On the least non-residue of a quartic polynomial

By KENNETH S. WILLIAMS
University of Manchester

(Received 29 November 1965)
Let p be a prime and let $f(x)$ be a quartic polynomial with integral coefficients. I consider the problem of estimating the least non-negative non-residue k of $f(x)(\bmod p)$ (I omit the $\bmod p$ hereafter), for large primes p, so $f(x) \equiv r$ has a solution for

$$
r=0,1, \ldots, k-1
$$

but not for $r=k$. The same problem for cubics has been considered by Mordell ((1)), who showed that

$$
\begin{equation*}
k=O\left(p^{\frac{1}{2}}(\log p)^{2}\right) \tag{1}
\end{equation*}
$$

as $p \rightarrow \infty$, where the constant implied in the O-symbol is independent of the coefficients of the cubic. In fact a more detailed examination of Mordell's proof gives the better estimate

$$
\begin{equation*}
k=O\left(p^{\frac{1}{2}}(\log p)\right) \tag{2}
\end{equation*}
$$

It is the purpose of this paper to show that this same estimate also holds for quartic polynomials.

Without any loss of generality we may take $f(x)$ as

$$
\begin{equation*}
f(x)=a x^{4}+c x^{2}+d x+e \tag{3}
\end{equation*}
$$

Denote by N_{r} the number of solutions of $f(x) \equiv r$. Then $N_{r}=1,2,3,4$ for $0 \leqslant r \leqslant k-1$ and $N_{k}=0$. Suppose that $N_{r}=1,2,3,4$ occurs for $n_{1}, n_{2}, n_{3}, n_{4}$ values of r respectively. Then

$$
\begin{equation*}
n_{1}+n_{2}+n_{3}+n_{4}=k \tag{4}
\end{equation*}
$$

Taking the special case $n=4$ in Mordell's paper ((1), equation (8)) we have
and so

$$
\sum_{r=0}^{k} N_{r} \leqslant k+1+4 p^{\frac{1}{2}} \log p
$$

$$
\begin{equation*}
n_{1}+2 n_{2}+3 n_{3}+4 n_{4} \leqslant k+1+4 p^{\frac{1}{2}} \log p \tag{5}
\end{equation*}
$$

Hence from (4) and (5) we obtain

$$
\begin{equation*}
k \leqslant 1+4 p^{\frac{1}{2}} \log p+n_{1} . \tag{6}
\end{equation*}
$$

Thus to obtain an upper bound for k we require only a suitable estimate for n_{1}.
Let $D(r)$ denote the discriminant of $f(x)-r$. Then we have

$$
\begin{equation*}
D(r)=A r^{3}+B r^{2}+C r+D \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=-256 a^{3} \\
& B=128 a^{2}\left(6 a e-c^{2}\right) \\
& C=16 a\left(16 a c^{2} e-c^{4}-48 a^{2} e^{2}-9 a c d^{2}\right) \\
& D=a\left(256 a^{2} e^{3}-128 a c^{2} e^{2}+16 c^{4} e-27 a d^{4}+144 a c d^{2} e-4 c^{3} d^{2}\right)
\end{aligned}
$$

Divide the integers r satisfying $0 \leqslant r \leqslant k-1$ into 2 classes according as $p \nmid D(r)$ or $p \mid D(r)$. We call the second class the exceptional values of r. As $D(r)$ is a cubic in r there are at most 3 exceptional integers r. For $i=0,1,2,3,4$, we let l_{i} denote the number of non-exceptional r such that $f(x) \equiv r$ has exactly i solutions and m_{i} the number of exceptional r such that $f(x) \equiv r$ has exactly i solutions. Then

$$
\left.\begin{array}{rl}
n_{i} & =l_{i}+m_{i} \quad(i=0,1,2,3,4), \tag{8}\\
l_{0} & =m_{0}=0, \\
m_{4} & =0, \\
m_{1}+m_{2}+m_{8} \leqslant 3 .
\end{array}\right\}
$$

