FINITE TRANSFORMATION FORMULAE INVOLVING THE LEGENDRE SYMBOL

Kenneth S. Williams

Let p denote an odd prime. The following three identities

 (transformation formulae) involving the Legendre symbol $\left(\frac{p}{p}\right)$ are known to be valid for any complex-valued function F defined on the integers, which is periodic with period p :$$
\begin{aligned}
& \sum_{x=0}^{p-1} F(x)+\sum_{x=0}^{p-1}\left(\frac{x}{p}\right) F(x)=\sum_{x=0}^{p-1} F\left(x^{2}\right), \\
& \sum_{x=0}^{p-1} F(x)+\sum_{x=0}^{p-1}\left(\frac{x^{2}-4 a}{p}\right) F(x)=\sum_{x=1}^{p-1} F\left(x+\frac{a}{x}\right), \quad a \not \equiv 0(\bmod p), \\
& \sum_{x=0}^{p-1} F(x)+\sum_{x=0}^{p-1}\left(\frac{x^{2}-4 x}{p}\right) F(x)=\sum_{x=1}^{p-1} F\left(x+2+\frac{1}{x}\right) .
\end{aligned}
$$

We consider a general class of transformation formulae, which includes the above examples.

Let p denote a fixed odd prime and let $\operatorname{GF}(p)$ denote the Galois field with p elements. If X denotes an indeterminate we let

$$
\begin{aligned}
& \epsilon[X]=\left\{\left.\theta(X)=\frac{a X^{2}+b X+c}{A X^{2}+B X+C} \right\rvert\, a, b, c, A, B, C \in \mathrm{GF}(p),\right. \\
& \left.\qquad(a C-c A)^{2}-(a B-b A)(b C-c B) \neq 0\right\}
\end{aligned}
$$

and

$$
\Phi[X]=\left\{\dot{\phi}(X)=q X^{2}+r X+s \mid q, r, s \in \mathrm{GF}(p), r^{2}-4 q s \neq 0\right\}
$$

Corresponding to any element $\theta(X) \in \Theta[X]$ (often just written $\theta \in \Theta$) we define

$$
\theta^{*}(X)=D X^{2}+\Delta X+d,
$$

where

$$
D=B^{2}-4 A C, \Delta=4 a C-2 b B+4 c A, d=b^{2}-4 a c .
$$

It is clear that $\theta^{*}(X) \in \Phi[X]$ as

$$
d^{2}-4 D d=16\left\{(a C-c A)^{2}-(a B-b A)(b C-c B)\right\} \neq 0
$$

For any element $\phi(X) \in \Phi[X]$ (often just written $\phi \in \Phi$) its value at $x \in \mathrm{GF}(p)$ is just $\phi(x)=q x^{2}+r x+s \in \operatorname{GF}(p)$. For any element $\theta(X) \in \Theta[X], \theta(x)$ will be defined provided $A x^{2}+B x+C \neq 0$ and its value is

$$
\theta(x)=\frac{a x^{2}+b x+c}{A x^{2}+B x+C}=\left(a x^{2}+b x+c\right)\left(A x^{2}+B x+C\right)^{-1} \in \operatorname{GF}(p) .
$$

Throughout this paper whenever we write \sum_{x} the summation is taken over all $x \in \operatorname{GF}(p)$. If we write \sum_{x}^{\prime} the summation is over all $x \in \operatorname{GF}(p)$ for which the summand is defined.

Further we let \mathscr{C} denote the complex number field and we denote by \mathscr{F} the set of all functions with domain $\mathrm{GF}(p)$ and range $\subseteq \mathscr{C}$. The particular function $\chi \in \mathscr{F}$ defined for any $x \in \mathrm{GF}(p)$ by

$$
\chi(x)=\left\{\begin{aligned}
0, & \text { if } x=0 \\
1, & \text { if } x \neq 0 \\
-1, & \text { if } x \neq 0 \text { and there exists } y \in \mathrm{GF}(p) \text { such that } y^{2}=x
\end{aligned}\right.
$$

plays a special role in what we do. $\quad \chi$ is the Legendre symbol on $\operatorname{GF}(p)$. Finally for $(F, \theta) \in \mathscr{F} \times \theta$ we define

$$
\delta(F, \theta)= \begin{cases}F(a / A), & \text { if } A \neq 0 \\ 0, & \text { if } A=0\end{cases}
$$

We are now in a position to define what we mean by the transformation formula $T(\theta, \dot{\rho})$.

