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If f(x) is a polynomial with integral coefficients then
the integer r is said to be a residue of f(x) modulo an integer
m if the congruence

f(x) = r (mod m)

is soluble for x; otherwise r is terrnéd a non-residue. When
m is a prime p, Mordell [4] has shown that the least non-
negative residue £ of f(x) (mod p) satisfies

/

!lsdp1 21ogp ,

where d is the degree of f(x) . When {(x) is a cubic he has
also shown that the least non-negative non-residue k of f(x)

{mod p) is*O(pil2 log p) . It is the purpose of this note to dis-
cuss the distribution of the residues of the cubic f(x) (mod p) in
greater detail. To keep the notation simple we take f(x) -in the

form x3 + ax; no real loss of generality is involved, everything
3 2

we do for x3 + ax canbe done for Ax +Bx + Cx +D but at

the cost of complicating the notation. When a =z 0 (mod p) ,

f(x) = x3 and our results are well-known in this case. Henceforth

we assume that a # 0 (mod p) . Let
p
(1) n, = = 1, (i=0,1,2,3)
i
r=1
N =i
r

Unless otherwise stated all constants implied by 0-symbols are
absolute.
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where Nr denotes the number of solutions x of
3
(2) x +ax=r (mod p) .

It is well-known that for p > 3

1 -3 -3a
(3) n1=3{p+(p)-(pv)-1}.
- (=32
(4) nz—(p)+1
and
1 -3 -3
(5) =g e ) -367) - 3)

3
Hence the number of residues of x + ax (mod p), which is just

n1+n2+n3 , 18

(6) %{2p+(%)}=§"p+0(1), as p— .

This tells us that, for large p , approximately two-thirds of the
integers

(7) 1,2,3,...,p

are residues of x3 + ax . We show that this is also true for
(8) 1,2,3,...,h

provided h is sufficiently large. More precisely we show that

the number of residues of x3 + ax in (8) is

(9) 2y O(pi/2

3 log p) .

A consequence of this is Mordell's estimate for k . In addition,
2

1 . . -
as 3 > 2 it shows that the least pair of consecutive positive
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/2

residues is also 0(p1 log p) .

In the proof of (9) (and later) we use Vinogradov's
method for incomplete character and exponential sums. This
requires the familiar Polya-Vinogradov inequality, namely,

p-1 h
(10) Z | £ elyx) |<p logp,
y=1 x=1

for p> 641, where e(t) denotes exp (Zn'itp-i) . For the com-
plete sums involved we appeal to the general estimates of
Perel'muter [5]. These include the estimate of Carlitz and
Uchiyama [2], used by Mordell in [4], namely

P
(11) | =  e(f(x)) IS_(d-i)p“Z.
x=1

where d denotes the degree of the polynomial f, and Weil's
estimate [6] for the Kloosterman sum, i.e.,

p-1
(12) | e(ax + bx 1) l < 2p1/2 ,

x=1

where x-1 denotes the inverse of x (mod p) and a, b #0
(mod p) . All these estimates are consequences of Weil's proof
of the Riemann hypothesis for algebraic function fields over a
finite field.

Analogous to (1) we set

h
{13) m, = =z 1 (i=0,1,2,3) ,
Ir=
N =i
r
so that we require m, + m2 + m3 . From [4] we have
(14) m, = 0(1)

and from Mordell's paper [4]
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(15) m, + 2m2 + 3m3 =h + 0(p1/2 log p) ,

so that it suffices to determine m1 . Now (2) has one solution

if and only if

SO

h 3 2
1 - - 27
m,=> = ({1-(2=2 y.004).
2r=1 P

Applying Vinogradov's method and appealing to Perel'muter's
results [5] (or to Weil's estimate (12) for the Kloosterman sum)
we have

3 2
-4 - 27 1/2
(2 =275, 5, 1/2 155 )
1 P

M=

Ir
so that

(16) m, =%h +0(p2/? 10g p) .

We now consider pairs of consecutive residues of

3 .
x + ax (mod p) . Define nij (0<i, j<3) by

(17) n, =
1 r=1

Nr=1 ’ Nr+1=

n Mo
[

j

so that the number of such pairs is just

(18) = n,.
1<i j<3
From (4) n., n2j = 0(1) for 0<i,j<3. Also it is easy to
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show that n13 = n:‘}1 so it suffices to evaluate n11 , n13 and
N3 - We begin by showing that
_P L odl2
(19) n11-4+0(p ) .
We have
P
n = Z 1
11 re1
2
(-4a3 - 27:° )= -4 (-4a3 - 27(r#) , _ _y
P ’ P
) 3 2 , 3 2
1 -4a - 27r -4a - 27(r+1
S (a. (EREE b o01)
P
r=1
p p 3 2
_p 1 > (-4a - 27r ) - 1 5 (-4a - 27(r+1) )
4 4 r=1 P 4 r=1 P
p 3 2 3 2
1 - - - -
+1 5 (( 4a 27r )(-4a 27(r+1) ))+ 0(1) .
4 r=1 P

The first two character sums are 0(1) and the last one by

Perel'muter's results is < 3p1/2 in absolute value, since
3 3 2

(-4a - 27r2)(-4a - 27(r+1)") is not identically (mod p) a

square in r .

