A SUM OF FRACTIONAL PARTS-II

By
 KENNETH S. WILLIAMS

Let L_{n} denote the set of points $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with integral co-ordinates in Euclidean n-space, where $n \geqslant 3$. For any odd prime p, let $\mathrm{C}=\mathrm{C}(p, n)$ be the set of points of L_{n} in the cube $0 \leqslant x_{i}<p$ $(i=1,2, \ldots, n)$. Suppose $f(\underline{x})$ is any polynomial of degree $d \geqslant 1$ in x_{1}, \ldots, x_{n} with integral coefficients, which does not vanish identically $(\bmod p) . \quad$ I let $\{a\}$ denote the fractional part of the real number a. In [1], I considered the problem of estimating
(1)

$$
\sum_{x \in C}\left\{\frac{f(\underline{x})}{p}\right\}
$$

for large primes p. I proved that

$$
\begin{equation*}
\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}=\frac{1}{2} p^{n}+O\left(p^{n-\frac{1}{2}} \log p\right) \tag{2}
\end{equation*}
$$

as $p \rightarrow \infty$, where here (and throughout this paper) the constant implied in the O-symbol depends only upon n and d. I conjectured, however, that the better result

$$
\begin{equation*}
\sum_{\underline{x} \in C}\left\{\frac{f(\underline{x})}{p}\right\}=\frac{1}{2} p^{n}+O\left(p^{n-\frac{1}{2}}\right) \tag{3}
\end{equation*}
$$

holds. It is the purpose of this paper to prove the following
Theorem. For almost all homogeneous polynomials $f(\underline{x})$ of degree $d \geqslant 1$ in the $n \geqslant 3$ variables $x=\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\sum_{\underline{x} \in C}\left\{\frac{f(\underline{x})}{p}\right\}=\frac{1}{2} p^{n}+O\left(p^{n-\frac{1}{2}}\right)
$$

as $p \rightarrow \infty$.
We begin by introducing a little notation. We write

$$
\begin{equation*}
f(\underline{x})=\sum_{\substack{i_{1}, \ldots, i_{n}=0 \\ i_{1}+\ldots+i_{n}=d}}^{d} \quad a_{i_{1}} \ldots i_{n} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}, \tag{4}
\end{equation*}
$$

where, without loss of generality, we can take
（5） $0 \leqslant a_{i_{1}} \cdots i_{n} \leqslant p-1$.
As $f(\underline{x})$ is assumed not to vanish identically $(\bmod p)$ ，not all the $a_{i_{1}} \cdots \boldsymbol{i}_{n}$ will vanish．In all，there will be

$$
\begin{equation*}
k \equiv k(n, d)=\binom{n+d-1}{d} \tag{6}
\end{equation*}
$$

coefficients $a_{i_{1}} \cdots i_{n}$ ．We note that
（7）

$$
k>n .
$$

Lastly，we let $e(t)$ denote $\exp \left(2 \pi i t p^{-1}\right)$ for all real t ．We shall need the following lemmas．

Lemma 1．If t 末 $0(\bmod p)$
（8）$\quad \sum_{\operatorname{deg}} e(t=d(\underline{x}))=\left\{\begin{array}{r}p^{k}-1, \text { if } \underline{x} \equiv \underline{0} \\ -1, \text { if } \underline{x} \neq \underline{0}\end{array}\right.$ ．
Proof．We have

$$
\sum_{d e g} \sum_{f=d} e(t f(\underline{x})) \quad+1
$$

（9）

$$
\left.\left.=\stackrel{d}{\Pi} \sum_{\substack{i_{1}, \ldots, i_{n}=0 \\ i_{1}+\ldots+i_{n}=d}}^{\sum_{i_{1} \cdots i_{n}}^{p-1}=0} \text { e(t } a_{i_{1}} \ldots n_{n} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}\right)\right\}
$$

If $\underline{x} \equiv \underline{0}$ ，the right hand side of（9）is just

$$
\sum_{\substack{i_{1}, \ldots, i_{n}=0 \\ i_{1}+\ldots+i_{n}=d}}^{d} \sum_{i_{1}} \sum_{i_{n}=0}^{p-1} 1=p^{k} .
$$

