FINITE TRANSFORMATION FORMULAE INVOLVING THE LEGENDRE SYMBOL

KENNETH S. WILLIAMS

Let p denote an odd prime. The following three identities (transformation formulae) involving the Legendre symbol $\left(\frac{-p}{p}\right)$ are known to be valid for any complex-valued function F defined on the integers, which is periodic with period p:

$$\begin{split} \sum_{x=0}^{p-1} F(x) &+ \sum_{x=0}^{p-1} \left(\frac{x}{p}\right) F(x) = \sum_{x=0}^{p-1} F(x^2) ,\\ \sum_{x=0}^{p-1} F(x) &+ \sum_{x=0}^{p-1} \left(\frac{x^2 - 4a}{p}\right) F(x) = \sum_{x=1}^{p-1} F\left(x + \frac{a}{x}\right) , \quad a \not\equiv 0 \pmod{p} ,\\ \sum_{x=0}^{p-1} F(x) &+ \sum_{x=0}^{p-1} \left(\frac{x^2 - 4x}{p}\right) F(x) = \sum_{x=1}^{p-1} F\left(x + 2 + \frac{1}{x}\right) . \end{split}$$

We consider a general class of transformation formulae, which includes the above examples.

Let p denote a fixed odd prime and let GF(p) denote the Galois field with p elements. If X denotes an indeterminate we let

$$egin{aligned} & \mathscr{O}[X] = \left\{ heta(X) = rac{aX^2+bX+c}{AX^2+BX+C} \Big| a, b, c, A, B, C \in \mathrm{GF}(p), \ & (aC-cA)^2 - (aB-bA)(bC-cB)
eq 0
ight\} \end{aligned}$$

and

$$arPsi_{1}[X] = \{ \phi(X) = qX^{2} + rX + s \, | \, q, \, r, \, s \in \mathrm{GF}(p), \, r^{2} - 4qs
eq 0 \}$$
 .

Corresponding to any element $\theta(X) \in \theta[X]$ (often just written $\theta \in \Theta$) we define

$$heta^*(X) = DX^2 + arDelta X + d$$
 ,

where

$$D = B^2 - 4AC, \Delta = 4aC - 2bB + 4cA, d = b^2 - 4ac$$
.

It is clear that $\theta^*(X) \in \Phi[X]$ as

$$\Delta^2 - 4Dd = 16\{(aC - cA)^2 - (aB - bA)(bC - cB)\} \neq 0$$
.

For any element $\phi(X) \in \Phi[X]$ (often just written $\phi \in \Phi$) its value at $x \in \operatorname{GF}(p)$ is just $\phi(x) = qx^2 + rx + s \in \operatorname{GF}(p)$. For any element $\theta(X) \in \Theta[X], \theta(x)$ will be defined provided $Ax^2 + Bx + C \neq 0$ and its value is

$$\theta(x) = \frac{ax^2 + bx + c}{Ax^2 + Bx + C} = (ax^2 + bx + c)(Ax^2 + Bx + C)^{-1} \in \mathrm{GF}(p)$$
.

Throughout this paper whenever we write \sum_{x} the summation is taken over all $x \in GF(p)$. If we write \sum_{x}' the summation is over all $x \in GF(p)$ for which the summand is defined.

Further we let \mathscr{C} denote the complex number field and we denote by \mathscr{F} the set of all functions with domain $\operatorname{GF}(p)$ and range $\subseteq \mathscr{C}$. The particular function $\chi \in \mathscr{F}$ defined for any $x \in \operatorname{GF}(p)$ by

$$\chi(x) = \left\{egin{array}{ll} 0, \ ext{if} \ x=0, \ 1, \ ext{if} \ x
eq 0 \ ext{and} \ ext{there} \ ext{eq} \ 0 \ ext{and} \ ext{there} \ ext{eq} \ ext{eq} \ ext{GF}(p) \ ext{such} \ ext{that} \ y^2 = x, \ -1, \ ext{if} \ x
eq 0 \ ext{and} \ ext{no} \ ext{and} \ ext{no} \ ext{such} \ ext{such} \ ext{there} \ ext{eq} \ ext{eq} \ ext{and} \ ext{there} \ ext{and} \ ext{there} \ ext{and} \ ext{there} \ ext{and} \ ext{there} \ ext{if} \ ext{and} \ ext{and} \ ext{and} \ ext{and} \ ext{there} \ ext{and} \ ext{and} \ ext{there} \ ext{and} \ ext{and} \ ext{and} \ ext{and} \ ext{there} \ ext{and} \ ex$$

plays a special role in what we do. χ is the Legendre symbol on GF(p). Finally for $(F, \theta) \in \mathscr{F} \times \Theta$ we define

$$\delta(F,\, heta) = egin{cases} F(a/A), ext{ if } A
eq 0 \ , \ 0 \ , ext{ if } A=0 \ . \end{cases}$$

