = Σ r F(θ(x)) + δ(F, θ) ,

for all Fe^, we say that the transformation formula T(θ,φ) is.
valid. If on the other hand there is some Fo e J^ such that

Σ F0(x) + Σ X(Φ(X))F0(X) Φ Σ ' F0(θ(x) + δ(F0, θ)) ,
a; ίc a;

then we say that T(θ, φ) is not valid.
In some special cases it is well-known that T(θ, φ) is valid. For

example ([1; p. 159], [4; p. 101]) it is known that T(θ, φ) is valid if

(1.1) Θ{X) = X\ φ(X) - X

or

(1.2) Θ(X) = X 2 + c , φ(X) - X2 - 4c (c ^ 0) .

(We identify the elements of GF(p) with the residues modulo p and
the elements of j ^ ~ with functions defined on the integers which are
periodic with period p). The name transformation formula is justified
as (1.1) (resp. (1.2)) gives the well-known transformation property of
the Gauss (resp. Kloosterman) sum, if we take F(x) = exp (2πix/p), [3],
[4]. Both examples mentioned above have δ(F, θ) = 0. An example
with δ(F, θ) Φ 0 in general, is given by the following
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Θ(X) = * ± A and «>(X) = 4Γ + 1 .

(1.3)

Here

The main objective of this paper is to give necessary and sufficient
conditions for T(θ, φ) to be valid. We prove in § 4 that if (θ, φ) e
Θ x Φ then T(θ, φ) is valid if and only if there exists e(φϋ)QGY(v)
such that φ = e20*. (We note that in (1.1) Θ*(X) = 4X = 4^(X), in
(1.2) #*(X) = X2 -Ac = φ(X) and in (1.3) Θ*(X) = 4X + 1 = 0(JT)).
The proof of these necessary and sufficient conditions requires a useful
lemma concerning quadratic polynomials possessing the same quadratic
nature. This lemma is proved in § 3. In § 2 a number of properties
of Θ[X] and Φ[X] are noted, which together with the main theorem
enable us to deduce that there are only two essentially different trans-
formation formulae T(θ, φ).

2. Properties of Θ[X] and Φ[X]. We first consider Θ[X]. 'The
elements θ(X) = aX2 + bX + c/AX2 + BX + C of Θ[X] are well-defined,
as A, B, C cannot all be zero. Further they do not reduce to the
form IX + m/LX + ikf, as not both of a, A are zero and aX2 + bX + c
and AX2 + BX + C do not have a nonunit common factor.

Any element of Θ[X] gives rise to another element of Θ[X] in
the following way. If t, u, v, w, k, I, m, ne GF(p) are such that

tw — uv Φ 0, kn — Im Φ 0 ,

and if θ(X)eθ[X] then so does

φ) + u
ιo Λ\ \mX + nJ
(2.1) - w

The proof of this just consists of showing that

ΘX(X) = α* 1 — c\ι ,

where

αx = (ta + uA)k2 + (tb + uB)km + (ίc + ^C)m2 ,

δx = 2(ta + uA)kl + (tb + uB)(kn + ϊm) + 2(ίc + uC)mn ,

d = (ία + ^A)ϊ2 + (tb + uB)ln + (δc + uC)n2 ,

Aj, = (vα + tί A)^2 + (v6 + wB)km + (Ί C + wC)m2 ,
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Bx = 2(vα + wA)kl + (vb + wB)(kn + im) + 2(vc + wC)mn ,

Cx = (vα + wA)ί2 + (vb + wB)Zw + (ve + wC)w2 ,

and noting that

<2.2) - (ίw - uvf(kn - ίm)4{(αC - cA)2 - (aB - 6A)(δC - cB)}

We can thus define on equivalence relation on Θ[X] by saying that
<d(X), θx(X) e Θ[X] are equivalent if there exist k, I, m, n, t, u, v, we
GF(p) with kn — Im Φ 0, tw - uv Φ 0 and such that (2.1) holds. We
write θx ~ θ.