If \underline{x} 丰 $\underline{0}$ ，there is an integer $l(1 \leqslant l \leqslant n)$ such that x_{l} 丰 0 ，so

$$
\sum_{a_{0 \ldots . .0 / 0 \ldots 0}^{p-1}=0} e\left(t a_{\left.0 \ldots 0 / 0 \ldots 0^{x^{d}}\right)=0}\right.
$$

Thus the right－hand side of（9）vanishes in this case．This completes the proof of（8）．

Lemma 2. If $t \neq 0(\bmod p)$ and $u \neq 0(\bmod p)$
(10) $\sum e(t f(\underline{x})+u f(\underline{y}))=$

$$
\left\{\begin{array}{c}
p^{k}-1, \text { if } t x_{1}^{i_{1}} \ldots x^{i_{n}}+u y_{1}^{i_{1}} \ldots y_{n}^{i_{n}}=0 \\
\text { for all } i_{1}, \ldots, i_{n} \text { satisfying } \\
0 \leqslant i_{j} \leqslant d(j=1,2, \ldots, n) \text { and } \\
i_{1}+\ldots+i_{n}=d \\
-1, \text { otherwise. }
\end{array}\right.
$$

Proof. We have as before

$$
\sum_{\operatorname{deg}}{ }_{f=d} e(t f(\underline{x})+u f(\underline{y}))+1
$$

$$
\begin{equation*}
=\prod_{\substack{d \\ i_{1}, \ldots, i_{n}=0 \\ i_{1}+\ldots+i_{n}=d}}^{d} \sum_{a_{i_{1}} \cdots i_{n}=0}^{p-1} e\left(a_{i_{1} \cdots i_{n}}\left(t x_{1}^{\left.\left.i_{1} \ldots x_{n}^{i_{n}}+u y_{1}^{i_{1}} \ldots, y_{n}^{i_{n}}\right)\right)}\right\} .\right. \tag{11}
\end{equation*}
$$

If $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ are such that

$$
t x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}+u y_{1}^{i_{1}} \ldots y_{n}^{i_{n}} \equiv 0
$$

are all i_{1}, \ldots, i_{n} satisfying $0 \leqslant i_{j} \leqslant d(j=1,2, \ldots, n)$ and $i_{1}+\ldots+i_{n}=d$, then the right-hand side of (11) is just

$$
\underset{\substack{i_{1}, \ldots, i_{n}=0 \\ i_{1}+\ldots+i_{n}=d}}{\left.\stackrel{\sum_{i_{1}} \ldots i_{n}=0}{p-1} 1\right\}=p^{k} .}
$$

Otherwise, there is a n-tple $\left(i_{1}, \ldots, i_{n}\right)$ such that

$$
t x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}+u y_{1}^{i_{1}} \ldots y_{n}^{i_{n}} \neq 0
$$

and so for this

$$
\sum_{a_{i_{1}} \cdots i_{n}=0}^{p-1} e\left(a_{i_{1}} \cdots i_{n}\left(t x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}+u y_{1}^{i_{1}} \ldots y_{n}^{i_{n}}\right)=0,\right.
$$

which implies the vanishing of the right-hand side of (11). This completes the proof of (10).

Lemma 3. The number N of solutions $\left(x_{1}, \ldots, x_{\boldsymbol{n}}, y_{1}, \ldots, y_{n}\right)$ of the system of congruences

$$
\begin{equation*}
t x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}+u y_{1}^{i_{1}} \ldots y_{n}^{i_{n}} \equiv 0 \tag{12}
\end{equation*}
$$

where the $i_{j}(j=1,2, \ldots, n)$ run through all integers satisfying $0 \leqslant i_{j} \leqslant d$ and $i_{1}+\ldots+i_{n}=d$ and $t, u \neq 0$, satisfies $\mathrm{N} \leqslant d^{n} p^{n}$.