We are now in a position to define what we mean by the transformation formula $T(\theta, \phi)$.

DEFINITION. If $(\theta, \phi) \in \Theta \times \Phi$ is such that

$$\sum_{x} F(x) + \sum_{x} \chi(\phi(x))F(x) = \sum_{x}' F(\theta(x)) + \delta(F, \theta)$$
,

for all $F \in \mathscr{F}$, we say that the transformation formula $T(\theta, \phi)$ is valid. If on the other hand there is some $F_0 \in \mathscr{F}$ such that

$$\sum_x F_{_0}(x) \,+\, \sum_x \chi(\phi(x)) F_{_0}(x) \,
eq \sum_x' \,F_{_0}(heta(x) \,+\, \delta(F_{_0},\, heta)) \,\,,$$

then we say that $T(\theta, \phi)$ is not valid.

In some special cases it is well-known that $T(\theta, \phi)$ is valid. For example ([1; p. 159], [4; p. 101]) it is known that $T(\theta, \phi)$ is valid if

(1.1)
$$\theta(X) = X^2, \, \phi(X) = X$$

or

(1.2)
$$\theta(X) = \frac{X^2 + c}{X}, \, \phi(X) = X^2 - 4c \qquad (c \neq 0)$$
.

(We identify the elements of GF(p) with the residues modulo p and the elements of \mathscr{F} with functions defined on the integers which are periodic with period p). The name transformation formula is justified as (1.1) (resp. (1.2)) gives the well-known transformation property of the Gauss (resp. Kloosterman) sum, if we take $F(x) = \exp(2\pi i x/p)$, [3], [4]. Both examples mentioned above have $\delta(F, \theta) = 0$. An example with $\delta(F, \theta) \neq 0$ in general, is given by the following

560

(1.3)
$$\sum_{x} F(x) + \sum_{x} \chi(4x+1)F(x) = \sum_{x}' F\left(\frac{x+1}{x^2}\right) + F(0)$$
.

Here

$$heta(X) = rac{X+1}{X^2} \, ext{ and } \, \phi(X) = 4X+1 \; .$$

The main objective of this paper is to give necessary and sufficient conditions for $T(\theta, \phi)$ to be valid. We prove in §4 that if $(\theta, \phi) \in$ $\theta \times \Phi$ then $T(\theta, \phi)$ is valid if and only if there exists $e(\neq 0) \in GF(p)$ such that $\phi = e^2\theta^*$. (We note that in (1.1) $\theta^*(X) = 4X = 4\phi(X)$, in (1.2) $\theta^*(X) = X^2 - 4c = \phi(X)$ and in (1.3) $\theta^*(X) = 4X + 1 = \phi(X)$). The proof of these necessary and sufficient conditions requires a useful lemma concerning quadratic polynomials possessing the same quadratic nature. This lemma is proved in §3. In §2 a number of properties of $\theta[X]$ and $\Phi[X]$ are noted, which together with the main theorem enable us to deduce that there are only two essentially different transformation formulae $T(\theta, \phi)$.

2. Properties of $\theta[X]$ and $\phi[X]$. We first consider $\theta[X]$. The elements $\theta(X) = aX^2 + bX + c/AX^2 + BX + C$ of $\theta[X]$ are well-defined, as A, B, C cannot all be zero. Further they do not reduce to the form lX + m/LX + M, as not both of a, A are zero and $aX^2 + bX + c$ and $AX^2 + BX + C$ do not have a nonunit common factor.

