THE DISTRIBUTION OF SOLUTIONS OF CONGRUENCES

J. H. H. Chalk and K. S. Willlams

1. Introduction. Let p be an odd prime and denote by [p], the finite field of residue classes, $\bmod p$. In Euclidean n-space, let \mathscr{L}_{n} denote the lattice of points $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ with integral coordinates and $C=C(n, p)$, the set of points of \mathscr{L}_{n} satisfying

$$
\begin{equation*}
0 \leqslant x_{i}<p, \quad(i=1,2, \ldots, n) \tag{1}
\end{equation*}
$$

We define a box $\mathfrak{B}=\mathfrak{B}(n, \mathbf{h}, \boldsymbol{v})$ as the set of points $\mathbf{x} \in C$ for which
where

$$
\begin{equation*}
\nu_{i} \leqslant x_{i}<\nu_{i}+h_{i}, \quad(i=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
0 \leqslant \nu_{i}<\nu_{i}+h_{i} \leqslant p, \quad(i=1,2, \ldots, n) \tag{3}
\end{equation*}
$$

For $n \geqslant 2$, let $f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in the n variables $x_{1}, x_{2}, \ldots, x_{n}$ of degree $d \geqslant 2$, fixed independently of p, and with coefficients in [$p]$. If $f(\mathbf{x})$ is not homogeneous in x_{1}, \ldots, x_{n}, we introduce the associated forms, F and f^{*}, defined by

$$
\begin{equation*}
F\left(x_{0}, x_{1}, \ldots, x_{n}\right)=x_{0}^{d} f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}\left(x_{1}, \ldots, x_{n}\right)=F\left(0, x_{1}, \ldots, x_{n}\right) \tag{5}
\end{equation*}
$$

Let $N(\mathfrak{B})=N(p, n, f, \mathfrak{B})$ denote the number of $\mathbf{x} \in \mathfrak{B}$ for which

$$
\begin{equation*}
f(\mathbf{x})=0, \quad[p] \tag{6}
\end{equation*}
$$

where, for convenience, we count $\mathbf{x}=0$ as a solution when $0 \in \mathfrak{B}$ and $f(\mathbf{x})$ is a form. Thus in the special case when $\mathfrak{B}=C$, the integer $N(C)$ is just the number of solutions of the congruence $f(\mathbf{x}) \equiv 0(\bmod p)$, while generally, $N(\mathfrak{B})$ represents the number of solutions in certain prescribed residue classes (namely, those defined by the points of \mathfrak{B}), of the same congruence. By using a generalization of the inequalities of Vinogradov [11] and Mordell [8] we shall obtain estimates for $N(\mathfrak{B})$ in terms of $N(C)$ for "general" polynomials $f(\mathbf{x})$, when p is large. This general inequality was established in [3] and relevant details are summarized in the following lemma:

Lemma 1. Let $f(\mathbf{x})$ be a function defined over [p] and taking values in [p] and put \dagger

$$
\begin{gather*}
\mathscr{F}(\mathbf{y})=\sum_{\mathbf{x} \in C} \sum_{t=0}^{p-1} e\{t f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\}, \tag{7}\\
\mathscr{E}(\mathfrak{B})=\sum_{\mathbf{0} \neq \mathbf{y} \in C}\left|\sum_{\mathbf{z} \in \mathfrak{B}} e(\mathbf{y} \cdot \mathbf{z})\right| . \tag{8}
\end{gather*}
$$

Suppose that there is a constant Φ, independent of \mathbf{y}, such that

$$
\begin{equation*}
|\mathscr{F}(\mathbf{y})| \leqslant \Phi, \text { for all non-zero } \mathbf{y} \in C . \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
N(\mathfrak{B})=h_{1} \ldots h_{n} p^{-n} N(C)+\theta p^{-n-1} \Phi \mathscr{E}(\mathfrak{B}) \tag{10}
\end{equation*}
$$

for some real number θ satisfying $|\theta| \leqslant 1$. Moreover, $\mathscr{E}(\mathfrak{B}) \leqslant C p^{n} \log ^{n} p$, for some absolute constant $C>0$.