Proof. The number of solutions of (12) is less than or equal to the number of the system

$$
\begin{equation*}
t x_{i}^{d}+u y_{i}^{d} \equiv 0(i=1,2, \ldots, n) \tag{13}
\end{equation*}
$$

The number of pairs (x_{i}, y_{i}) satisfying (13) is just

$$
1+(p-1) w
$$

where

$$
w= \begin{cases}0 & \text { if }\left(-t u^{-1}\right)^{\frac{p-1}{(d, p-1)}} \neq 1 \\ (d, p-1) & \text { if }\left(-t u^{-1}\right)^{\frac{p-1}{(d, p-1)}} \equiv 1\end{cases}
$$

Hence the required number \mathbf{N} satisfies

$$
\mathrm{N} \leqslant\left\{1+\left(\begin{array}{ll}
p & 1
\end{array}\right) w\right\}^{n} \quad \leqslant d^{n} p^{n}
$$

Lemma 4.

$$
\sum_{\operatorname{deg} f=d}\left(\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}\right)=\frac{1}{2} p^{n+k}+\mathrm{O}\left(p^{n+k-1}\right) .
$$

Proof. It was shown in [1] that

$$
\sum_{\underline{x} \in C}\left\{\frac{f(\underline{x})}{p}\right\}=\frac{1}{p^{2}} \sum_{r=1}^{p-1} r \sum_{\underline{x} \in C} \sum_{t=0}^{p-1} t(t(f(\underline{x})-r))
$$

so

$$
\begin{aligned}
& \sum_{d e g}\left(\sum_{x=d}\left\{\frac{f(\underline{x})}{p}\right\}\right) \\
= & \frac{1}{p^{2}} \sum_{r=1}^{p-1} r \sum_{i=0}^{p-1} \epsilon(-r t) \sum_{\underline{x} \in \mathrm{C}} \sum_{d e g} f=d
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{p^{2}} \sum_{r=1}^{p-1} r \sum_{x \in \mathrm{C}} \sum_{\operatorname{deg} f=d} 1 \\
& +\frac{1}{p^{2}} \sum_{r=1}^{p-1} r \sum_{t=1}^{p-1} e(-r t) \sum_{\underline{x} \in \mathrm{C}} \sum_{\operatorname{deg} f=d} e(t \cdot f(x)) \\
& =\frac{1}{p^{2}} \cdot \frac{(p-1) p}{2} \cdot p^{n} \cdot\left(p^{k}-1\right) \\
& +\frac{1}{p^{2}} \sum_{r=1}^{p-1} r \sum_{r=1}^{p-1} e(-r t)\left(\left(p^{k}-1\right)-\left(p^{n}-1\right)\right),
\end{aligned}
$$

by lemma 1. Now

$$
\begin{aligned}
& \frac{1}{p^{2}} \sum_{r=1}^{p-1} r \sum_{t=1}^{p-1} e(-r t)\left(p^{k}-p^{n}\right)=-\frac{1}{p^{2}} \cdot \frac{(p-1) p}{2} \cdot\left(p^{k}-p^{n}\right) \\
& \text { so } \quad \sum_{\operatorname{deg} f=d}\left(\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}\right)=\frac{1}{2}(p-1) p^{k-1}\left(p^{n}-1\right) \\
&=\frac{1}{2} p^{n+k}+\mathrm{O}\left(p^{n+k-1}\right) .
\end{aligned}
$$

Lemma 5.

$$
\sum_{\operatorname{deg}}{ }_{f=d}\left(\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}\right)^{2}=\frac{1}{4} p^{2 n+k}+\mathrm{O}\left(p^{2 n+k-1}\right)
$$