Any element of $\Theta[X]$ gives rise to another element of $\Theta[X]$ in the following way. If $t, u, v, w, k, l, m, n \in GF(p)$ are such that

$$tw - uv \neq 0, kn - lm \neq 0$$
,

and if $\theta(X) \in \Theta[X]$ then so does

$$(2.1) \qquad \qquad \theta_{\scriptscriptstyle 1}(X) = \frac{t\theta\Bigl(\frac{kX+l}{mX+n}\Bigr)+u}{v\theta\Bigl(\frac{kX+l}{mX+n}\Bigr)+w} \,.$$

The proof of this just consists of showing that

$$heta_{\scriptscriptstyle 1}(X) = rac{a_{\scriptscriptstyle 1}X^2 + b_{\scriptscriptstyle 1}X + c_{\scriptscriptstyle 1}}{A_{\scriptscriptstyle 1}X^2 + B_{\scriptscriptstyle 1}X + C_{\scriptscriptstyle 1}}$$
 ,

where

$$egin{aligned} a_{_1}&=(ta+uA)k^2+(tb+uB)km+(tc+uC)m^2\ ,\ b_{_1}&=2(ta+uA)kl+(tb+uB)(kn+lm)+2(tc+uC)mn\ ,\ c_{_1}&=(ta+uA)l^2+(tb+uB)ln+(bc+uC)n^2\ ,\ A_{_1}&=(va+wA)k^2+(vb+wB)km+(vc+wC)m^2\ , \end{aligned}$$

 $egin{aligned} B_{_1} &= 2(va+wA)kl+(vb+wB)(kn+lm)+2(vc+wC)mn\ ,\ C_{_1} &= (va+wA)l^2+(vb+wB)ln+(vc+wC)n^2\ , \end{aligned}$

and noting that

$$(a_1C_1 - c_1A_1)^2 - (a_1B_1 - b_1A_1)(b_1C_1 - c_1B_1)$$

(2.2)
$$= (tw - uv)^2(kn - lm)^4\{(aC - cA)^2 - (aB - bA)(bC - cB)\}$$

$$\neq 0.$$

We can thus define on equivalence relation on $\Theta[X]$ by saying that $\theta(X), \theta_1(X) \in \Theta[X]$ are equivalent if there exist $k, l, m, n, t, u, v, w \in GF(p)$ with $kn - lm \neq 0, tw - uv \neq 0$ and such that (2.1) holds. We write $\theta_1 \sim \theta$.

Let c_1 and c_2 be fixed elements of $\operatorname{GF}(p)$ such that $\chi(c_1) = +1$, $\chi(c_2) = -1$, so that there exists $d_1(\neq 0) \in \operatorname{GF}(p)$ with $c_1 = d_1^2$. Then any element

$$heta(X) = rac{aX^2 + bX + c}{AX^2 + BX + C} \in heta[X]$$

is either equivalent to $\theta_{c_1}(X) = X + (c_1/X)$ or $\theta_{c_2}(X) = X + (c_2/X)$. More precisely we have

$$\theta \sim \theta_{c_1}$$
, if $\chi((aC - cA)^2 - (aB - bA)(bC - cB)) = +1$

and

$$\theta \sim \theta_{c_2}$$
, if $\chi((aC - cA)^2 - (aB - bA)(bC - cB)) = -1$.

This is clear as we have

$$heta(X) = rac{t heta_{c_1}\!\!\left(rac{kX+l}{mX+n}
ight)+u}{v heta_{c_1}\!\left(rac{kX+l}{mX+n}
ight)+w} \ ,$$

where

(i) t = ah, u = b - 2ag, v = Ah, w = B - 2Ag, k = 1, l = g, m = 0, n = h, if $\chi((aC - cA)^2 - (aB - bA)(bC - cB)) = +1$, $aB - bA \neq 0$, and g and $h(\neq 0) \in GF(p)$ are defined by

$$g = rac{aC-cA}{aB-bA}, c_1h^2 = \left(rac{aC-cA}{aB-bA}
ight)^2 - \left(rac{bC-cB}{aB-bA}
ight);$$

(ii) $t = aA(1 - d), u = 2aAd_1(1 + d), v = A^2 - a^2D, w = 2d_1(A^2 + a^2D), k = 2ad_1, l = (b + 1)d_1, m = 2a, n = (b - 1), \text{ if } \chi((aC - cA)^2 - (aB - bA)(bC - cB)) = +1, aB - bA = 0, aA \neq 0;$