Definition. If $(\theta, \dot{\varphi}) \in \Theta \times \Phi$ is such that

$$
\sum_{x} F(x)+\sum_{x} \chi(\dot{\varphi}(x)) F(x)=\sum_{x}^{\prime} F(\theta(x))+\delta(F, \theta)
$$

for all $F \in \mathscr{F}$, we say that the transformation formula $T(\theta, \dot{\phi})$ is valid. If on the other hand there is some $F_{0} \in \mathscr{F}$ such that

$$
\sum_{x} F_{0}(x)+\sum_{x} \chi(\dot{\rho}(x)) F_{0}(x) \neq \sum_{x}^{\prime} F_{0}\left(\theta(x)+\delta\left(F_{0}, \theta\right)\right)
$$

then we say that $T(\theta, \dot{\phi})$ is not valid.
In some special cases it is well-known that $T(\theta, \phi)$ is valid. For example ([1; p. 159], [4; p. 101]) it is known that $T(\theta, \phi)$ is valid if

$$
\begin{equation*}
\theta(X)=X^{2}, \dot{\phi}(X)=X \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta(X)=\frac{X^{2}+c}{X}, \phi(X)=X^{2}-4 c \quad(c \neq 0) \tag{1.2}
\end{equation*}
$$

(We identify the elements of $\operatorname{GF}(p)$ with the residues modulo p and the elements of \mathscr{F} with functions defined on the integers which are periodic with period p). The name transformation formula is justified as (1.1) (resp. (1.2)) gives the well-known transformation property of the Gauss (resp. Kloosterman) sum, if we take $F(x)=\exp (2 \pi i x / p)$, [3], [4]. Both examples mentioned above have $\delta(F, \theta)=0$. An example with $\delta(F, \theta) \neq 0$ in general, is given by the following

$$
\begin{equation*}
\sum_{x} F(x)+\sum_{x} \chi(4 x+1) F(x)=\sum_{x}^{\prime} F\left(\frac{x+1}{x^{2}}\right)+F(0) . \tag{1.3}
\end{equation*}
$$

Here

$$
\theta(X)=\frac{X+1}{X^{2}} \text { and } \phi(X)=4 X+1
$$

The main objective of this paper is to give necessary and sufficient conditions for $T(\theta, \phi)$ to be valid. We prove in § 4 that if $(\theta, \phi) \in$ $\Theta \times \Phi$ then $T(\theta, \phi)$ is valid if and only if there exists $e(\neq 0) \in \operatorname{GF}(p)$ such that $\phi=e^{2} \theta^{*}$. (We note that in (1.1) $\theta^{*}(X)=4 X=4 \phi(X)$, in (1.2) $\theta^{*}(X)=X^{2}-4 c=\phi(X)$ and in (1.3) $\theta^{*}(X)=4 X+1=\phi(X)$). The proof of these necessary and sufficient conditions requires a useful lemma concerning quadratic polynomials possessing the same quadratic nature. This lemma is proved in $\S 3$. In $\S 2$ a number of properties of $\Theta[X]$ and $\Phi[X]$ are noted, which together with the main theorem enable us to deduce that there are only two essentially different transformation formulae $T(\theta, \phi)$.
2. Properties of $\Theta[X]$ and $\Phi[X]$. We first consider $\Theta[X]$. The elements $\theta(X)=a X^{2}+b X+c / A X^{2}+B X+C$ of $\Theta[X]$ are well-defined, as A, B, C cannot all be zero. Further they do not reduce to the form $l X+m / L X+M$, as not both of a, A are zero and $a X^{2}+b X+c$ and $A X^{2}+B X+C$ do not have a nonunit common factor.