We next prove that

_ b 1/2
(20) n13 12 + 0(p ) .
We do this by showing that
) 1/2
1 == +0 .
(21) n11+2n12+3n13 > (p )
(20) follows since we know n11 and n12 . We have
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i=0 5 =07 = r T+
N =1 N =1
T T
Nr+‘1 J
P P
= > b 1
r=1 . x=1
PN 3 R DU
p
p . 3 ) 3 _ 2
=_% = {1_(4a 27(x +ax-1) )} +0(1)
x=1 P '

3
_ b 1 g (-4a3 - 27(x +a.x-1)2
T2 2 p

) +0(1) .

2, 3 2 3
Now 27 (x +ax-1) + 108a is not identically (mod p) a square
in x as a#0 (mod p). Hence Perel'muter's work tells us

1/2) . This proves (21).

that the character sum is O(p
Finally consider
+ + .
n, + Z(n12 + n21) + 3(n13 + n31) + 4n22 ()(n23 + n32) 9n33
This is just the number of solutions (x,y) of

(x3 + ax) - (y3 +ay)-1=0 (modp).

By a result of Lang and Weil [3] this number is

1/2
p + 0(p / ) .
Hence
- P 1/2
(22) N3 T 3g + 0(p ) .
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Thus the number of pairs of consecutive residues is

4 1/2

(23) 9P + 0(p ).

We conclude by calculating the number of pairs of residues
3
of x + ax (mod p) in (8). We define mij (0<i, j<3) by
p
(24) m, = = 1.

r t r+1=‘]

From (4) we have m, =0(1) (0<i, j<3) and, much

2’ ™2j
as before, we can show that

_h 1/2
(25) m, =3 + O(p log p)
and
(26) m,,=m,, = b + O(pil2 log p) .

13 31 12

The only difficulty is the estimation of m33 . We find it necessary

to appeal to a recent deep estimate of Bombieri and Davenport [1]
for an exponential sum of the type

p
zZ  e(f(x))
x,y=1

d(x, y) = O(mod p)

where @(x,y) is absolutely irreducible (mod p) . We have

' + +
m,, + Z(m1 +m21) + 3(m13 +m31) + 4m22 + 6(m23 m32) 9m33

2
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, P h p
== Z = = Nr Nr+1 e(t{r-s))
P or=1 =1 t=t
h P 4 P-1 P .y h (
== X NN + = { £ N_N, , e(tr Z e(-st) .
P r=A r r+1 p t=1 r=1 r rH a=1
Hence
h 1/2
e -=(p+0
m11+2(m12+m21)+ +9m33 p(p (p ))l
P
< max | Z N N ., e(tr) | logp .
1<t<p-1 r=1
Now
P
= Nr Nr+1 e(tr)
r=1
, P P P P P
== = = =z e {u(f(x)-r)} = Z e {v(f(y)-r-1)} e(tr).
p r=4 x=1 u=1 y=1 v=1
1 P P
= z e {uf(x) + vi(y) - v} T e {(t-u-v)r}
P xvVvuv=1 r=1
1 P
== = e {(t-v)f(x) + vi(y) - v}
P x,vy,v=1
, P P
= = = e{tfH(x)} = e {vilf(y)- £(x)- 1)}
p X,y = 1 y:i
P
= b2 e(tf (x))
x,y=1
f(y)-£(x)-1 =0

36



As f(y) - f(x) - 1 is absolutely irreducible (mod p), by the
mentioned result of Davenport and Bombieri, this sum in absolute

value is less than 18p1/2 +9 . Hence
(27) m.. =2 +0op!? 1og p)
3336 P gp

and the number of pairs of consecutive residues in (8) is

(28) i—;‘ +o(p?

/2 log p) .

This implies that the least triple of consecutive positive residues

/2

of x3 + ax (mod p) is also O(p1 log p).

In conclusion we would like to say that a number of
modifications of this work are possible; for example the results
obtained can be extended to arbitrary arithmetic progressions
without difficulty and also to quartic polynomials. Finally we
offer the following

CONJECTURE: For a fixed positive integer k the
number Nk(a) of blocks of k consecutive residues of

x +ax (mod p) satisfies
N, (a)
p

k

lim = (%)

p ~*o
for each k, uniformly in a #0 (mod p) .

This has been verified for k=1 and 2.
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