(iii) $t = a^2C^2 - d$, $u = 2d_1(a^2C^2 + d)$, v = 4aC, $w = -8d_1aC$, $k = 2ad_1$, $l = d_1(b + aC)$, m = 2a, n = b - aC, if $\chi((aC - cA)^2 - (aB - bA))$ (bC - cB)) = +1, aB - bA = 0, A = 0;

562

(iv) t = 4Ac, $u = -8d_1Ac$, $v = A^2c^2 - D$, $w = 2d_1(A^2c^2 + D)$, $k = 2d_1A$, $l = d_1(B + Ac)$, m = 2A, n = B - Ac, if $\chi((aC - cA)^2 - (aB - bA))$ (bC - cB)) = +1, aB - bA = 0, a = 0; and

$$heta(X) = rac{t heta_{c_2}\!\!\left(rac{kX+l}{mX+n}
ight)+u}{v heta_{c_2}\!\left(rac{kX+l}{mX+n}
ight)+w}\,,$$

where

(v) t = ah, u = b - 2ag, v = Ah, w = B - 2Ag, k = 1, l = g, m = 0, n = h, if $\chi((aC - cA)^2 - (aB - bA)(bC - cB)) = -1$ and g, h are defined by

$$g=rac{aC-cA}{aB-bA},\,c_2h^2=\left(rac{aC-cA}{aB-bA}
ight)^2-\left(rac{bC-cB}{aB-bA}
ight)\,.$$

This shows that there are atmost two equivalence classes in $\Theta[X]$. We show that there are exactly two by proving that $\theta_{c_1}(X) \not\sim \theta_{c_2}(X)$. For suppose that $\theta_{c_1}(x) \sim \theta_{c_2}(x)$ then there exist $k, l, m, n, t, u, v, w \in GF(p)$ with

$$kn - lm \neq 0, tw - uv \neq 0$$

and such that

$$heta_{\mathfrak{s}_1}\!(X) = rac{t heta_{\mathfrak{s}_2}\!\left(rac{kX+l}{mX+n}
ight)+u}{t heta_{\mathfrak{s}_2}\!\left(rac{kX+l}{mX+n}
ight)+w}\,.$$

Thus from (2.2) we have

$$-c_1 = (tw - uv)^2(kn - lm)^3(-c_2)$$
,

which contradicts that $\chi(c_1) = +1$, $\chi(c_2) = -1$.

We now consider $\Phi[X]$. The elements $\phi(X) = qX^2 + rX + s$ of $\Phi[X]$ are either genuinely quadratic or linear, as q, r are not both zero. Moreover they are not of the form $q(X + k)^2$, for any $k \in GF(p)$. Corresponding to (2.1) we have

$$heta_{\scriptscriptstyle 1}^*(X) = (kn-lm)^2(-vX+t)^2 heta^*\!\left(rac{wX-u}{vX+t}
ight)\!\in\! arPsi_{\scriptscriptstyle 1}[X]$$
 .

3. A useful lemma. We prove the following lemma which is needed in the proof of our theorem.

LEMMA. If $qX^2 + rX + s$, $q'X^2 + r'X + s' \in \Phi[X]$ are such that $\chi(qx^2 + rx + s) = \chi(q'x^2 + r'x + s')$, for all $x \in GF(p)$, then there exists

 $e(\neq 0) \in GF(p)$ such that

$$qX^2 + rX + s = e^2(q'X^2 + r'X^2 + r'X + s')$$
.

Proof. As $qX^2 + rX + s \in \Phi[X]$ it is not of the form $q(X + k)^2$ and not both of q, r are zero, similarly for $q'X^2 + r'X + s'$. The condition $\chi(qx^2 + rx + s) = \chi(q'x^2 + r'x + s')$ implies that a zero of $qx^2 + rx + s$ is a zero of $q'x^2 + r'x + s'$ and vice-versa. Thus, unless both $qX^2 + rX + s$ and $q'X^2 + r'X + s'$ are irreducible in GF(p)[X], that is, unless $\chi(r^2 - 4qs) = \chi(r'^2 - 4q's') = -1$, we have for some $e_1, e_2 \in GF(p)(e_1 \neq e_2)$ either

$$qX^2+rX+s=q(X-e_1)(X-e_2),\,q'X^2+r'X+s'=q'(X-e_1)(X-e_2),\ q,\,q'
eq 0$$
 ,

or

$$qX^{2} + rX + s = r(X - e_{1}), q'X^{2} + r'X + s' = r'(X - e_{1}), q = q' = 0$$
.

