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1. Introduction. Some recent work by the authors (I) on the distribution of the 
residues of a cubic polynomial modulo an odd prime p led to the conjecture that, in 
general, two cubic polynomials with integer coefficients possessing the same residues 
modulo p (not necessarily occurring to the same multiplicity) are equivalent, that is 
are related by a linear transformation modulo p. The purpose of the present paper is 
to prove this conjecture. We establish the following theorem. 

THEOREM. If p > 7 is an odd prime and f(x), g(y) are cubic polynmials in x a d  y 
respectively with integer coefficients, possessing the same residues (modp) then either 
(i) there exist integers a * 0 and b such that f(ay + b) = g(y) for all integers y or (ii) we 
havep = 2 (mod 3) and integers a 8 0, b, c and a' * 0, b', c' exist such that 

f (x) = a(x + b)3 + c and g(y) = af(y + b')3 + c.t 

It will be observed that if (i) or (ii) of our theorem is satisfied then f(x), g(y) certainly 
possess the same residues modp. For (i) this is obvious; for (ii) it follows from the fact 
that, if p = 2 (mod 3), every residue of p is a cubic residue and hence the residues of 
f(x) or g(y) form a complete set (modp). 

The proof of the theorem depends on combining some results of (I) together with a 
deep theorem of Perel'muter (2). In this way we are able to deal with all primesp > 41 ; 
for the remainder we have only a finite number of cases to consider and these we have 
verified by computer (see $4). The computations showed, in particular, that the 
theorem would not be valid for p = 3, 5 or 7; the pairs 9 ,  y3 + 1 ; x3 + 3x, y3 + 4y; 
9 + 3x, 2y3 + 2y are not equivalent modulo 3, 5, 7 respectively but possess the same 
residues namely 0, 1, 2; 0, 1, 4 and 0, 1, 3, 4, 6. The theorem would hold also for 
p = 5, 7 if the residues were assumed to occur to the same multiplicity. 

2. Prelimina y transformations. We shall suppose throughout that p, f (x) and 
g(y) satisfy the hypotheses of the theorem, the leading coefficients of the polynomials 
being assumed relatively prime top.  Since a linear transformation on x or y does not 
affect the residues of the polynomials, and, moreover, since p > 3, there is no loss of 
generality in supposing that the coefficients of x2, y2 in f(x), g(y) respectively are 0. 
By subtracting the same integer from each polynomial we may suppose, again without 
loss of generality, that the constant coefficient in f (x) is 0. Furthermore, we may sup- 
pose now that the constant coefficient g(0) in g(y) is also 0. For since f(x), g(y) have the 

t Here, as subsequently, d l  congruences are supposed to be taken modulo p, unless other- 
w i~e  specified. 
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same residues, the congruence f (x) = g(0) is soluble for x. Since further f ( - x) = - f (x) 
we see that -g(O) = g(y) is soluble for y, and this implies that also g(y) = 3g(0) is 
soluble for y by virtue of the identity g(y) = - g( - y) + 2g(0). It is now easily verified 
by induction that f(x) = (2n - 1) g(O), g(y) = (2n + 1) g(0) are soluble for each positive 
integer n. But if p does not divide g(0), we see that (2n - 1) g(0) (n = 1,2, . . . , p)  runs 
through a complete set of residues (mod p)  and, unless p 2 (mod 3) and the co- 
efficient of x in f(x) is divisible by p, this contradicts a result of ( I )  to the effect that the 
number of residues of f(x) is not greater than 9(2p+ 1). Similarly, we obtain a con- 
tradiction unless the coefficient of y in g(y) - g(0) is divisible by p. Hence, if p does not 
divide g(O), case (ii) of our theorem must hold. 

We can now write 
f(x) = a1x3+c1x, g(y) = a,y3+c2y, 

where a,, c,, a,, c, denote integers with a,, a, not divisible by p. If p 2 (mod 3) we 
may suppose further that a, = l ,a ,  = 1. For there exists a unique integer r, not 
divisible by p,  such that r3 = a, (modp), whence a, x3 + c,x = Z3 + clFP, where rx = 3, 

r7 = 1, and a similar transformation can be applied for y. If p = 1 (mod 3), on the other 
hand, we can assume that a, = 1 by substituting P for a,x and considering a2, f(x), 
afg(y) instead of f(x), g(y), but we cannot necessarily assume that a, = 1. 

Finally, we note that there is no loss of generality in assuming that neither c, 
nor c, is divisible by p. For suppose c, = 0. Then also c, 0, for otherwise, by (I),  

f (x) would have g(2p + ( - 31p)) distinct residues but g(y) would have +(p + 2) or p 
residues according as p r 1 (mod 3) or p = 2 (mod 3). Similarly c, = 0 implies c, = 0. 
Now if p = 2 (mod 3) we again have case (ii) of our theorem. If p = 1 (mod 3) the 
theorem follows from the fact that x3 is equivalent to a2y3, and assumes the same resi- 
dues, if and only if a, is a cubic residue modulo p. 