Any element of $\Theta[X]$ gives rise to another element of $\Theta[X]$ in the following way. If $t, u, v, w, k, l, m, n \in \operatorname{GF}(p)$ are such that

$$
t w-u v \neq 0, k n-l m \neq 0
$$

and if $\theta(X) \in \Theta[X]$ then so does

$$
\begin{equation*}
\theta_{1}(X)=\frac{t \theta\left(\frac{k X+l}{m X+n}\right)+u}{v \theta\left(\frac{k X+l}{m X+n}\right)+w} \tag{2.1}
\end{equation*}
$$

The proof of this just consists of showing that

$$
\theta_{1}(X)=\frac{a_{1} X^{2}+b_{1} X+c_{1}}{A_{1} X^{2}+B_{1} X+C_{1}}
$$

where

$$
\begin{aligned}
a_{1} & =(t a+u A) k^{2}+(t b+u B) k m+(t c+u C) m^{2}, \\
b_{1} & =2(t a+u A) k l+(t b+u B)(k n+l m)+2(t c+u C) m n \\
c_{1} & =(t a+u A) l^{2}+(t b+u B) l n+(b c+u C) n^{2}, \\
A_{1} & =(v a+w A) k^{2}+(v b+w B) k m+(v c+w C) m^{2},
\end{aligned}
$$

$$
\begin{aligned}
& B_{1}=2(v a+w A) k l+(v b+w B)(k n+l m)+2(v c+w C) m n, \\
& C_{1}=(v a+w A) l^{2}+(v b+w B) l n+(v c+w C) n^{2},
\end{aligned}
$$

and noting that

$$
\begin{align*}
& \left(a_{1} C_{1}-c_{1} A_{1}\right)^{2}-\left(a_{1} B_{1}-b_{1} A_{1}\right)\left(b_{1} C_{1}-c_{1} B_{1}\right) \\
= & (t w-u v)^{2}(k n-l m)^{4}\left\{(a C-c A)^{2}-(a B-b A)(b C-c B)\right\} \tag{2.2}\\
\neq & 0
\end{align*}
$$

We can thus define on equivalence relation on $\Theta[X]$ by saying that $\theta(X), \theta_{1}(X) \in \Theta[X]$ are equivalent if there exist $k, l, m, n, t, u, v, w \in$ $\mathrm{GF}(p)$ with $k n-l m \neq 0, t w-u v \neq 0$ and such that (2.1) holds. We write $\theta_{1} \sim \theta$.

Let c_{1} and c_{2} be fixed elements of $\operatorname{GF}(p)$ such that $\chi\left(c_{1}\right)=+1$, $\chi\left(c_{2}\right)=-1$, so that there exists $d_{1}(\neq 0) \in \mathrm{GF}(p)$ with $c_{1}=d_{1}^{2}$. Then any element

$$
\theta(X)=\frac{a X^{2}+b X+c}{A X^{2}+B X+C} \in \Theta[X]
$$

is either equivalent to $\theta_{c_{1}}(X)=X+\left(c_{1} / X\right)$ or $\theta_{c_{2}}(X)=X+\left(c_{2} / X\right)$. More precisely we have

$$
\theta \sim \theta_{c_{1}}, \text { if } \chi\left((a C-c A)^{2}-(a B-b A)(b C-c B)\right)=+1
$$

and

$$
\theta \sim \theta_{c_{2}}, \text { if } \chi\left((a C-c A)^{2}-(a B-b A)(b C-c B)\right)=-1
$$

This is clear as we have

$$
\theta(X)=\frac{t \theta_{c_{1}}\left(\frac{k X+l}{m X+n}\right)+u}{v \theta_{c_{1}}\left(\frac{k X+l}{m X+n}\right)+w},
$$

where
(i) $t=a h, u=b-2 a g, v=A h, w=B-2 A g, k=1, l=g, m=$ $0, n=h$, if $\chi\left((a C-c A)^{2}-(a B-b A)(b C-c B)\right)=+1, a B-b A \neq 0$, and g and $h(\neq 0) \in \mathrm{GF}(p)$ are defined by

$$
g=\frac{a C-c A}{a B-b A}, c_{1} h^{2}=\left(\frac{a C-c A}{a B-b A}\right)^{2}-\left(\frac{b C-c B}{a B-b A}\right)
$$

