DISTINCT VALUES OF A POLYNOMIAL IN SUBSETS OF A FINITE FIELD

KENNETH S. WILLIAMS

1. Introduction. If A is a set with only a finite number of elements, we write $|A|$ for the number of elements in A. Let p be a large prime and let m be a positive integer fixed independently of p. We write $\left[p^{m}\right]$ for the finite field with p^{m} elements and $\left[p^{m}\right]^{\prime}$ for $\left[p^{m}\right]-\{0\}$. We consider in this paper only subsets H of $\left[p^{m}\right]$ for which $|H|=h$ satisfies

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{p^{m / 2}}{h}=0 \tag{1.1}
\end{equation*}
$$

If $f(x) \in\left[p^{m}, x\right]$ we let $N(f ; H)$ denote the number of distinct values of y in H for which at least one of the roots of $f(x)=y$ is in $\left[p^{m}\right]$. We write $d(d \geqq 1)$ for the degree of f and suppose throughout that d is fixed and that $p \geqq p_{0}(d)$, for some prime p_{0}, depending only on d, which is greater than d. We call $f(x)$ primary if the coefficient of x^{d} is 1 and $f(0)=0$. There are $p^{m(d-1)}$ primary polynomials of degree d over $\left[p^{m}\right]$. Uchiyama (3, p. 199) has proved that

$$
\begin{equation*}
\sum_{\text {deg } r=d} N\left(f ;\left[p^{m}\right]\right)=k_{d} p^{m d}+O_{d}\left(p^{m(d-1)}\right) \tag{1.2}
\end{equation*}
$$

where the summation is over all primary polynomials f defined over $\left[p^{m}\right]$ of degree d,

$$
\begin{equation*}
k_{d}=1-\frac{1}{2!}+\frac{1}{3!}-\ldots+\frac{(-1)^{d-1}}{d!} \tag{1.3}
\end{equation*}
$$

and the subscript means that the O-symbol depends only on d, that is not on m or p. Our aim in this paper is to generalize (1.2). In $\S 3$ we prove the following theorem.

Theorem. If H is any subset of $\left[p^{m}\right]$, satisfying (1.1), then

$$
\begin{equation*}
\sum_{\mathrm{deg}}{ }_{f=d} N(f ; H)=k_{d} h p^{m(d-1)}+O_{d}\left(p^{m(d-1 / 2)}\right) \tag{1.4}
\end{equation*}
$$

This is a genuine asymptotic formula for large p as the term $O_{d}\left(p^{m(d-1 / 2)}\right)$ is certainly $o\left(h p^{m(d-1)}\right)$, as $p \rightarrow \infty$, in view of (1.1). We have thus generalized (1.2) but at the cost of weakening the error term. The error term in (1.4) can be improved when $d=1$ or 2 to $O_{d}\left(p^{m(a-1)}\right)$.

It turns out that the estimation of $\sum_{d e g} f=d N(f ; H)$ depends on that of the number of $\left(x_{1}, \ldots, x_{d}\right) \in\left[p^{m}\right]^{\prime} \times \ldots \times\left[p^{m}\right]^{\prime}, x_{i} \neq x_{j}(i \neq j)$ for which

[^0]$(-1)^{d-1} x_{1} \ldots x_{d}$ is in H. This number is denoted by $N(p, m, d, H)$. It is precisely in the estimation of $N(p, m, d, H)$ that the error term can be improved when $d=1$ or 2 (or when $H=\left[p^{m}\right]$). We devote $\S 2$ to the estimation of $N(p, m, d, H)$ and it will be shown there that
\[

$$
\begin{equation*}
N(p, m, d, H)=h p^{m(d-1)}+O_{d}\left(p^{m(d-1 / 2)}\right) \tag{1.5}
\end{equation*}
$$

\]

