NOTE ON PAIRS OF CONSECUTIVE RESIDUES OF POLYNOMIALS

Kenneth S. Williams

(received August 4, 1967)

1. Introduction. Let \(f(x) \) be a polynomial of degree \(d \geq 3 \) with integral coefficients, say,

\[
f(x) = a_0 + a_1 x + \ldots + a_d x^d.
\]

In a previous paper \([6]\) I deduced, from a deep result of Lang and Weil \([2]\), that there is a constant \(k_1(d) \), depending only on \(d \), such that for all primes \(p \geq k_1(d) \), \(p \nmid a_d \), \(f(x) \) has a pair of consecutive residues \((\text{mod} \ p)\), that is, there exists an integer \(r(0 \leq r \leq p-1) \) with the property that

\[
f(x) \equiv r, \ f(y) \equiv r + 1 \pmod{p}
\]

are simultaneously soluble. It was further proved that for almost all polynomials of degree \(d \), the least such \(r \) (say \(e \)) satisfies

\[
e \leq \frac{1}{2} k_2(d) p^2 \log p \quad (p \geq k_1(d))
\]

for some constant \(k_2(d) \) depending only on \(d \). I conjectured that, in fact, (3) holds for all such polynomials. K. McCann and I have proved this when \(d = 3 \) (see \([3]\)) and when \(d = 4 \) (see \([4]\)). It is the purpose of this note to prove the conjecture in the stronger form:

THEOREM. There is a constant \(k_3(d) \), depending only on \(d \), such that for all primes \(p \geq k_1(d) \),

\[
e \leq \frac{1}{2} k_3(d) p^2.
\]

To prove this theorem, we use a recent deep result of Bombieri and Davenport [1] and a method of Tietäväinen [5].

2. Proof of theorem. Let \(h \) be an integer such that \(1 \leq h \leq \frac{1}{2} (p+1) \), so that \(0 \leq h - 1 \leq \frac{1}{2} (p-1) \). Set \(H = \{ 0, 1, 2, \ldots, h-1 \} \) and write \(H_r (r = 0, 1, 2, \ldots, p-1) \) for the number of solutions of

\[
(5) \quad x + y \equiv r \pmod{p} \quad x, y \in H
\]

so that

\[
(6) \quad pH_r = \sum_{t=0}^{p-1} \sum_{x=0}^{h-1} \sum_{y=0}^{h-1} e\{ t(x + y - r) \}
\]

where \(e(u) = \exp(2\pi i u/p) \). Now let \(N_r \) \((r = 0, 1, 2, \ldots, p-1) \) denote the number of solutions of \(f(x) \equiv r \pmod{p} \). Then

\[
(7) \quad \sum_{r=0}^{p-1} p N_r N_{r+1} H_r = \sum_{t=0}^{p-1} \sum_{x=0}^{h-1} \sum_{y=0}^{h-1} e\{ tx \} e(-tr)
\]

where

\[
(8) \quad S(t) = \sum_{r=0}^{p-1} N_r N_{r+1} e(-tr).
\]

I proved in [6] that

\[
S(t) = \sum_{x, y=0}^{p-1} e(tf(x))
\]

and also that \(f(y) - f(x) - 1 \) is absolutely irreducible \(\pmod{p} \). Hence for \(t \neq 0 \), a result of Bombieri and Davenport [1] implies that

\[
(9) \quad |S(t)| \leq \frac{1}{4} (d)p^2 \quad (p \geq k_4 (d)),
\]

where \(k_4 (d) \) is a constant depending only on \(d \). For \(t = 0 \)

80
a result of Lang and Weil [2] gives

\[|S(0) - p| \leq k_5(d)p^2 \quad (p \geq k_4(d)) \]

where \(k_5(d) \) is a constant depending only on \(d \). Thus

\[
\left| p \sum_{r=0}^{p-1} N_r N_{r+1} H_r - h^2 S(0) \right|
\]

\[
= \left(\sum_{t=1}^{h-1} S(t) \left\{ \sum_{x=0}^{h-1} e(tx) \right\}^2 \right)
\]

\[
\leq \sum_{t=1}^{p-1} \left| S(t) \right| \left(\sum_{x=0}^{h-1} e(tx) \right)^2
\]

\[
\leq k_4(d)p^2 \sum_{t=1}^{p-1} \left| S(t) \right| \left(\sum_{x=0}^{h-1} e(tx) \right)^2
\]

by (9). In [5] it was noted that

\[
\sum_{t=1}^{p-1} \left| \sum_{x=0}^{h-1} e(tx) \right|^2 = h(p-h)
\]

so using (10) we have

\[
p \sum_{r=0}^{p-1} N_r N_{r+1} H_r \geq h^2 S(0) - k_4(d)p^2 h(p-h)
\]

\[
\geq h^2 (p-k_5(d)p^2) - k_4(d)hp^{3/2}
\]

\[
\geq h^2 p - (k_4(d)+k_5(d))hp^{3/2}
\]

\[
= ph \left\{ h - (k_4(d)+k_5(d))p^{2} \right\}.
\]
Choose \(h = \left\lfloor \left\{ k_4(d) + k_5(d) \right\} \frac{1}{p^2} \right\rfloor + 1 \) so that

\[
\sum_{r=0}^{p-1} N_r N_{r+1} H > 0 .
\]

Hence there exists \(r \) \((0 \leq r \leq p-1)\) for which

\[
N_r > 0, \quad N_{r+1} > 0, \quad H_r > 0 ;
\]

i.e., for which \((r, r+1)\) is a pair of consecutive residues of \(f(x) \) and moreover

\[
r = x+y, \quad x \in H, \quad y \in H
\]

so that

\[
0 \leq r \leq 2(h-1) = 2\left\lfloor \left\{ k_4(d) + k_5(d) \right\} \frac{1}{p^2} \right\rfloor .
\]

Hence

\[
e \leq k_3(d)p^2
\]

where

\[
k_3(d) = 2\{k_4(d) + k_5(d)\}.
\]

which proves (4).

REFERENCES