Let cx and c2 be fixed elements of GF(p) such that χ(cj) = + 1 ,
2(c2) = — 1 , so that there exists d1(φ0)eGF(p) with cγ = d\. Then
any element

+ BX + C

is either equivalent to 0βl(JSΓ) = X + (c2/X) or 0C2(X) = X +
More precisely we have

θ - θcι, if χ((αC - cAf - {aB - bA)(bC - cB)) = + 1

and

0 - 0C2, if χ((αC - cA)2 - (αβ - 6A)(6C - cB)) = - 1 .

This is clear as we have

where
( i ) ί — ah, u — b — 2ag, v = i4Λ, w — B — 2Ag, k = 1,1 = g,m =

ϋ,n = h, if χ((aC - cAf - (aB - bA)(bC - cB)) = + 1 , aB - bA Φ 0,

and g and /^(^O)eGF(^) are defined by

= aC - cA h2 = / αC - cA V _ / &C - cB \ .
9 aB -bA' L KaB-bAJ \aB - bA ' '

(ii) * = aA(l -d),u = 2aAdι(l + d), v = A2 - a2D, w = 2d,(A2 +
a2D), k = 2adίf I = (b + ΐ)du m = 2α, n = (b - 1), if χ((aC - cAf
- (aB - bA)(bC - cB)) = + 1 , aB -bA = 0,aAΦ 0;

(iii) ί = α 2 C 2 - d, % = 2d 1(α 2C 2 + d), t; = 4αC, w = - β ^ α C , A; =

2adly I = ^(6 + αC), m = 2α, n = b - αC, if χ((aC - cA)2 - (aB - bA)
(bC - cB)) - + 1 , aB - bA = 0, A - 0;
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(iv) t = AAc, u = Sd.Ac, v = AV - D, w = 2dt(A2c2 + D), k =
2d1A, I = d,(B + Ac), m = 2A,n = B- Ac, if χ((aC - cAf - (aB - bA)
(bC - cB)) = +1, aB - bA = 0, a = 0;
and

θ(X) =

+ +

where
( v ) t — ah, u ~b — 2ag, v — Ah, w ~ B — 2Ag, k = 1,1 — g, m —

0,n = h, if χ((αC - cA)2 - (αβ - 6A)(6C - cB)) = - 1 and g, A are
defined by

= aC - cA h2 = faCj^cAY _ fbC- cB\
9 aB - bA' 2 VαJS - bAJ \aB - bA) '

This shows that there are atmost two equivalence classes in Θ[X]»
We show that there are exactly two by proving that θCι(X) Φ θe%{X)+
For suppose that θCι(x) ~ θC2{x) then there exist k, I, m, n, t, u,v,we
GF(p) with

kn — Im Φ 0, tw — wo Φ 0

and such that

Thus from (2.2) we have

— c1 = (tw — uv)2(kn — lm)%(—c2) ,

which contradicts that χ(cx) = +1, χ(c2) = — 1.
We now consider Φ[X\. The elements φ(X) = qX2 + rX + s of

Φ[X] are either genuinely quadratic or linear, as q, r are not both
zero. Moreover they are not of the form q(X + kf, for any k e GF(p)*
Corresponding to (2.1) we have

ΘT(X) = (kn - lm)\-vX + tγθ*(w*~~ u) e Φ[X] .
V vX + ί /

3* A useful lemma* We prove the following lemma which is
needed in the proof of our theorem.

LEMMA. If qX% + rX + s, q'X2 + r'X + sr e Φ[X] are such that
χ(qx2 + rx + s) = χ(q'x2 + r'x + s'), for all x e GF(p), then there exists
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e(Φθ)eGF(p) such that

s = e2(q'X2 + r'X2 + r'X + s') .

Proof. As qX2 + rX + seΦ[X] it is not of the form q(X + k)2

and not both of q, r are zero, similarly for qfX2 + r'X + s'. The
condition χ(qx2 + rx + s) = χ(gV + r'a? + s') implies that a zero of
##2 + rx + s is a zero of q'x2 + r'# + s' and vice-versa. Thus, unless
both qX2 + rX + s and g'X2 + r'X + s' are irreducible in GF(p)[X],
that is, unless χ(r2 — 4gs) = χ(r'2 — 4tfV) = — 1, we have for some
€19e2e GF(p)(ei Φ e2) either

qX2 + rX+.:s = q(X - e,)(X - e2), q'X2 + r'X + s' = q'(X - e,){X - e2),

or

qX2 + rX + s - r(X - e,), g'X2 + r'X + s' = r'(X - βj, 9 = β ' = 0 .