2. Estimation of $N(p, m, d, H)$. We denote the trace of α from $\left[p^{m}\right]$ to $[p]$ by $t(\alpha)$, so that

$$
\begin{equation*}
t(\alpha)=\alpha+\alpha^{p}+\ldots+\alpha^{p^{m-1}} \in[p] \tag{2.1}
\end{equation*}
$$

and hence can be considered as an integer $(\bmod p)$. Clearly,

$$
\begin{equation*}
t(\alpha+\beta)=t(\alpha)+t(\beta) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
t(\lambda \alpha)=\lambda t(\alpha) \tag{2.3}
\end{equation*}
$$

for all $\alpha, \beta \in\left[p^{m}\right], \lambda \in[p]$. Now let

$$
\begin{equation*}
e(\alpha)=\exp \{2 \pi i t(\alpha) / p\} ; \tag{2.4}
\end{equation*}
$$

thus from (2.2) we have

$$
\begin{equation*}
e(\alpha+\beta)=e(\alpha) e(\beta) \tag{2.5}
\end{equation*}
$$

It is well known that for $x \in\left[p^{m}\right]$, we have

$$
\sum_{y \in\left[p^{m}\right]} e(x y)= \begin{cases}p^{m} & \text { if } x=0 \tag{2.6}\\ 0 & \text { if } x \neq 0\end{cases}
$$

We define for any integer $k \geqq 1$,

$$
S(k)=\left\{\left(x_{1}, \ldots, x_{k}\right) \mid x_{i} \in\left[p^{m}\right]^{\prime}, 1 \leqq i \leqq k\right\}
$$

Then, if $0 \neq a \in\left[p^{m}\right]$, we have on summing over x_{d}, by (2.6),

$$
\begin{equation*}
\sum_{S(d)} e\left(a x_{1} \ldots x_{d}\right)=\sum_{S(d-1)}(-1)=-\left(p^{m}-1\right)^{d-1} \tag{2.7}
\end{equation*}
$$

It is also well known (1, p. 39, display (12)) that for $0 \neq b \in\left[p^{m}\right]$ and $p>k \geqq 1$, we have:

$$
\begin{equation*}
\left|\sum_{u \in\left\lfloor p^{m_{1}}\right]} e\left(b y^{k}\right)\right| \leqq(k-1) p^{m / 2} \tag{2.8}
\end{equation*}
$$

For any $l(\geqq 1)$ positive integers i_{1}, \ldots, i_{l} we define

$$
\left.T(l)=\left\{x_{i_{1}}, \ldots, x_{i l}\right) \mid x_{i j} \in\left[p^{m}\right]^{\prime}, \quad 1 \leqq j \leqq l\right\}
$$

Thus for any positive integers $r, i_{1}, \ldots, i_{r}, a_{1}, \ldots, a_{\tau}$ satisfying
(2.9) $1 \leqq r \leqq d-1, \quad 1 \leqq i_{1}<i_{2}<\ldots<i_{r} \leqq d, \quad a_{1}+a_{2}+\ldots+a_{r}=d$,
we have, by (2.8), as $p>d$,

$$
\begin{aligned}
\left|\sum_{T(r)} e\left(a x_{i_{1}}{ }^{a_{1}} \ldots x_{i_{r}}{ }^{a_{r}}\right)\right| \leqq \sum_{T(r-1)} & \left|\sum_{x_{i} \in\left(p_{1} m_{1}\right.} e\left\{\left(a x_{i_{1}}^{a_{1}} \ldots x_{i_{r-1}}{ }^{a_{r-1}}\right) x_{i_{r}}^{a_{r}}\right\}\right| \\
& \leqq \sum_{T(r-1)}\left\{\left(a_{r}-1\right) p^{m / 2}+1\right\} \leqq a_{\tau} p^{m / 2} \cdot\left(p^{m}\right)^{r-1}
\end{aligned}
$$

and thus as $r \leqq d-1, a_{r} \leqq d$ we have:

$$
\begin{equation*}
\left|\sum_{T(r)} e\left(a x_{i_{1}}{ }^{a_{1}} \ldots x_{i_{\tau}}{ }^{a_{\tau}}\right)\right| \leqq d p^{m(d-3 / 2)} \tag{2.10}
\end{equation*}
$$