(ii) $t=a A(1-d), u=2 a A d_{1}(1+d), v=A^{2}-a^{2} D, w=2 d_{1}\left(A^{2}+\right.$ $\left.a^{2} D\right), k=2 a d_{1}, l=(b+1) d_{1}, m=2 a, n=(b-1), \quad$ if $\quad \chi\left((a C-c A)^{2}\right.$ $-(a B-b A)(b C-c B))=+1, a B-b A=0, a A \neq 0$;
(iii) $t=a^{2} C^{2}-d, u=2 d_{1}\left(a^{2} C^{2}+d\right), v=4 a C, w=-8 d_{1} a C, k=$ $2 a d_{1}, l=d_{1}(b+a C), m=2 a, n=b-a C$, if $\chi\left((a C-c A)^{2}-(a B-b A)\right.$ $(b C-c B))=+1, a B-b A=0, A=0$;
(iv) $t=4 A c, u=-8 d_{1} A c, v=A^{2} c^{2}-D, w=2 d_{1}\left(A^{2} c^{2}+D\right), k=$ $2 d_{1} A, l=d_{1}(B+A c), m=2 A, n=B-A c$, if $\chi\left((a C-c A)^{2}-(a B-b A)\right.$ $(b C-c B))=+1, a B-b A=0, a=0$; and

$$
\theta(X)=\frac{t \theta_{c_{2}}\left(\frac{k X+l}{m X+n}\right)+u}{v \theta_{c_{2}}\left(\frac{k X+l}{m X+n}\right)+w}
$$

where
(v) $t=a h, u=b-2 a g, v=A h, w=B-2 A g, k=1, l=g, m=$ $0, n=h$, if $\chi\left((a C-c A)^{2}-(a B-b A)(b C-c B)\right)=-1$ and g, h are defined by

$$
g=\frac{a C-c A}{a B-b A}, c_{2} h^{2}=\left(\frac{a C-c A}{a B-b A}\right)^{2}-\left(\frac{b C-c B}{a B-b A}\right)
$$

This shows that there are atmost two equivalence classes in $\theta[X]$. We show that there are exactly two by proving that $\theta_{c_{1}}(X) \nsim \theta_{c_{2}}(X)$. For suppose that $\theta_{c_{1}}(x) \sim \theta_{c_{2}}(x)$ then there exist $k, l, m, n, t, u, v, w \in$ GF (p) with

$$
k n-l m \neq 0, t w-u v \neq 0
$$

and such that

$$
\theta_{c_{1}}(X)=\frac{t \theta_{c_{2}}\left(\frac{k X+l}{m X+n}\right)+u}{t \theta_{c_{2}}\left(\frac{k X+l}{m X+n}\right)+w}
$$

Thus from (2.2) we have

$$
-c_{1}=(t w-u v)^{2}(k n-l m)^{3}\left(-c_{2}\right)
$$

which contradicts that $\chi\left(c_{1}\right)=+1, \chi\left(c_{2}\right)=-1$.
We now consider $\Phi[X]$. The elements $\phi(X)=q X^{2}+r X+s$ of $\Phi[X]$ are either genuinely quadratic or linear, as q, r are not both zero. Moreover they are not of the form $q(X+k)^{2}$, for any $k \in \operatorname{GF}(p)$. Corresponding to (2.1) we have

$$
\theta_{1}^{*}(X)=(k n-l m)^{2}(-v X+t)^{2} \theta^{*}\left(\frac{w X-u}{v X+t}\right) \in \Phi[X]
$$

3. A useful lemma. We prove the following lemma which is needed in the proof of our theorem.

Lemma. If $q X^{2}+r X+s, q^{\prime} X^{2}+r^{\prime} X+s^{\prime} \in \Phi[X]$ are such that $\chi\left(q x^{2}+r x+s\right)=\chi\left(q^{\prime} x^{2}+r^{\prime} x+s^{\prime}\right)$, for all $x \in \mathrm{GF}(p)$, then there exists
$e(\neq 0) \in \mathrm{GF}(p)$ such that

$$
q X^{2}+r X+s=e^{2}\left(q^{\prime} X^{2}+r^{\prime} X^{2}+r^{\prime} X+s^{\prime}\right)
$$