Proof

$$
\begin{aligned}
& \left(\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}\right)^{2} \\
= & \left(\frac{1}{p^{2}} \sum_{r=1}^{p-1} r \sum_{\underline{x} \in \mathrm{C}} \sum_{t=0}^{p-1} e(t(f(\underline{x})-r))\right)^{2} \\
= & \frac{1}{p^{4}} \sum_{r=1}^{p-1} \sum_{s=1}^{p-1} r \sum_{\underline{x} \in \mathrm{C}} \sum_{\underline{y} \in \mathrm{C}} \sum_{t=0}^{p-1} \sum_{u=0}^{p-1} \\
& e(t(f(\underline{x})-r)+u(f(\underline{y})-s))
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\operatorname{deg} f=d}\left(\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}\right)^{2} \\
= & \frac{1}{p^{4}} \sum_{t=0}^{p-1} \sum_{u=0}^{p-1} \sum_{r=1}^{p-1} r e(-r t) \sum_{s=1}^{p-1} s e(-s u) \\
& \sum_{x \in \mathrm{C}} \sum_{\underline{y} \in \mathrm{C}} \sum_{\operatorname{deg} f=d} e(t f(\underline{x})+u f(\underline{y}) \\
= & \mathrm{A}_{00}+\mathrm{A}_{01}+\mathrm{A}_{10}+\mathrm{A}_{11},
\end{aligned}
$$

where firstly,

$$
\begin{aligned}
\mathbf{A}_{00} & =\frac{1}{p^{4}} \sum_{r=1}^{p-1} r \sum_{s=1}^{p-1} s \sum_{\underline{x} \in \mathrm{C}} \sum_{\underline{y} \in \mathrm{C}} \sum_{\operatorname{deg}} 1 \\
& =\frac{1}{p^{4}} \cdot\left(\frac{(p-1) p}{2}\right)^{2} \cdot p^{2 n} \cdot\left(p^{k}-1\right) \\
& =\frac{1}{4}(p-1)^{2} p^{2 n-2}\left(p^{k}-1\right) \\
& =\frac{1}{4} p^{2 n+k}+O\left(p^{2 n+k-1}\right)
\end{aligned}
$$

secondly,

$$
\begin{aligned}
\mathbf{A}_{01}=\mathbf{A}_{10} & =\frac{1}{p^{4}} \sum_{u=1}^{p-1} \sum_{r=1}^{p-1} r \sum_{s=1}^{p-1} s e(-s u) \sum_{x \in C} \sum_{y \in C} \sum_{\operatorname{deg} f=d} e(u f(y)) \\
& =\frac{1}{p^{4}} \sum_{u=1}^{p-1} \frac{(p-1) p}{2} \sum_{s=1}^{p-1} s e(-s u) \cdot p^{n} \cdot\left\{p^{\left.k-1-\left(p^{n}-1\right)\right\}} \quad\right. \text { (by lemma 1) } \\
& =\frac{1}{p^{4}} \frac{(p-1) p}{2} \cdot p^{n} \cdot\left(p^{\left.k-p^{n}\right) \sum_{s=1}^{p-1} s \sum_{u=1}^{p-1} e(-s u)}\right. \\
& =-\frac{1}{p^{4}}\left(\frac{(p-1) p}{2}\right)^{2} p^{n}\left(p^{k}-p^{n}\right) \\
& =-\frac{1}{4}(p-1)^{2} p^{2 n-2}\left(p^{k-n}-1\right)=0\left(p^{n+k-2)}\right.
\end{aligned}
$$

and finally,

$$
\begin{aligned}
& \mathrm{A}_{11}=\frac{1}{p^{4}} \sum_{t=1}^{p-1} \sum_{u=1}^{p-1} \sum_{r=1}^{p-1} r e(-r t) \sum_{s=1}^{p-1} s e(-s u) \\
& \sum_{x \in C} \sum_{y \in C} \sum_{d e g} \sum_{x} \quad e(t f(\underline{x})+u f(\underline{y})) .
\end{aligned}
$$