From (2.7) and (2.10) we have:

$$
\begin{equation*}
\sum_{S(d)}^{*} e\left(a x_{1} \ldots x_{d}\right)=-\left(p^{m}-1\right)^{d-1}+O_{d}\left(p^{m(d-3 / 2)}\right) \tag{2.11}
\end{equation*}
$$

where the asterisk means that the summation is only taken over those $\left(x_{1}, \ldots, x_{d}\right) \in\left[p^{m}\right]^{\prime} \times \ldots \times\left[p^{m}\right]^{\prime}$ for which $x_{i} \neq x_{j}(i \neq j)$, since any sum

$$
\begin{equation*}
\sum_{S(d)} e\left(a x_{1} \ldots x_{d}\right) \quad\left(x_{i}=x_{j} \text { for at least one pair }(i, j)(i \neq j)\right) \tag{2.12}
\end{equation*}
$$

is of the form (2.10) for some $r, i_{1}, \ldots, i_{r}, a_{1}, \ldots, a_{\tau}$ satisfying (2.9). There are $O_{d}(1)$ such sums (2.12).

Now $N(p, m, d, H)$ is just the number of

$$
\left(x_{1}, \ldots, x_{d}, y\right) \in\left[p^{m}\right]^{\prime} \times \ldots \times\left[p^{m}\right]^{\prime} \times H, \quad x_{i} \neq x_{j}(i \neq j)
$$

for which $(-1)^{d-1} x_{1} \ldots x_{d}-y=0$. Hence by (2.6) we have:

$$
\begin{equation*}
N(p, m, d, H)=\frac{1}{p^{m}} \sum_{S(d)}^{*} \sum_{y \in H} \sum_{t \in\left[p^{m}\right]} e\left\{t\left((-1)^{d-1} x_{1} \ldots x_{d}-y\right)\right\} . \tag{2.13}
\end{equation*}
$$

The terms with $t=0$ in (2.13) contribute

$$
\frac{1}{p^{m}} \sum_{S(d)}^{*} \sum_{y \in H} 1=\frac{h}{p^{m}}\left(p^{m}-1\right)\left(p^{m}-2\right) \ldots\left(p^{m}-d\right)
$$

The terms with $t \neq 0$ yield:

$$
\begin{aligned}
& \frac{1}{p^{m}} \sum_{\nu \in H} \sum_{t \in\left[p^{m}\right]} e(-t y) \sum_{S(d)}^{*} e\left((-1)^{d-1} t x_{1} \ldots x_{d}\right) \\
&=\frac{1}{p^{m}} \sum_{\nu \in H} \sum_{t \in\left[p^{m}\right]} e(-t y)\left\{-\left(p^{m}-1\right)^{d-1}+O_{d}\left(p^{m(d-3 / 2)}\right)\right\} \\
&=-\frac{\left(p^{m}-1\right)^{d-1}}{p^{m}} \sum_{y \in H} \sum_{t \in\left\{p^{m}\right]^{\prime}} e(-t y)+O_{d}\left(p^{m(d-1 / 2)}\right) \\
&=-\frac{\left(p^{m}-1\right)^{d-1}}{p^{m}}\left\{p^{m} \delta(H)-h\right\}+O_{d}\left(p^{m(d-1 / 2)}\right)
\end{aligned}
$$

where

$$
\delta(H)= \begin{cases}1 & \text { if } 0 \in H \tag{2.14}\\ 0 & \text { if } 0 \notin H\end{cases}
$$

Clearly

$$
-\frac{\left(p^{m}-1\right)^{d-1}}{p^{m}}\left\{p^{m} \delta(H)-h\right\}=O\left(p^{m(d-1)}\right)
$$

thus (2.13) becomes

$$
N(p, m, d, H)=h p^{m(d-1)}+O_{d}\left(p^{m(d-1 / 2)}\right)
$$

as required.
3. Proof of the Theorem. Let $g_{0}, g_{1}, \ldots, g_{p^{m-1}}$ be the p^{m} elements of $\left[p^{m}\right]$, with $g_{0}=0$. We let
(3.1) $\mathrm{M} \equiv M(p, m, d, H, x)$

$$
=\left\{f(x)=x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x-y \mid a_{i} \in\left[p^{m}\right], y \in H\right\}
$$

so that $|M|=h p^{m(d-1)}$. For $i=0,1, \ldots, p^{m}-1$ we define

$$
\begin{equation*}
M_{i} \equiv M_{i}\left(p, m, d, H, g_{i}, x\right)=\left\{f \in M \mid f \text { a multiple of } x-g_{i}\right\} \tag{3.2}
\end{equation*}
$$