Proof. As $q X^{2}+r X+s \in \Phi[X]$ it is not of the form $q(X+k)^{2}$ and not both of q, r are zero, similarly for $q^{\prime} X^{2}+r^{\prime} X+s^{\prime}$. The condition $\chi\left(q x^{2}+r x+s\right)=\chi\left(q^{\prime} x^{2}+r^{\prime} x+s^{\prime}\right)$ implies that a zero of $q x^{2}+r x+s$ is a zero of $q^{\prime} x^{2}+r^{\prime} x+s^{\prime}$ and vice-versa. Thus, unless both $q X^{2}+r X+s$ and $q^{\prime} X^{2}+r^{\prime} X+s^{\prime}$ are irreducible in $\operatorname{GF}(p)[X]$, that is, unless $\chi\left(r^{2}-4 q s\right)=\chi\left(r^{\prime 2}-4 q^{\prime} s^{\prime}\right)=-1$, we have for some $e_{1}, e_{2} \in \operatorname{GF}(p)\left(e_{1} \neq e_{2}\right)$ either

$$
\begin{aligned}
q X^{2}+r X+s= & q\left(X-e_{1}\right)\left(X-e_{2}\right), q^{\prime} X^{2}+r^{\prime} X+s^{\prime}=q^{\prime}\left(X-e_{1}\right)\left(X-e_{2}\right) \\
& q, q^{\prime} \neq 0
\end{aligned}
$$

or

$$
q X^{2}+r X+s=r\left(X-e_{1}\right), q^{\prime} X^{2}+r^{\prime} X+s^{\prime}=r^{\prime}\left(X-e_{1}\right), q=q^{\prime}=0
$$

In the former case taking $x \neq e_{1}, e_{2}$ in

$$
\chi\left(q x^{2}+r x+s\right)=\chi\left(q^{\prime} x^{2}+r^{\prime} x+s^{\prime}\right)
$$

we obtain $\chi(q)=\chi\left(q^{\prime}\right)$, so that there exists $e(\neq 0) \in \operatorname{GF}(p)$ such that $q=e^{2} q^{\prime}$. Hence

$$
r=-q\left(e_{1}+e_{2}\right)=-e^{2} q^{\prime}\left(e_{1}+e_{2}\right)=e^{2} r^{\prime}, s=q e_{1} e_{2}=e^{2} q^{\prime} e_{1} e_{2}=e^{2} s^{\prime}
$$

and so we have

$$
q x^{2}+r X+s=e^{2}\left(q^{\prime} X^{2}+r^{\prime} X+s^{\prime}\right)
$$

In the latter case taking $x \neq e_{1}$ in $\chi\left(q x^{2}+r x+s\right)=\chi\left(q^{\prime} x^{2}+r^{\prime} x+s^{\prime}\right)$ we obtain $\chi(r)=\chi\left(r^{\prime}\right)$, so that there exists $e(\neq 0) \in \operatorname{GF}(p)$ such that $r=e^{2} r^{\prime}$. Hence $s=-r e_{1}=e^{2} r^{\prime} e_{1}=e^{2} s^{\prime}$ and we have

$$
q X^{2}+r X+s=e^{2}\left(q^{\prime} X^{2}+r^{\prime} X+s^{\prime}\right)
$$

If $\chi\left(r^{2}-r q s\right)=\chi\left(r^{\prime 2}-r q^{\prime} s^{\prime}\right)=-1$ then $q, q^{\prime}, r^{2}-4 q s, r^{\prime 2}-4 q^{\prime} s^{\prime}$ are all nonzero and

$$
\sum_{x} \chi\left(q x^{2}+r x+s\right)=\sum_{x} \chi\left(q^{\prime} x^{2}+r^{\prime} x+s^{\prime}\right)
$$

gives $\chi(q)=\chi\left(q^{\prime}\right)$. Hence there exists $e(\neq 0) \in \operatorname{GF}(p)$ such that $q=e^{2} q^{\prime}$. Now as $q q^{\prime}=\left(e q^{\prime}\right)^{2} \neq 0$ we have