In the former case taking x Φ e19 e2 in

χ(qx2 + rx + s) = χ(g'α;2 + r'# + s')

we obtain χ(g) = χ(g')> so that there exists e(Φθ)eGF(p) such that
q = e2g\ Hence

r = — g(ei + e2) = ~β2g'(βi + β2) = βV, s

and so we have

qx2 + rX + s = e2(c?'X2 + r'X + s') .

In the latter case taking a; Φ et in χ(̂ α?2 + rx + s) = χ(gV + r'x + s')
we obtain χ(r) = χ(r'), so that there exists e(^0)eGF(p) such that
r = e2r'. Hence s = — re : = eVβi = e2β' and we have

?X2 + rX + s = e\q'X2 + r'X + sf) .

If χ(r2 - rqs) = χ(r'2 - rq's') = -1 then q, q'y r
2 - 4qs, r'2 - 4gV

are all nonzero and

Σ χ ( ^ 2 + ra? + s) - Σ Z(tfV + r'x + s')
X X

gives χ(q) = χ(g'). Hence there exists e(^0) e GF(p) such that q =
Now as g#' = (β '̂)2 Φ 0 we have

q qJ\ q' q'

rx + s)(gV + r'α + s'))
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and so

If X% + (r/q)X + (s/q) Φ X2 + (r'/q')X + (s'/qf) then by a deep result
of PereΓmuter [2] we have

For p ^ 5 this clearly contradicts (3.1).
X2 + (r/q)X + (8/q) = X2 + {r'lq')X +

Thus for p ;> 5 we have
, that is as q = e2q\

= e\q'X2 + r'X + ί') ,

as required. When p = 3 the theorem is easily verified by examining
the values of qx2 + rx + s for xe GF(p) (see table).

When p = 3, Φ[X] consists of all polynomials of GF(3)[X] of degree
atmost 2 except the 9 polynomials q(X + k)2, q, keGF(3), which have
discriminant equal to zero. The table shows that there do not exist
2 elements of Φ[X], say φ(X), φ'{X) with χ(Φ(x)) = χ{Φ\x)), for all

TABLE.

Φ(X)eΦ[X]

X

X + l

X + 2

2X

2 X + 1

2 X + 2

X2 + 1

X2 + 2

X 2 + X

χ2 + x + 2

X2 + 2X

X2 + 2X + 2

2X2 + 1

2X2 + 2
9 "V2 J_ Ύ
Lij\. "T" -Λ-

2X 2+ X + l

2X2 + 2X

2X2 + 2X + 1

WO))

0

1

- 1

0

r-i

- 1

1

- 1

0
- 1

0

- 1

1

- 1

0

1

0

1

1

- 1

0

- 1

0

1

- 1

0

- 1

1

0

- 1

0

1

0

1

1

- 1

- 1

0

1

1

- 1

0

- 1

0

0

- 1

- 1

1

0

1

1

- 1

0

1
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4* Main result* We prove

THEOREM. // (θ, ψ) e θ x Φ then T(θ, φ) is valid if and only if
there exists e(^0)eGF(p) such that

(4.1) φ = e2θ* .

Proof, (i) We let φ = e20*, where e(Φθ)eGF(p) and

+ bX + c

and prove that T(θ, φ) is valid. For all Fe^~ we have

y x
θ{x)=y

Thus for given 2/ € GF(p) we require the number of solutions x e GF(p)
of ί(a?) = ί/, that is of

(4.2) (Ay - a)x2 + (By - b)x + (Cy - c) = 0 .

This is a genuine quadratic in x unless Ay — a = 0. Thus we must
consider two cases according as A = 0 or A Φ 0.