Now for

$$
0 \leqq i_{1}<i_{2}<\ldots<i_{r} \leqq p^{m}-1,1 \leqq r \leqq d-1\left(\leqq p-2 \leqq p^{m}-2\right)
$$

we have:
$\left|M_{i_{1}} \cap M_{i 2} \cap \ldots \cap M_{i_{r}}\right|$
= number of $f \in M$ which are multiples of $\prod_{j=1}^{r}\left(x-g_{i j}\right)$
$=$ number of $b_{d-r-1}, \ldots, b_{0} \in\left[p^{m}\right]$ such that

$$
\begin{aligned}
& \quad \prod_{j=1}^{\tau}\left(x-g_{i j}\right)\left(x^{d-\tau}+b_{d-\tau-1} x^{d-\tau-1}+\ldots+b_{1} x+b_{0}\right) \in M \\
& =p^{m(d-\tau-1)} \cdot \begin{cases}p^{m} & \text { if } i_{1}=0,0 \in H, \\
0 & \text { if } i_{1}=0,0 \notin H, \\
h & \text { if } i_{1} \neq 0,\end{cases}
\end{aligned}
$$

as $(-1)^{r-1} g_{i_{1}} \ldots g_{i_{r}}$ has an inverse in $\left[p^{m}\right]$ if and only if $i_{1} \neq 0$. Thus from (2.14) we have:

$$
\left|M_{i_{1}} \cap M_{i_{2}} \cap \ldots \cap M_{i_{r}}\right|= \begin{cases}p^{m(d-r)} \delta(H) & \text { if } i_{1}=0, \\ p^{m(d-r-1)} h & \text { if } i_{1} \neq 0 .\end{cases}
$$

Hence, writing $U(k, l)=\left\{\left(i_{1}, \ldots, i_{k}\right) \mid l \leqq i_{1}<i_{2}<\ldots<i_{k} \leqq p^{m}-1\right\}$, we have for $1 \leqq r \leqq d-1\left(\leqq p^{m}-2\right)$:
$\sum_{U(r, 0)}\left|M_{i_{1}} \cap M_{i_{2}} \cap \ldots \cap M_{i_{r}}\right|$

$$
\begin{aligned}
& =\sum_{U(r, 0)-U(r, 1)}\left|M_{i_{1}} \cap M_{i_{2}} \cap \ldots \cap M_{i_{r}}\right| \\
& \quad+\sum_{U(r, 1)}\left|M_{i_{1}} \cap M_{i_{2}} \cap \ldots \cap M_{i_{r}}\right| \\
& =\binom{p^{m}-1}{r-1} p^{m(d-r)} \delta(H)+\binom{p^{m}-1}{r} p^{m(d-r-1)} h \\
& =h p^{m(d-r-1)}\left\{\frac{p^{m \tau}}{r!}+O_{r}\left(p^{m(\tau-1)}\right)\right\}+\delta(H) p^{m(d-r)} O_{r}\left(p^{m(r-1)}\right) \\
& =\frac{h p^{m(d-1)}}{r!}+O_{r}\left(p^{m(d-1)}\right), \quad \text { as } h \leqq p^{m} .
\end{aligned}
$$

We next estimate

$$
\begin{aligned}
\left|M_{i_{1}} \cap \ldots \cap M_{i_{d}}\right| & =\text { number of } f=\prod_{j=1}^{d}\left(x-g_{i_{j}}\right) \in M \\
& = \begin{cases}1 & \text { if }(-1)^{d-1} g_{i_{1}} \ldots g_{i_{d}} \in H \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

hence

$$
\sum_{U(d, 0)}\left|M_{i_{1}} \cap \ldots \cap M_{i d}\right|=\sum_{U(d, 0)}^{\dagger} 1
$$

where the dagger (\dagger) denotes that only those $\left(i_{1}, \ldots, i_{d}\right)$ are counted for which $(-1)^{d-1} g_{i_{1}} \ldots g_{i_{d}} \in H$. Thus on picking out the terms with $i_{1}=0$ we have:

$$
\sum_{U(d, 0)}^{\dagger} 1=\binom{p^{m}-1}{d-1} \delta(H)+\sum_{U(d, 1)}^{\dagger} 1
$$