In the former case taking $x \neq e_1, e_2$ in

$$\chi(qx^2 + rx + s) = \chi(q'x^2 + r'x + s')$$

we obtain $\chi(q) = \chi(q')$, so that there exists $e(\neq 0) \in GF(p)$ such that $q = e^2q'$. Hence

$$r = -q(e_1 + e_2) = -e^2q'(e_1 + e_2) = e^2r', s = qe_1e_2 = e^2q'e_1e_2 = e^2s'$$

and so we have

$$qx^2 + rX + s = e^2(q'X^2 + r'X + s')$$
 .

In the latter case taking $x \neq e_1$ in $\chi(qx^2 + rx + s) = \chi(q'x^2 + r'x + s')$ we obtain $\chi(r) = \chi(r')$, so that there exists $e(\neq 0) \in GF(p)$ such that $r = e^2r'$. Hence $s = -re_1 = e^2r'e_1 = e^2s'$ and we have

$$qX^{\scriptscriptstyle 2} + rX + s = e^{\scriptscriptstyle 2}(q'X^{\scriptscriptstyle 2} + r'X + s')$$
 .

If $\chi(r^2 - rqs) = \chi(r'^2 - rq's') = -1$ then $q, q', r^2 - 4qs, r'^2 - 4q's'$ are all nonzero and

$$\sum_{x} \chi(qx^2 + rx + s) = \sum_{x} \chi(q'x^2 + r'x + s')$$

gives $\chi(q) = \chi(q')$. Hence there exists $e(\neq 0) \in GF(p)$ such that $q = e^2q'$. Now as $qq' = (eq')^2 \neq 0$ we have

$$\sum_{x} \chi \left(\left(x^2 + \frac{r}{q} x + \frac{s}{q} \right) \left(x^2 + \frac{r'}{q'} x + \frac{s'}{q'} \right) \right)$$
$$= \sum_{x} \chi \left((qx^2 + rx + s)(q'x^2 + r'x + s') \right)$$

$$= \sum_{x} \chi((qx^2 + rx + s)^2)$$
$$= \sum_{x} \mathbf{1}$$

and so

(3.1)
$$\sum_{x} \chi\left(\left(x^{2}+\frac{r}{q}x+\frac{s}{q}\right)\left(x^{2}+\frac{r'}{q'}x+\frac{s'}{q'}\right)\right)=p.$$

If $X^2 + (r/q)X + (s/q) \neq X^2 + (r'/q')X + (s'/q')$ then by a deep result of Perel'muter [2] we have

$$\left|\sum\limits_x X\!\Big(\!\Big(x^2+rac{r}{q}x+rac{s}{q}\Big)\!\Big(x^2+rac{r'}{q'}x+rac{s'}{q'}\Big)\!\Big)
ight|\!\leq 2p^{\scriptscriptstyle 1/2}\;.$$

For $p \ge 5$ this clearly contradicts (3.1). Thus for $p \ge 5$ we have $X^2 + (r/q)X + (s/q) = X^2 + (r'/q')X + (s'/q')$, that is as $q = e^2q'$,

$$qX^2 + rX + s = e^2(q'X^2 + r'X + t')$$
 ,

as required. When p = 3 the theorem is easily verified by examining the values of $qx^2 + rx + s$ for $x \in GF(p)$ (see table).

When p = 3, $\Phi[X]$ consists of all polynomials of GF(3)[X] of degree atmost 2 except the 9 polynomials $q(X + k)^2$, $q, k \in GF(3)$, which have discriminant equal to zero. The table shows that there do not exist 2 elements of $\Phi[X]$, say $\phi(X), \phi'(X)$ with $\chi(\phi(x)) = \chi(\phi'(x))$, for all $x \in GF(3)$.