3. Proof of Theorem @ > 41). For each integer r = 0,1, . . . , p - 1 let Df (r) and Dg(r) 
denote the discriminants off (x) - rand g(y) - r respectively. Then (Df(r)/p) is given by 
- 1 iff (x) - r has exactly one linear factor (modp), by 0 if i t  has a squared factor 
(modp) and by 1 otherwise, that is if it is irreducible or has three linear factors. We 
may suppose, without loss of generality, that Df(r) Dg(r) is not congruent to a square 
(modp). For otherwise, noting that c,, a, and c, are relatively prime to p,  neither 
Df(r) = - 27r2 - 44  nor D,(r) = - 27aEr2 - 4cXa2 has a repeated factor (modp) and 
hence we would have DJr) = h2 Df (r) for all r, that is a% = h2 and h2c: = cg a,. Thus f (x) 
would be transformed into g(y) by the equation x = c,E,y, where c,E, 1. 

Since Df(r) D,(r) is a quartic in r which has been assumed not congruent to a square, 
we have, by a deep result of Perel'muter (2 ) ,  

We proceed to evaluate a lower bound for S, which, by comparison, will yield the 
required contradiction. We clearly have 
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where ki5 (i, j = 0,1,2,3) is d e h e d  as the number of integers r for which f(x) = r 
and g(y) = r have exactly i and j solutions (modp) respectively. Here kO1, k,,, ko3, k3, 
me all 0, since f(x), g(y) are supposed to have the same residues (and hence also the 
same non-residues). Further, ko0 is just the number of non-residues of f(x) (or g(y)) 
and thus, by (I), we have 

koo = $0 - ( - 3/24). 

To estimrtte kll + k,, - (k13 + kS1) we note that 

where ni(f) denotes the number of integers r for which f (x) = r has exactly i solutions 
and ni(g) denotes the corresponding number for the congruences g(y) = r. Hence we 
have kij ,< ni(f), k5, < ni(g) (i = 1,2,3), and this gives 

Now (by (I), for example) we have 

and the ni(f) are given by the same expressions with a, replaced by 1. A simple cal- 
culation therefore shows that 

nlCf) - n2(9) - 2n3(g) - n3(f) = ( - 3/p), 
and we obtain 

Comparing this with the upper bound 2p* + 1 for S stated earlier we see that 6pt 2 p - 5 
when p = 2 (mod 3) and 6p* >, p - 1 when p = 1 (mod 3). The f i s t  inequality gives 
p < 41, the second gives p < 37 and our theorem is therefore proved for all primes 
p > 41. 

4. Proof of theorem (7 < p < 41). It remains only to prove that the theorem is valid 
for all primes p with 7 < p < 41. This involves considering only a finite number of 
cases, that is we have only to test the cubic polynomials for each fixed prime p 
in the above range and determine whether they have the same residues and yet are 
unrelated by a linear transformation. We consider the two cases p = 2 (mod 3) and 
p = 1 (mod 3) separately. 



Case (i) : p E 2 (mod 3). We have h e a d y  shown in § 2 that the cubics may be assumed 
to have the forms x" cc, x and y3 + c, y and we need therefore only evaluate the residues 
of thep-  1 polynomials x3+ax with a = 1,2, ..., p -  1. To do this we used the Man- 
chester Atlas computer. It was programmed to calculate the residues for each fixed a 
by letting x take the p value 0,1,2, . . . , p - 1 and then reducing the numbers so formed 
modulo p. Some residues do of course occur several times, but we are not concerned 
with their multiplicity, only with their values. The computer recorded each different 
residue and arranged them in ascending order of magnitude so it was then straight- 
forward to check that the set of residues for each different polynomial is in fact different 
forp > 7. 

Case (ii): p = 1 (mod 3). We have shown in $ 2  that the cubics f(x), g(y) may be as- 
sumed to have the forms x3 + clx and a, y3 + c, y. Now x3 + ax and y3 + by are equiva- 
lent if and only if a3 = b3 (modp) and, in this case, the congruence has three solutions 
bforafixeda.ThuswecanchooseasetSof~(p- 1)valuesofafromtheset 1,2, ...,p- 1 
such that no two of the corresponding polynomials x3 + ax are equivalent. If a, is a 
cubic residue (modp) then a, y3 + c, y is equivalent to x3 + ax for some a e S. Suppose 
now that a, is 8 cubic non-residue (modp) and let B denote the least cubic non-residue 
(modp) in the range 0 < P < p. The set T of integers pa, B2cc, where cc runs through all 
the cubic residues (modp) forms a complete system of cubic non-residues. Hence 
we see that a, = Py3 or Fay3 for some integer y and g(y) is equivalent to a polynomial 
of the form p(z3+ E2& y2z), or the same with B replaced by P2. Finally it follows from 
the fact that if f(x), g(y) have the same residues then so also have Pj(x), pg(y), that we 
need only evaluate the residues of the j(p- 1) polynomials x3+ ax and p(x3+ax). 
This was done on the computer and, as before, with the residues for each polynomial 
ordered, it was an easy task to verify that for any fixed prime p satisfying 7 < p < 41, 
no pair had the same set of residues. 
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