Let $\mathrm{A}_{11}=\mathrm{A}_{110}+\mathrm{A}_{111}$,
where

$$
\begin{aligned}
& \mathrm{A}_{110}=\frac{1}{p^{4}} \sum_{t=1}^{p-1} \sum_{n=1}^{p-1} \sum_{r=1}^{p-1} r e(-r t) \sum_{s=1}^{p-1} s e(-s u) \\
& \sum_{x \in C} \sum_{y \in C} \sum_{\operatorname{deg}} \sum_{f=d} e(t f(x)+u f(y)) \\
& t x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}+u y_{1}^{i_{1}} \ldots y_{n}^{i_{n}}=0 \\
& \text { all } i_{1}, \ldots, i_{n},
\end{aligned}
$$

so by lemmas 2 and 3 we have

$$
\begin{aligned}
\left|\mathbf{A}_{110}\right| & \leqslant \frac{1}{p^{4}} \sum_{t=1}^{p-1} \sum_{u=1}^{p-1} \sum_{r=1}^{p-1} r \sum_{s=1}^{p-1} s \cdot d^{n} \cdot p^{n} \cdot\left(p^{k}-1\right) \\
& =\frac{1}{p^{4}}(p-1)^{2}\left(\frac{(p-1) p}{2}\right)^{2} d^{n} p^{n}\left(p^{k}-1\right) \\
& \leqslant \frac{d^{n}}{4} \cdot p^{n+k+2} \quad \text { i.a. } \mathbf{A}_{110}=O\left(p^{n+k+2}\right)
\end{aligned}
$$

Now
$A_{111}=\frac{1}{p^{4}} \sum_{t=1}^{p-1} \sum_{u=1}^{p-1} \sum_{r=1}^{p-1} r e(-r t) \sum_{s=1}^{p-1} s e(-s t)$

$$
\begin{aligned}
& \sum_{x \in C} \sum_{\underline{y} \in \mathrm{C}} \sum_{\operatorname{deg}{\underset{f}{=} d} \epsilon(t f(\underline{x})+u f(\underline{y}))} \begin{array}{l}
t x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}+u y_{1}^{i_{1}} \ldots y_{n}^{i_{n}} \neq 0 \\
\text { some } i_{1}, \ldots, i_{n}
\end{array}
\end{aligned}
$$

so by lemma. 2

$$
\begin{aligned}
\left|A_{111}\right| & \leqslant \frac{1}{p^{4}} \sum_{t=1}^{p-1} \sum_{u=1}^{p-1} \sum_{r=1}^{p-1} r \sum_{s=1}^{p-1} s \cdot p^{2 n} \\
& =\frac{1}{p^{4}}(p-1)^{2} \cdot\left(\frac{(p-1) p}{2}\right)^{2} p^{2 n} \\
& \leqslant \frac{1}{4} p^{2 n+2}, \quad \text { i.e. } \mathrm{A}_{111}=\mathrm{O}\left(p^{2 n+2}\right) .
\end{aligned}
$$

Hence

$$
\mathrm{All}=\mathrm{O}\left(p^{n+k+2}\right)
$$

as $k>n$. This completes the proof of lemma 5.
Proof of Theorem. By lemmas 4 and 5

$$
\begin{aligned}
& \quad \sum_{\operatorname{deg} f=d}\left(\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}-\frac{p^{n}}{2}\right)^{2} \\
& =\sum_{\operatorname{deg} f=d}\left(\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}\right)^{2}-p^{n} \sum_{\operatorname{deg} f=d}\left(\sum_{\underline{x} \in \mathrm{C}}\left\{\frac{f(\underline{x})}{p}\right\}\right) \\
& \\
& \quad+\frac{p^{2 n}}{4} \sum_{d e g} 1 \\
& =\frac{1}{4} p^{2 n+k}+\mathrm{O}\left(p^{2 n+k-1}\right)-p^{n}\left(\frac{p^{n+k}}{2}+\mathrm{O}\left(p^{n+k-1}\right)\right)+\frac{p}{4}^{2 n+k}+\mathrm{O}\left(p^{2 n}\right) \\
& =\mathrm{O}\left(p^{2 n+k-1}\right) .
\end{aligned}
$$

Hence almost all homogeneous polynomials of degree $d \geqslant 1$ in $n \geqslant 3$ variables satisfy

$$
\sum_{x \in C}\left\{\frac{f(\underline{x})}{p}\right\}=\frac{1}{2} p^{n}+O\left(p^{n-\frac{1}{2}}\right)
$$

REFERENCE

1. K. S. Williams, A sum of fractional parts, Amer. Math. Monthly (to appear).

University of Manchester,
Manchester 13,
England.