For convenience in referring to the inequality (10), we shall speak of $h_{1} \ldots h_{n} p^{-n} N(C)$ and $p^{-n-1} \Phi \mathscr{E}(\mathfrak{B})$ as the main and error terms, respectively. Note that the only reference to \mathfrak{B} in the error term occurs in $\mathscr{E}(\mathfrak{B})$, since Φ is merely a bound for the complete exponential sum $\mathscr{F}(\mathbf{y})$. We remark that the estimate for $\mathscr{E}(\mathfrak{B})$ in (11) is essentially best possible in the absence of any further restriction on the box \mathfrak{F}, for it can be easily verified that $\mathscr{E}(\mathfrak{F}) \geqslant k p^{n} \log ^{n} p$ for some absolute constant $k>0$ in the special case $\nu_{i}=1$, $h_{i}=(p-1) / 2,(i=1,2, \ldots, n)$, when p is large enough. It is of interest, therefore, to find an estimate Φ for $\mathscr{F}(\mathbf{y})$ which is sufficiently good, for p large, to ensure that the main term dominates the error term when the "sides" h_{i} of the box \mathfrak{B} are also large but bounded by $O\left(\boldsymbol{p}^{1-8}\right)$, for some fixed $\delta>0$ depending on n (and possibly on d). This has been done in some special cases, e.g. for quadratic and diagonal polynomials (see [3], [8] and [9]). Results can also be obtained for other special polynomials when good estimates are known for the exponential sum in (7). In the general case, however, some restriction on $f(\mathbf{x})$ is essential, e.g. we have to exclude polynomials such as $f(\mathbf{x})=x_{1}{ }^{d}$, for then $N(\mathfrak{B})=0$ whenever $\nu_{1}>0$. Roughly speaking, we require $N(C)$ large and Φ small. The crude estimate for $\mathscr{F}(\mathbf{y})$ is $p N(C)$, since on taking absolute values in (7) we have

$$
\begin{equation*}
|\mathscr{F}(\mathbf{y})|=\left|\sum_{\mathbf{x} \in C} e(-\mathbf{x} \cdot \mathbf{y}) \sum_{i=0}^{p-1} e(t f(\mathbf{x}))\right| \leqslant \sum_{\mathbf{x} \in C}\left|\sum_{t=0}^{p-1} e(t f(\mathbf{x}))\right|=p N(C), \tag{12}
\end{equation*}
$$

and inspection of (10) shows that virtually any improvement on this would be effective for our purpose. In Theorem 1 we find that, for forms $f(\mathbf{x})$ which have no linear factor over [p], there is an improvement (by a factor which is about p when $N(C) p^{-n+1}$ is bounded below) on the estimate in (12):

Theorem \dagger 1. Let $f(x)$ be a form over $[p]$, of degree $d \geqslant 2$, which admits no linear factors over $[p]$. Then

$$
\begin{equation*}
N(\mathfrak{B})=h_{1} \ldots h_{n} p^{-n} N(C)+O\left(p^{n-2} \log ^{n} p\right) \text {, as } p \rightarrow \infty . \tag{13}
\end{equation*}
$$

[^0]Corollary 1. If

$$
\begin{equation*}
f(\mathbf{x})=\eta \prod_{i=1}^{t}\left[f_{i}(\mathbf{x})\right]^{a_{i}}, \quad[p], \quad(\eta \text { a unit }) \tag{14}
\end{equation*}
$$

where $f_{i}(\mathbf{x})$ are the irreducible factors of $f(\mathbf{x})$ over $[p], \operatorname{deg} f_{i} \geqslant 2(i=1,2, \ldots, t)$ and $s \geqslant 1$ of these are absolutely irreducible (i.e. irreducible over the algebraic closure of $[p]$), then

$$
\begin{equation*}
N(\mathfrak{B})=h_{1} \ldots h_{n} p^{-n}\left\{s p^{n-1}+O\left(p^{n-3 / 2}\right)\right\}+O\left(p^{n-2} \log ^{n} p\right), \text { as } p \rightarrow \infty \tag{15}
\end{equation*}
$$