By a result of Stickelberger ((3)), for non-exceptional r,

$$
\left(\frac{D(r)}{p}\right)=(-1)^{4-v_{r}}
$$

where ν_{r} denotes the number of irreducible factors $(\bmod p)$ of $f(x)-r$. Hence $f(x) \equiv r$, for any non-exceptional r, has exactly 1 or 4 solutions if and only if

$$
\begin{equation*}
\left(\frac{D(r)}{p}\right)=+1 \tag{9}
\end{equation*}
$$

Hence

$$
\begin{aligned}
l_{1}+l_{4} & =\text { number of non-exceptional } r \text { with }\left(\frac{D(r)}{p}\right)=1 \\
& =\text { number of } r \text { with }\left(\frac{D(r)}{p}\right)=1,
\end{aligned}
$$

and so using (8) we have

$$
\begin{equation*}
n_{1} \leqslant m+3, \tag{10}
\end{equation*}
$$

where m denotes the number of r satisfying $0 \leqslant r \leqslant k-1$ with $(D(r) / p)=+1$. As $(D(r) / p)=+1$ or -1 except for at most three values of r we have

$$
\begin{equation*}
m=\frac{1}{2} \sum_{r=0}^{k-1}\left[\left(\frac{D(r)}{p}\right)+1\right]-\frac{1}{2} z, \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leqslant z \leqslant 3 . \tag{12}
\end{equation*}
$$

Let

$$
\begin{equation*}
A=\sum_{r=0}^{k-1}\left(\frac{D(r)}{p}\right) \tag{13}
\end{equation*}
$$

Following the usual procedure for incomplete sums we write

$$
p A=\sum_{r=0}^{k-1} \sum_{s=0}^{p-1}\left(\frac{D(s)}{p}\right)_{t=0}^{p-1} e(t(r-s))
$$

(the inner sum is zero if r 末 s and p if $r \equiv s$) and isolate the term with $t=0$. We obtain

$$
p A=k \cdot \sum_{s=0}^{p-1}\left(\frac{D(s)}{p}\right)+\sum_{t=1}^{p-1}\left\{\sum_{s=0}^{p-1}\left(\frac{D(s)}{p}\right) e(-s t)\right\}\left\{\sum_{r=0}^{k-1} e(r t)\right\} .
$$

Hence as

$$
\begin{equation*}
\sum_{i=1}^{p-1}\left|\sum_{r=0}^{k-1} e(r t)\right|<p \log p \tag{14}
\end{equation*}
$$

for large p, we have

$$
\begin{equation*}
p|A| \leqslant k \Phi+\Phi p \log p \tag{15}
\end{equation*}
$$

where Φ is any upper bound for

$$
\left|\sum_{s=0}^{p-1}\left(\frac{D(s)}{p}\right) e(-s t)\right|,
$$

which is independent of $t=0,1,2, \ldots, p-1$. Suppose that $D_{1}(s)$ denotes the square-free part of $D(s)$, i.e.

$$
\begin{equation*}
D(s) \equiv D_{1}(s)\left(D_{2}(s)\right)^{2} \quad(\bmod p) \tag{16}
\end{equation*}
$$

for some polynomial $D_{2}(s)$ with integral coefficients. As $D(s)$ is a cubic, $D_{2}(s) \equiv 0$ has at most one solution. Thus we have

$$
\begin{equation*}
\left|\sum_{s=0}^{p-1}\left(\frac{D(s)}{p}\right) e(-s t)\right| \leqslant\left|\sum_{s=0}^{p-1}\left(\frac{D_{1}(s)}{p}\right) e(-s t)\right|+1 \tag{17}
\end{equation*}
$$

for $t=0,1,2, \ldots, p-1$. As $D_{1}(s)$ is square-free $(\bmod p)$ by a result of Perel'muter (Перельмутер ((2))), thislastsumis $O\left(p^{\frac{1}{2}}\right)$, where the implied constant is absolute. Hence we may take

$$
\begin{equation*}
\Phi=O\left(p^{\frac{1}{3}}\right) \tag{18}
\end{equation*}
$$

where the implied constant is absolute. Thus as $k<p$ we have from (15) and (18)

$$
\begin{equation*}
A=O\left(p^{\frac{1}{2}} \log p\right) \tag{19}
\end{equation*}
$$

From (11), (12), (13) and (19) we obtain

$$
\begin{equation*}
m=\frac{k}{2}+O\left(p^{\frac{1}{2}} \log p\right) . \tag{20}
\end{equation*}
$$

The required result then follows from (6), (10) and (20).

REFERENCES

(1) Mordell, L. J. On the least residue and non-residue of a polynomial. J. Lond. Math. Soc. 38 (1963), 451-453.
(2) Перельмутер, Г. И. О некоторых суммах с характерами. Успехи математических наук, 18 (1963), 145-149.
(3) Stickelberger, L. Verhand. I. Internat. Math. Kongress (1887), 186 (see L. E. Dickson, History of the theory of numbers, vol. 1, 249).