$$
\begin{aligned}
& \sum_{x} \chi\left(\left(x^{2}+\frac{r}{q} x+\frac{s}{q}\right)\left(x^{2}+\frac{r^{\prime}}{q^{\prime}} x+\frac{s^{\prime}}{q^{\prime}}\right)\right) \\
= & \sum_{x} \chi\left(\left(q x^{2}+r x+s\right)\left(q^{\prime} x^{2}+r^{\prime} x+s^{\prime}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x} \chi\left(\left(q x^{2}+r x+s\right)^{2}\right) \\
& =\sum_{x} 1
\end{aligned}
$$

and so

$$
\begin{equation*}
\sum_{x} \chi\left(\left(x^{2}+\frac{r}{q} x+\frac{s}{q}\right)\left(x^{2}+\frac{r^{\prime}}{q^{\prime}} x+\frac{s^{\prime}}{q^{\prime}}\right)\right)=p \tag{3.1}
\end{equation*}
$$

If $X^{2}+(r / q) X+(s / q) \neq X^{2}+\left(r^{\prime} / q^{\prime}\right) X+\left(s^{\prime} / q^{\prime}\right)$ then by a deep result of Perel'muter [2] we have

$$
\left|\sum_{x} X\left(\left(x^{2}+\frac{r}{q} x+\frac{s}{q}\right)\left(x^{2}+\frac{r^{\prime}}{q^{\prime}} x+\frac{s^{\prime}}{q^{\prime}}\right)\right)\right| \leqq 2 p^{1 / 2}
$$

For $p \geqq 5$ this clearly contradicts (3.1). Thus for $p \geqq 5$ we have $X^{2}+(r / q) X+(s / q)=X^{2}+\left(r^{\prime} / q^{\prime}\right) X+\left(s^{\prime} / q^{\prime}\right)$, that is as $q=e^{2} q^{\prime}$,

$$
q X^{2}+r X+s=e^{2}\left(q^{\prime} X^{2}+r^{\prime} X+t^{\prime}\right)
$$

as required. When $p=3$ the theorem is easily verified by examining the values of $q x^{2}+r x+s$ for $x \in \operatorname{GF}(p)$ (see table).

When $p=3, \Phi[X]$ consists of all polynomials of $\mathrm{GF}(3)[X]$ of degree atmost 2 except the 9 polynomials $q(X+k)^{2}, q, k \in G F(3)$, which have discriminant equal to zero. The table shows that there do not exist 2 elements of $\Phi[X]$, say $\phi(X), \phi^{\prime}(X)$ with $\chi(\phi(x))=\chi\left(\phi^{\prime}(x)\right)$, for all $x \in \mathrm{GF}(3)$.

Table.

$\phi(X) \in \Phi[X]$	$\chi(\phi(0))$	$\chi(\phi(1))$	$\chi(\phi(2))$
X	0	1	-1
$X+1$	1	-1	0
$X+2$	-1	0	1
$2 X$	0	-1	1
$2 X+1$	1	0	-1
$2 X+2$	-1	1	0
+1	1	-1	-1
X^{2}	-1	0	0
$X^{2}+2$	0	-1	0
$X^{2}+X$	-1	1	-1
$X^{2}+X+2$	0	0	-1
$X^{2}+2 X$	-1	-1	1
$X^{2}+2 X+2$	1	0	0
$2 X^{2}$	-1	-1	1
$2 X^{2}$	+2	-1	
$2 X^{2}+X$	0	0	1
$2 X^{2}+X+1$	1	1	-1
$2 X^{2}+2 X$	0	1	0
$2 X^{2}+2 X+1$	1	-1	1

