AN ELEMENTARY NUMBER-THEORETIC FORMULA

By
Kenneth S. Williams
(Recetved: 28-1-1964)

It is well-known [1] that

$$
\sum_{x=0}^{p-1}\left\{\frac{a x+b}{p}\right\}=p^{\prime}
$$

 fractional part of x. I wondered if there is a similar formula for

$$
\sum_{x=0}^{p-1}\left\{\frac{a x^{2}+b x+c}{p}\right\}
$$

I find a formula for this sum, which depends on a sum of Legendre symbols over an incomplete residue system and also on the class number $h(-p)$ if $p \equiv \mathbf{3}(\bmod 4) . \quad$ I first prove a simple lemma.

Lemma. If n is a positive integer then

$$
\begin{aligned}
\sum_{x=0}^{p-1} x & \left(\frac{x+n}{p}\right)-p \sum_{x=0}^{n-1}\left(\frac{x}{p}\right) \\
& =\left\{\begin{array}{rl}
0 & p \\
-\frac{p}{3}\left(2+\left(\frac{2}{p}\right) h(-p) p\right. & \equiv 3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Proof. For $n \geqslant 1$

$$
\begin{aligned}
\sum_{x=0}^{p-1} x\left(\frac{x+n}{p}\right) & =\sum_{x=1}^{p}(x-1)\left(\frac{x+n-1}{p}\right) \\
& =\sum_{x=1}^{p} x\left(\frac{x+n-1}{p}\right)
\end{aligned}
$$

since

$$
\sum_{x=1}^{p}\left(\frac{x+n-1}{p}\right)=\sum_{y=0}^{p-1}\left(\frac{y}{p}\right)=0
$$

Thus

$$
\sum_{x=0}^{p-1} x\left(\frac{x+n}{p}\right)-\sum_{x=0}^{p-1} x\left(\frac{x+n-1}{p}\right)=p\left(\frac{n-1}{p}\right)
$$

for $n \geqslant 1$, yielding

$$
\sum_{x=0}^{p-1} x\left(\frac{x+n}{p}\right)=\sum_{x=0}^{p-1} x\left(\frac{x}{p}\right)+p \sum_{x=0}^{p-1}\left(\frac{x}{p}\right)
$$

and the lemma follows [2]

$$
\sum_{x=0}^{p-1} x\left(\frac{x}{p}\right)=\left\{\begin{array}{rl}
0 & p 1(\bmod 4) \\
-\frac{1}{2} p\left(2+\left(\frac{2}{p}\right)\right) & h(-p) \\
p \equiv 3(\bmod 4)
\end{array}\right.
$$

I can now deduce the formula for the sum in question.
Theorem. If p is an odd prime and $p+a$ then

$$
\sum_{x=0}^{p-1}\left\{\frac{a x^{n}+b x+c}{p}\right\}=p^{\prime}+\left(\frac{a}{p}\right) \sum_{x=0}^{d-1}\left(\frac{x}{p}\right)
$$

$$
+\left\{\begin{array}{rl}
0 & P \equiv 1(\bmod 4) \\
-1\left(\frac{a}{p}\right)\left(2+\left(\frac{2}{p}\right)\right) & h(-p) \\
p & \equiv 3(\bmod 4)
\end{array}\right.
$$

where d is such that $0 \leqslant d \leqslant p-1$ and $b^{2}-4 a c \equiv 4 a d$ (mod p).
Proof. Define r by $b \equiv 2 a r(\bmod p), 0 \leqslant r \leqslant p-1$.
Then since $\left\{\frac{x}{p}\right\}$ is periodic with period p

$$
\sum_{x=0}^{p-1}\left\{\frac{a x^{2}+b x+c}{p}\right\}=\sum_{c=0}^{p-1}\left\{\frac{a(x+r)^{s}+\left(c-a r^{p}\right)}{p}\right\}
$$

$$
\begin{aligned}
& =\sum_{x=0}^{p-1}\left\{\frac{a x^{2}-d}{p}\right\} \\
& =\sum_{x=0}^{p-1}\left\{\frac{a x-d}{p}\right\}+\sum_{x=0}^{p-1}\left(\frac{x}{p}\right)\left\{\frac{a x-d}{p}\right\} \\
& =p^{\prime}+\sum_{x=0}^{p-1}\left(\frac{a^{-1}(x+a)}{p}\right)\left\{\frac{x}{p}\right\} \\
& =p^{\prime}+\left(\frac{a}{p}\right)_{x=0}^{p-1}\left(\frac{x+d}{p}\right) \frac{x}{p}
\end{aligned}
$$

and the result follows on using the lemma.
In general, $\sum^{d-1}\left(\frac{x}{p}\right)$ cannot be given more simply. However when

In these special cases, setting $p^{\prime \prime}=\frac{p+1}{2}=p^{\prime}+1$, we have immediately from the theorem :

Corollary : For $p \equiv 1(\bmod 4), p+a$,

$$
\begin{equation*}
\sum_{x=0}^{p-1}\left\{\frac{a x^{2}}{p}\right\}=p^{\prime} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{x=0}^{p-1}\left\{\frac{a x^{2}-p^{\prime}}{p}\right\}=p^{\prime}+(-1)^{p^{\prime} / 2+1}\left(\frac{a}{p}\right) \tag{iv}
\end{equation*}
$$

(v)

$$
\begin{align*}
& \sum_{x=0}^{p-1}\left\{\frac{a x^{2}-1}{p}\right\}=p^{\prime} \\
& \sum_{x=0}^{p-1}\left\{\frac{a x^{2}-2}{p}\right\}=p^{\prime}+\left(\frac{a}{p}\right) \tag{ili}
\end{align*}
$$

$$
\sum_{x=0}^{p-1}\left\{\frac{a x^{2}-p^{\prime \prime}}{p}\right\}=p^{\prime}
$$

From (iv) and (v) with $a=1$ and $p \equiv 5(\bmod 8)$ I have the "reciprocal" relations

$$
\sum_{x=0}^{p-1}\left\{\frac{x^{2}-p^{\prime}}{p}\right\}=p^{\prime \prime}, \sum_{x=0}^{p-1}\left\{\frac{x^{2}-p^{\prime \prime}}{p}\right\}=p^{\prime}
$$

REFERENCES

1. I.M. Vinogradov, Elements of Number Theory (Dover) 1954 (See Ex. 2 (a) (a) P. 50.)
2. L.E. Dickson "History of the Theory of Numbers". Vol. 3. (Chelsea) 1952 (See . p 118).

Department of Mathematics

Carleton University
Ottawa 1
Ontario, Canada

