POLYNOMIALS WITH IRREDUCIBLE FACTORS OF SPECIFIED DEGREE

Kenneth S. Williams

Let d be a positive integer and let p be a prime $> d$. Set $q = p^m$, where $m \geq 1$, and let $I(q, d)$ denote the number of distinct primary irreducible polynomials of degree d over $GF(q)$. It is a simple deduction from the well-known expression for $I(q, d)$ that

\begin{equation}
| I(q, d) - \frac{1}{d} q^d | \leq \left(1 - \frac{1}{d} \right) q^{d^*},
\end{equation}

where d^* is the largest positive integer $< d$ which divides d if $d > 1$, and d^* is 0 if $d = 1$. We can write (1) as an asymptotic formula, namely,

\begin{equation}
I(q, d) = \frac{1}{d} q^d + O(q^{d^*}),
\end{equation}

where the constant implied by the O-symbol depends here (and throughout this note) only on d. Our purpose in this note is to obtain a generalization of (2).

Let e and s be integers such that $1 \leq e \leq d$ and $1 \leq s \leq \lfloor d/e \rfloor$. We let $I(q, d, e, s)$ denote the number of distinct primary polynomials of degree d over $GF(q)$ having exactly s distinct primary irreducible factors of degree e over $GF(q)$. We prove that

\begin{equation}
I(q, d, e, s) = \ell_{d, e, s} q^d + O(q^{d-e+e^*}),
\end{equation}

where

\begin{equation}
\ell_{d, e, s} = \sum_{i=0}^{\lfloor d/e \rfloor - s} \frac{(-1)^i}{i! s! e^{i+s}}.
\end{equation}

This provides a generalization of (2), as $I(q, d, d, 1) = I(q, d)$ and $\ell_{d, d, 1} = 1/d$.\[221\]
We begin by noting that \(I(q, e) > \lfloor d/e \rfloor \), for from (1),

\[
I(q, e) \geq \frac{1}{e} q^{e} - \left(1 - \frac{1}{e} \right) q^{e-1} \\
\geq \frac{1}{e} \{ q^{e} - (e - 1) q^{e-1} \}, \quad \text{as} \quad e^{*} \leq e - 1, \\
\geq \frac{1}{e} \{ q \max(1, e-1) - (e - 1)q^{e-1} \}, \quad \text{as} \quad q \geq e, \\
\geq q/e \\
> d/e .
\]

Thus the number of primary polynomials of degree \(d \) over \(\text{GF}(q) \) which are divisible by \(i \) distinct primary irreducible polynomials of degree \(e \) over \(\text{GF}(q) \) is \(q^{d- ie} \), if \(1 \leq i \leq \lfloor d/e \rfloor \), and 0, if \(\lfloor d/e \rfloor < i \leq I(q, e) \). Hence, by the input-output formula, the number of such polynomials with with at least one primary irreducible factor of degree \(e \) is

\[
(5) \quad \sum_{i=1}^{[d/e]} (-1)^{i-1} \binom{I(q, e)}{i} q^{d-ie}.
\]

From (2) we have

\[
\binom{I(q, e)}{i} = \frac{q^{ie}}{i! \, e^{i}} + O\left(q^{\frac{ie-e+e^{*}}{e}} \right),
\]

so (5) becomes

\[
(6) \quad \left\{ \sum_{i=1}^{[d/e]} (-1)^{i-1} \binom{I(q, e)}{i} \right\} q^{d} + O\left(q^{d+e+e^{*}} \right) .
\]

Hence the number of primary polynomials of degree \(d \) over \(\text{GF}(q) \) having no irreducible factor of degree \(e \) over \(\text{GF}(q) \) is given by

\[
(7) \quad N(q, e, d) = \left\{ \sum_{i=0}^{[d/e]} (-1)^{i} \binom{I(q, e)}{i} \right\} q^{d} + O(q^{d+e+e^{*}}) .
\]
Now

\[I(q, d, e, s) = M(q, e, s) N(q, e, d - es), \]

where we understand \(N(q, e, d - es) \) to mean \(q^{d-es} \) when \(s = \lfloor d/e \rfloor \), and \(M(q, e, s) \) denotes the number of distinct polynomials which are the product of \(s \) (not necessarily distinct) primary irreducible polynomials of degree \(e \) over \(GF(q) \). \(M(q, e, s) \) is just the number of distinct \(s \)-combinations with repetition of \(I(q, e) \) distinct things and so is just

\[\binom{I(q, e) + s - 1}{s} = \frac{q^{es}}{s! e^s} + O(q^{es - e + e^*}). \]

Hence from (7), (8) and (9)

\[
I(q, d, e, s) = \left(\frac{q^{es}}{s! e^s} + O(q^{es - e + e^*}) \right) \left(\sum_{i=0}^{[d/e]-s} \frac{(-1)^i}{i! e^i} q^{d-es} + O(q^{d-es-e+e^*}) \right) \\
= \ell_{d, e, s} q^d + O(q^{d-e+e^*}),
\]

as required. We remark that (5) and (6) were obtained by Uchiyama (Note on the mean value of \(V(f) \), II, Proc. Japan Acad. 31 (1955) 321-323) when \(e = 1 \), in his work on the distinct values of a polynomial over a finite field.

Summer Research Institute
Queen's University
Kingston

Carleton University
Ottawa