4. Main result. We prove

Theorem. If $(\theta, \phi) \in \Theta \times \Phi$ then $T(\theta, \phi)$ is valid if and only if there exists $e(\neq 0) \in \mathrm{GF}(p)$ such that

$$
\begin{equation*}
\phi=e^{2} \theta^{*} . \tag{4.1}
\end{equation*}
$$

Proof. (i) We let $\phi=e^{2} \theta^{*}$, where $e(\neq 0) \in \mathrm{GF}(p)$ and

$$
\theta(X)=\frac{a X^{2}+b X+c}{A X^{2}+B X+C} \in \theta[X],
$$

and prove that $T(\theta, \phi)$ is valid. For all $F \in \mathscr{F}$ we have

$$
\begin{aligned}
\sum_{x}^{\prime} F(\theta(x)) & =\sum_{y} \sum_{\theta(x)=y}^{\prime} F(\theta(x)) \\
& =\sum_{y} F(y) \sum_{\theta(x)=y}^{\prime} 1 .
\end{aligned}
$$

Thus for given $y \in \operatorname{GF}(p)$ we require the number of solutions $x \in \operatorname{GF}(p)$ of $\theta(x)=y$, that is of

$$
\begin{equation*}
(A y-a) x^{2}+(B y-b) x+(C y-c)=0 . \tag{4.2}
\end{equation*}
$$

This is a genuine quadratic in x unless $A y-a=0$. Thus we must consider two cases according as $A=0$ or $A \neq 0$.

Case (a). $A=0$, (so that $\delta(F, \theta)=0$).
In this case $a \neq 0$ so that $A y-a \neq 0$, for all $y \in \operatorname{GF}(p)$. Thus the number of solutions of (4.2) is

$$
\begin{aligned}
& 1+\chi\left((B y-b)^{2}-4(A y-a)(C y-c)\right) \\
= & 1+\chi\left(D y^{2}+\Delta y+d\right) \\
= & 1+\chi(\phi(y)), \text { as } e \neq 0 .
\end{aligned}
$$

Hence we have

$$
\sum_{x}^{\prime} F(\theta(x))=\sum_{y} F(y)+\sum_{y} \chi(\phi(y)) F(y),
$$

proving that $T(\theta, \phi)$ is valid in the case.
Case (b). $A \neq 0$, (so that $\delta(F, \theta)=F(a / A)$).
In this case, for all $y \in \operatorname{GF}(p)$ except a / A, (4.2) is a genuine quadratic and the number of solutions of it, for such y, is as in case (a). For $y=a / A$, (4.2) becomes

$$
(a B-b A) x+(a C-c A)=0,
$$

which since $a B-b A$ and $a C-c A$ cannot both be zero, has one solution if $a B-b A \neq 0$ and no solutions if $a B-b A=0$. This number is expressible as $\chi\left((a B-b A)^{2}\right)$. Hence

$$
\begin{aligned}
& \sum_{x}^{\prime} F(\theta(x))+\delta(F, \theta) \\
= & F(a / A) \chi\left((a B-b A)^{2}\right)+\sum_{y \neq a / A}\left\{1+\chi\left(D y^{2}+\Delta y+d\right)\right\} F(y)+F(a / A) \\
= & \sum_{y}\left\{1+\chi\left(e^{2} \theta^{*}(y)\right)\right\} F(y)
\end{aligned}
$$

as required, since

$$
A^{2}\left(D\left(\frac{a}{A}\right)^{2}+\Delta\left(\frac{a}{A}\right)+d\right)=(a B-b A)^{2}
$$

(ii) Conversely we show that if $(\theta, \phi) \in \Theta \times \Phi$ is such that $T(\theta, \phi)$ is valid then $\phi(X)=e^{2} \theta^{*}(X)$. For all $F \in \mathscr{F}$, as $T(\theta, \phi)$ is valid, we have

$$
\begin{equation*}
\sum_{x}^{\prime} F(\theta(x))+\delta(F, \theta)=\sum_{x} F(x)+\sum_{x} \chi(\phi(x)) F(x) \tag{4.3}
\end{equation*}
$$

From (i) we know that $T\left(\theta, \theta^{*}\right)$ is valid, so that also for all $F \in \mathscr{F}$ we have

$$
\begin{equation*}
\sum_{x}^{\prime} F(\theta(x))+\delta(F, \theta)=\sum_{x} F(x)+\sum_{x} \chi\left(D x^{2}+\Delta x+d\right) F(x) \tag{4.4}
\end{equation*}
$$