Now

$$
\begin{aligned}
d!\sum_{U(d, 1)}^{\dagger} 1 & =\sum_{(-1)^{d-1} \sum_{x_{1} \ldots x d \in H}}^{*} 1=N(p, m, d, H) \\
& =h p^{m(d-1)}+O_{d}\left(p^{m(d-1 / 2)}\right), \quad \text { by }(1.5)
\end{aligned}
$$

Hence

$$
\sum_{U(d, 0)}\left|M_{i_{1}} \cap \ldots \cap M_{i_{d}}\right|=\frac{h p^{m(d-1)}}{d!}+O_{d}\left(p^{m(d-1 / 2)}\right)
$$

Now

$$
\begin{aligned}
\sum_{\operatorname{deg} \gamma=d} N(f ; H)= & \left|M_{0} \cup M_{1} \cup \ldots \cup M_{p^{m}-1}\right| \\
= & \sum_{r=1}^{d}(-1)^{r-1} \sum_{U(r, 0)}\left|M_{i_{1}} \cap \ldots \cap M_{i_{r}}\right| \\
= & \sum_{r=1}^{d-1}(-1)^{r-1}\left\{\frac{h p^{m(d-1)}}{r!}+O_{r}\left(p^{m(d-1)}\right)\right\} \\
& \quad+(-1)^{d-1}\left\{\frac{h p^{m(d-1)}}{d!}+O_{d}\left(p^{m(d-1 / 2)}\right)\right\} \\
= & h p^{m(d-1)} \sum_{r=1}^{d} \frac{(-1)^{r-1}}{r!}+O_{d}\left(p^{m(d-1 / 2)}\right),
\end{aligned}
$$

as required.
4. Conclusion. The Theorem shows that for any given subset H of $\left[p^{m}\right]$ we have:

$$
\begin{equation*}
N(f ; H)=k_{d} h+O_{d}\left(p^{m / 2}\right) \tag{4.1}
\end{equation*}
$$

on the average. Carlitz and Uchiyama (1, p. 40, display (17)) have also shown that

It would be interesting to find an analogous asymptotic formula for

$$
\begin{equation*}
\sum_{d e g}{ }_{f=d} N^{2}(f ; H) . \tag{4.3}
\end{equation*}
$$

It seems reasonable to conjecture that the main term of any such asymptotic formula for (4.3), when it exists, would be

$$
\begin{equation*}
k_{d}{ }^{2} h^{2} p^{m(d-1)} \tag{4.4}
\end{equation*}
$$

This is certainly true when $d=1$. It can also be verified in special cases when $d=2,3$ or 4 . For example (see 2, p. 79, Theorem 2) when $d=4$ (so that $\left.k_{d}=5 / 8\right), m=1, p>3$ and H an arithmetic progression of $h(\leqq p)$ distinct terms in [p], it was shown that
(4.5) $N(f ; H)=(5 / 8) h+O\left(p^{1 / 2} \log p\right) \quad$ if and only if $a_{3}^{3}-4 a_{2} a_{3}+8 a_{1} \neq 0$.

Hence

$$
\begin{aligned}
& \sum_{\mathrm{deg}}^{f=4} \\
& N^{2}(f ; H)=\left(p^{3}-p^{2}\right)\left((5 / 8) h+O\left(p^{1 / 2} \log p\right)\right)^{2}+p^{2} O\left(h^{2}\right) \\
&=(25 / 64) h^{2} p^{3}+O\left(p^{9 / 2} \log p\right), \quad \text { if } \lim _{p \rightarrow \infty} \frac{p^{3 / 4} \sqrt{ } \log p}{h}=0 .
\end{aligned}
$$

References

1. L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J. 24 (1957), 37-41.
2. K. McCann and K. S. Williams, The distribution of the residues of a quartic polynomial, Glasgow Math. J. 8 (1967), 67-88.
3. S. Uchiyama, Note on the mean value of $V(f)$, Proc. Japan Acad. 31 (1955), 199-201.

Queen's University, Kingston, Ontario;
Carleton University, Ottawa, Ontario

[^0]: Received August 14, 1968. This research was supported in part by NRC Grant A-7233.