Case (a). A = 0, (so that δ(F, θ) = 0).
In this case α ^ O so that Ay — a Φ 0, for all 2/ e GF(p). Thus,

the number of solutions of (4.2) is

1 + χ((By - by - A(Ay - a)(Cy - c))

= 1 + χ φ y 8 + Ay + d)

= 1 + X(Φ{V))> as e ^ 0 .

Hence we have

Y!F(θ(x)) =.ΣF(j/)
y

proving that ίΓ( ,̂ 55) is valid in the case.

Case (b). AΦO, (so that δ(F, θ) = F(a/A)).
In this case, for all yeGF(p) except a/A, (4.2) is a genuine

quadratic and the number of solutions of it, for such y, is as in case
(a). For y = a/A, (4.2) becomes

(aB - bA)x + (aC - cA) = 0 ,
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which since aB — bA and aC — cA cannot both be zero, has one solu-
tion if aB — bA Φ 0 and no solutions if aB — bA = 0. This number
is expressible as χ((aB — bA)2). Hence

Σ/F(θ(x)) + δ(F, θ)
X

= F(a/A)χ((aB - bAf) + Σ {1 + χ W + Δy + d)}F{y) + F(a/A)
yφ*\A

= Σ {1 + χ{*0*(y)))F(v)
y

as required, since

(D(^J + zf(-j) + dj = (aB - bA)2 .

(ii) Conversely we show that if (θ, φ) e θ x Φ is such that T(θ, φ)
is valid then φ(X) = e2θ*(X). For all FeJ^, as T(θ, φ) is valid, we
have

(4.3) Σ ' F(θ(x)) + δ(F, Θ) = Σ F(x) + Σ X(Φ(x)W(x) .
ίc a; a;

From (i) we know that T(θ, θ*) is valid, so that also for all
Λve have

,(4.4) Σ ' F(θ(x)) + δ(F, Θ) = X F(x) + Σ X(Dx2 + Λx + d)F(x) .
X X X

Hence form (4.3) and (4.4) we have

(4.5) Σ X(Φ(*))F(x) - Σ X(Dx2 + Λx + d)F(x) ,

for all Fe^l In particular taking F = Fr(reGF(p)) in (4.5) where
Fr is defined for xeGF(p) by

(0, x Φ r ,

we have

+ AT +

for all r e GF(p). By lemma as φ(X), DX2 + AX + de Φ[X], we have,
for some

φ(X) = e\ΌX2 + AX + d) - β20*

which is (4.1).

5* An application* We use the theorem to evaluate the Salie
sum [4J. Let Θ(X) = (X + 1)2/X so that Θ*(X) = X2 - AX. By the
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theorem we know that T(θ, θ*) is valid. If G e &~ so does χG. Taking
F{x) = χ(x)G(x) in T(θ, θ*) we obtain

(X + 1Σ x(*)G(χ) + Σ χ(χ\χ - 4))G(x) = Σ ' χ({x + 1 ) 2 W
x * * \ X / \ X

that is,

(5.1) Σ X(x)G(x) + Σ χ(* - 4)G(x) - Σ ' X(X)G(X + 2 + - ί ) .

Taking G(x) = exp (2πikx/p) and noting that this choice makes the
two sums on the left hand side of (5.1) Gaussian sums we obtain
Salie's result [4]

(*M( 1)) ( *>«-> V'2 cosΣ χ(x) exp (*M(X + 1)) = 2 ( * >

6* Conclusion* The properties of Θ[X] indicated in § 2 and
the theorem of § 4 show that there are only two essentially different
transformation formulae T(θ, ψ) given by (θ, φ) - (θcv ί*) and (ΘH, ί*),
where we have identified T(θ, θ*) and T(θ, e2θ*). It would be inter-
esting to know if this work could be generalized to give results
concerning identities of a type similar to T(θ, φ) but where θ, φ
are elements of larger sets than θ, Φ respectively and/or where χ is
replaced by a more general character.

I would like to finish by thanking an unknown referee for a number
of valuable suggestions. In particular he suggested the proof of the
lemma given in § 3, which considerably shortened my original proof.
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