(2))	$\chi(\phi(2))$	$\chi(\phi(1))$	$\chi(\phi(0))$	$\phi(X) {\bf \in} \varPhi[X]$
1	-1	1	0	X
0	0	-1	1	X+1
1	1	0	-1	X+2
1	1	-1	0	2X
1	-1	0	1	2X + 1
0	0	1	-1	2X + 2
1	-1	-1	1	$X^2 + 1$
0	0	0	-1	$X^2 + 2$
0	0	-1	0	$X^2 + X$
1	-1	1	-1	$X^2 + X + 2$
1	-1	0	0	$X^2 + 2X$
1	1	-1	-1	$X^2 + 2X + 2$
0	0	0	1	$2X^2 + 1$
1	1	1	-1	$2X^2 + 2$
1	1	0	0	$2X^2 + X$
1	-1	1	1	$2X^2 + X + 1$
0	0	1	0	$2X^2 + 2X$
1	1	-1	1	$2X^2 + 2X + 1$
				$\frac{2X^2+2X}{2X^2+2X+1}$

TABLE.

4. Main result. We prove

THEOREM. If $(\theta, \phi) \in \Theta \times \Phi$ then $T(\theta, \phi)$ is valid if and only if there exists $e(\neq 0) \in GF(p)$ such that

$$(4.1) \qquad \qquad \phi = e^2 \theta^* \; .$$

Proof. (i) We let $\phi = e^2 \theta^*$, where $e(\neq 0) \in GF(p)$ and

$$heta(X) = rac{aX^2 + bX + c}{AX^2 + BX + C} \in heta[X]$$
 ,

and prove that $T(\theta, \phi)$ is valid. For all $F \in \mathscr{F}$ we have

$$\sum_{x}' F(\theta(x)) = \sum_{y} \sum_{\substack{x \\ \theta(x) = y}} F(\theta(x))$$
$$= \sum_{y} F(y) \sum_{\substack{x' \\ \theta(x) = y}} 1.$$

Thus for given $y \in GF(p)$ we require the number of solutions $x \in GF(p)$ of $\theta(x) = y$, that is of

$$(4.2) (Ay - a)x^2 + (By - b)x + (Cy - c) = 0$$

This is a genuine quadratic in x unless Ay - a = 0. Thus we must consider two cases according as A = 0 or $A \neq 0$.

Case (a). A = 0, (so that $\delta(F, \theta) = 0$). In this case $a \neq 0$ so that $Au = a \neq 0$ for all $a \neq 0$.

In this case $a \neq 0$ so that $Ay - a \neq 0$, for all $y \in GF(p)$. Thus the number of solutions of (4.2) is

$$1 + \chi((By - b)^2 - 4(Ay - a)(Cy - c))$$

= 1 + $\chi(Dy^2 + \Delta y + d)$
= 1 + $\chi(\phi(y))$, as $e \neq 0$.

Hence we have

$$\sum_{x}' F(\theta(x)) = \sum_{y} F(y) + \sum_{y} \chi(\phi(y)) F(y) ,$$

proving that $T(\theta, \phi)$ is valid in the case.

Case (b). $A \neq 0$, (so that $\delta(F, \theta) = F(a/A)$).

In this case, for all $y \in GF(p)$ except a/A, (4.2) is a genuine quadratic and the number of solutions of it, for such y, is as in case (a). For y = a/A, (4.2) becomes

$$(aB - bA)x + (aC - cA) = 0$$
,

which since aB - bA and aC - cA cannot both be zero, has one solution if $aB - bA \neq 0$ and no solutions if aB - bA = 0. This number is expressible as $\chi((aB - bA)^2)$. Hence

$$\begin{split} &\sum_{x}' F(\theta(x)) + \delta(F, \theta) \\ &= F(a/A)\chi((aB - bA)^2) + \sum_{y \neq a/A} \{1 + \chi(Dy^2 + \varDelta y + d)\}F(y) + F(a/A) \\ &= \sum_{y} \{1 + \chi(e^2\theta^*(y))\}F(y) \end{split}$$

as required, since

$$A^2 \Bigl(D \Bigl(rac{a}{A} \Bigr)^2 + arDert \Bigl(rac{a}{A} \Bigr) + d \Bigr) = (aB - bA)^2 \; .$$

(ii) Conversely we show that if $(\theta, \phi) \in \Theta \times \Phi$ is such that $T(\theta, \phi)$ is valid then $\phi(X) = e^2 \theta^*(X)$. For all $F \in \mathscr{F}$, as $T(\theta, \phi)$ is valid, we have