Hence form (4.3) and (4.4) we have

$$
\begin{equation*}
\sum_{x} \chi(\phi(x)) F(x)=\sum_{x} \chi\left(D x^{2}+\Delta x+d\right) F(x) \tag{4.5}
\end{equation*}
$$

for all $F \in \mathscr{F}$. In particular taking $F=F_{r}(r \in \mathrm{GF}(p))$ in (4.5) where F_{r} is defined for $x \in \operatorname{GF}(p)$ by

$$
F_{r}(x)=\left\{\begin{array}{l}
1, x=r, \\
0, x \neq r,
\end{array}\right.
$$

we have

$$
\chi(\phi(r))=\chi\left(D r^{2}+\Delta r+d\right)
$$

for all $r \in \operatorname{GF}(p)$. By lemma as $\phi(X), D X^{2}+\Delta X+d \in \Phi[X]$, we have, for some $e(\neq 0) \in \mathrm{GF}(p)$,

$$
\phi(X)=e^{2}\left(D X^{2}+\Delta X+d\right)=e^{2} \theta^{*}(X)
$$

which is (4.1).
5. An application. We use the theorem to evaluate the Salié sum [4]. Let $\theta(X)=(X+1)^{2} / X$ so that $\theta^{*}(X)=X^{2}-4 X$. By the
theorem we know that $T\left(\theta, \theta^{*}\right)$ is valid. If $G \in \mathscr{F}$ so does χG. Taking $F(x)=\chi(x) G(x)$ in $T\left(\theta, \theta^{*}\right)$ we obtain

$$
\sum_{x} \chi(x) G(x)+\sum_{x} \chi\left(x^{2}(x-4)\right) G(x)=\sum_{x}^{\prime} \chi\left(\frac{(x+1)^{2}}{x}\right) G\left(\frac{(x+1)^{2}}{x}\right)
$$

that is,

$$
\begin{equation*}
\sum_{x} \chi(x) G(x)+\sum_{x} \chi(x-4) G(x)=\sum_{x}^{\prime} \chi(x) G\left(x+2+\frac{1}{x}\right) \tag{5.1}
\end{equation*}
$$

Taking $G(x)=\exp (2 \pi i k x / p)$ and noting that this choice makes the two sums on the left hand side of (5.1) Gaussian sums we obtain Salié's result [4]

$$
\sum_{x \neq 0} \chi(x) \exp \left(\frac{2 \pi i k}{p}\left(x+\frac{1}{x}\right)\right)=2\left(\frac{k}{p}\right) i^{1 / 4(p-1)^{2}} p^{1 / 2} \cos \left(\frac{4 \pi k}{p}\right)
$$

6. Conclusion. The properties of $\Theta[X]$ indicated in $\S 2$ and the theorem of $\S 4$ show that there are only two essentially different transformation formulae $T(\theta, \phi)$ given by $(\theta, \phi)=\left(\theta_{c_{1}}, \theta_{c_{1}}^{*}\right)$ and $\left(\theta_{c_{2}}, \theta_{c_{2}}^{*}\right)$, where we have identified $T\left(\theta, \theta^{*}\right)$ and $T\left(\theta, e^{2} \theta^{*}\right)$. It would be interesting to know if this work could be generalized to give results concerning identities of a type similar to $T(\theta, \phi)$ but where θ, ϕ are elements of larger sets than Θ, Φ respectively and/or where χ is replaced by a more general character.

I would like to finish by thanking an unknown referee for a number of valuable suggestions. In particular he suggested the proof of the lemma given in § 3, which considerably shortened my original proof.

References

1. H. Davenport, On certain exponential sums, J. für Math. 169 (1933), 158-176.
2. G. I. Perel'muter, On certain sums of characters, Uspehi Mat. Nauk. 18 (1963), 145-149.
3. H. Rademacher, Lectures on elementary number theory, Blaisdell, 1964.
4. H. Salié, Über die Kloostermanschen Summen $S(u, v ; q)$, Math. Zeit. 34 (1931), 91109.

Received August 26, 1969, and in revised form January 30, 1970. This research was supported by a National Research Council of Canada Grant (No. A-7233).

Carleton University
Ottawa, Canada