(4.3)
$$\sum_{x} F(\theta(x)) + \delta(F, \theta) = \sum_{x} F(x) + \sum_{x} \chi(\phi(x))F(x) .$$

From (i) we know that $T(\theta, \theta^*)$ is valid, so that also for all $F \in \mathscr{F}$ we have

(4.4)
$$\sum_{x} F(\theta(x)) + \delta(F, \theta) = \sum_{x} F(x) + \sum_{x} \chi(Dx^2 + \Delta x + d)F(x) .$$

Hence form (4.3) and (4.4) we have

(4.5)
$$\sum_{x} \chi(\phi(x))F(x) = \sum_{x} \chi(Dx^{2} + \Delta x + d)F(x) ,$$

for all $F \in \mathscr{F}$. In particular taking $F = F_r(r \in GF(p))$ in (4.5) where F_r is defined for $x \in GF(p)$ by

$$F_r(x) = \begin{cases} 1, x = r, \\ 0, x \neq r, \end{cases}$$

we have

$$\chi(\phi(r)) = \chi(Dr^2 + \varDelta r + d)$$
 ,

for all $r \in GF(p)$. By lemma as $\phi(X)$, $DX^2 + \Delta X + d \in \Phi[X]$, we have, for some $e(\neq 0) \in GF(p)$,

$$\phi(X)=e^{\scriptscriptstyle 2}(DX^{\scriptscriptstyle 2}+arDelta X+d)=e^{\scriptscriptstyle 2} heta^*(X)$$
 ,

which is (4.1).

5. An application. We use the theorem to evaluate the Salié sum [4]. Let $\theta(X) = (X+1)^2/X$ so that $\theta^*(X) = X^2 - 4X$. By the

theorem we know that $T(\theta, \theta^*)$ is valid. If $G \in \mathscr{F}$ so does χG . Taking $F(x) = \chi(x)G(x)$ in $T(\theta, \theta^*)$ we obtain

$$\sum_{x} \chi(x) G(x) + \sum_{x} \chi(x^{2}(x-4)) G(x) = \sum_{x}' \chi\left(\frac{(x+1)^{2}}{x}\right) G\left(\frac{(x+1)^{2}}{x}\right)$$

that is,

(5.1)
$$\sum_{x} \chi(x) G(x) + \sum_{x} \chi(x-4) G(x) = \sum_{x}' \chi(x) G\left(x+2+\frac{1}{x}\right).$$

Taking $G(x) = \exp(2\pi i k x/p)$ and noting that this choice makes the two sums on the left hand side of (5.1) Gaussian sums we obtain Salié's result [4]

$$\sum_{x \neq 0} \chi(x) \exp\left(rac{2\pi i k}{p} \left(x + rac{1}{x}
ight)
ight) = 2 \Big(rac{k}{p}\Big) i^{1/4(p-1)^2} p^{1/2} \cos\left(rac{4\pi k}{p}
ight).$$

6. Conclusion. The properties of $\theta[X]$ indicated in §2 and the theorem of §4 show that there are only two essentially different transformation formulae $T(\theta, \phi)$ given by $(\theta, \phi) = (\theta_{c_1}, \theta_{c_1}^*)$ and $(\theta_{c_2}, \theta_{c_2}^*)$, where we have identified $T(\theta, \theta^*)$ and $T(\theta, e^2\theta^*)$. It would be interesting to know if this work could be generalized to give results concerning identities of a type similar to $T(\theta, \phi)$ but where θ, ϕ are elements of larger sets than θ, ϕ respectively and/or where χ is replaced by a more general character.

I would like to finish by thanking an unknown referee for a number of valuable suggestions. In particular he suggested the proof of the lemma given in § 3, which considerably shortened my original proof.

References

1. H. Davenport, On certain exponential sums, J. für Math. 169 (1933), 158-176.

- 2. G. I. Perel'muter, On certain sums of characters, Uspehi Mat. Nauk. 18 (1963), 145-149.
- 3. H. Rademacher, Lectures on elementary number theory, Blaisdell, 1964.
- 4. H. Salié, Über die Kloostermanschen Summen S(u, v; q), Math. Zeit. **34** (1931), 91-109.

Received August 26, 1969, and in revised form January 30, 1970. This research was supported by a National Research Council of Canada Grant (No. A-7233).

CARLETON UNIVERSITY OTTAWA, CANADA