Corollary 2. If $0<\epsilon<n^{-1}$, let $\nu_{i} \geqslant 0(i=1,2, \ldots, n)$ be chosen arbitrarily subject only to the condition $\nu_{t}+p^{1-n^{-1}+\epsilon}<p$. Then, provided (15) holds, there is an integer $p_{0}=p_{0}(\epsilon, n, d)$ and an $\mathbf{x} \in C$ for which $f(\mathbf{x})=0[p]$ and

$$
\begin{equation*}
\nu_{i} \leqslant x_{i}<\nu_{i}+p^{1-n-1+e}, \quad(i=1,2, \ldots, n) \tag{16}
\end{equation*}
$$

if $p \geqslant p_{0}$.
Our method depends upon an interpretation of $\mathscr{F}(\mathbf{y})$ in terms of the numbers of solutions of pairs of simultaneous equations over [p] (see Lemma 11), and appears to be useful only when $f(\mathbf{x})$ is homogeneous and the number of such pairs reduces to one. As the properties of $\mathscr{F}(\mathbf{y})$ are vital to the effectiveness of the general inequality (10), we include in §3 an alternative, but generally less useful, interpretation of $\mathscr{F}(\mathbf{y})$ in terms of equations obtained from $f(\mathbf{x})=0[p]$ by the addition of certain linear terms (again, this works only for forms when the homogeneity can be exploited). If we regard $\mathscr{F}(\mathbf{y})$ as a complete exponential sum over ($n+1$) variables (x_{1}, \ldots, x_{n}, t) the estimates of Davenport and Lewis [5] (for $d=3$) and Birch [2] are applicable, but the results will involve the determination of certain invariants of $f(\mathbf{x})$ over $[p]$, or over the algebraic closure of $[p]$. In the latter case, for example, if $K=2^{-d+1}$ and s is defined as the dimension of the singular locus of $f(\mathbf{x})$ (see [5]) in the n-dimensional vector space of points \mathbf{x} over the algebraic closure of $[p]$, then Birch's result gives

$$
\begin{equation*}
\mathscr{F}(\mathbf{y})=O\left\{p^{n+1-K(n-s)}\right\}, \tag{17}
\end{equation*}
$$

which is effective in (10) when $N(C) p^{-n+1}$ is bounded below and

$$
\begin{equation*}
s<n-2^{d-1} . \tag{18}
\end{equation*}
$$

So far as estimates for $N(C)$ are concerned, we use the general theorem of Lang and Weil [6] on the number of points in an algebraic variety over a finite field. As Birch and Lewis [1] have observed, this specializes to the case of forms $f(\mathbf{x})$ over $[p]$, which are absolutely irreducible over $[p]$, to give the asymptotic formula

$$
\begin{equation*}
N(C)=p^{n-1}+O\left(p^{n-2 / 2}\right), \text { as } p \rightarrow \infty \tag{18}
\end{equation*}
$$

Corollary 1 is an elementary deduction from this and Theorem 1 (see Lemma 8). In fact we have $N(C)=O\left(p^{n-2}\right)$, unless the form f has at least one absolutely irreducible factor over [p]. For polynomials $f(\mathbf{x})$ which are not homogeneous we have no direct method of attack, though the simple device of working with the form $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ in place of $f\left(x_{1}, \ldots, x_{n}\right)$, and a "flat" box \mathfrak{B}_{0} in ($n+1$)-dimensions satisfying $x_{0}=1$ is partially successful. However, the formula (13) with $n+1$ in place of n, applied to a form $F\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ with $N(C)$ about p^{n} is clearly ineffective, since the main term is no larger than p^{n-1}, while the error is $p^{n-1} \log ^{n+1} p$. This raises the question of whether the error term in (13) itself can be improved. But the example with $f(x)=\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)^{m}, p \equiv 3(\bmod 4)$ $v_{i}=p-h_{i}=1,(i=1,2, \ldots, n)$ in which f has no linear factors over $[p]$ and

$$
\left|N(\mathfrak{B})-h_{1} \ldots h_{n} p^{-n} N(C)\right|=\left(1-p^{-1}\right)^{n} p^{n-2} \sim p^{n-2} \text { as } p \rightarrow \infty
$$

shows that some further condition on $f(x)$ is essential for such an improvement. In Theorem 2 we impose the restriction that the form $f(x)$ be non-singular \dagger and show that this leads to an improvement of about $p^{-1 / 2}$ in the error term. In addition, it is easily shown that such forms are in general absolutely irreducible (cf. Lemma 9) and consequently (19) is applicable:

Theorem 2. If $f(\mathbf{x})$ is a non-singular form of degree d in $n \geqslant 2 d+1$ variables then

$$
\begin{equation*}
N(\mathfrak{B})=h_{1} \ldots h_{n} p^{-n} N(C)+O\left(p^{n-5 / 2} \log ^{n} p\right) \text { as } p \rightarrow \infty \tag{20}
\end{equation*}
$$

Corollary 1. If $f(\mathbf{x})$ is a non-singular form of degree d in $n \geqslant 2 d+1$ variables, then

$$
\begin{equation*}
N(\mathfrak{B})=h_{1} \ldots h_{n} p^{-n}\left\{p^{n-1}+O\left(p^{n-3 / 2}\right)\right\}+O\left(p^{n-5 / 2} \log ^{n} p\right) \tag{21}
\end{equation*}
$$

as $p \rightarrow \infty$.
Corollary 2. If $0<\epsilon<3 / 2 n$, let $\nu_{i} \geqslant 0(i=1,2, \ldots, n)$ be chosen arbitrarily subject only to the condition $\nu_{i}+p^{1-(3 / 2 n)+\epsilon}<p$. Then, provided (21) holds, there is an integer $p_{0}=p_{0}(\epsilon, n, d)$ and an $\mathbf{x} \in C$ for which $f(\mathbf{x})=0[p]$ and

$$
\begin{equation*}
\nu_{i} \leqslant x_{i}<\nu_{i}+p^{1-(3 / 2 n)+\varepsilon}, \quad(i=1,2, \ldots, n) \tag{22}
\end{equation*}
$$

if $p \geqslant p_{0}$.
Use of Chevalley's theorem [4] on the existence of a non-trivial zero [p] of a system of simultaneous equations over $[p]$ is a convenient tool in the proof of Theorem 2 and gives rise to the condition on the number n of variables. Then, with the device of the "flat box" in ($n+1$)-dimensions, we deduce

[^1]Theorem 3. If $f(\mathbf{x})$ is a polynomial in n variables x_{1}, \ldots, x_{n} of degree $d \leqslant n / 2$ and

$$
F\left(x_{0}, x_{1}, \ldots, x_{n}\right)=x_{0}{ }^{d} f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)
$$

is non-singular, then for $f(\mathbf{x})$,

$$
\begin{equation*}
N(\mathfrak{B})=h_{1} \ldots h_{n} p^{-1}+O\left(p^{n-8 / 2} \log ^{n+1} p\right) \text {, as } p \rightarrow \infty \tag{23}
\end{equation*}
$$

Corollary. If $0<\epsilon<1 / 2 n$, let $\nu_{i} \geqslant 0(i=1,2, \ldots, n)$ be chosen arbitrarily only to the condition $\nu_{i}+p^{1-(2 n)^{-1+e}}<p$. Then provided (23) holds, there is an integer $p_{0}=p_{0}(\epsilon, n, d)$ and an $\mathbf{x} \in C$ for which $f(\mathbf{x})=0[p]$ and

$$
\begin{equation*}
\nu_{i} \leqslant x_{i}<\nu_{i}+p^{1-(2 n)^{-1+e},} \quad(i=1,2, \ldots, n) \tag{24}
\end{equation*}
$$

if $p \geqslant p_{0}$.
With regard to the corollaries where the existence of a solution of $f(\mathbf{x})=0[p]$ satisfying certain asymmetric inequalities is asserted, it is natural to enquire whether methods from the geometry of numbers are applicable. For the special case when $f(\mathbf{x})$ is homogeneous and the box \mathfrak{B} is symmetric in 0, Minkowski's theorem on convex bodies is useful; for if $\left(\xi_{1}, \ldots, \xi_{n}\right) \neq(0, \ldots, 0)[p]$ is some solution of $f(\mathbf{x})=0[p]$, the subset of \mathscr{L}_{n} defined by

$$
\left(x_{1}, \ldots, x_{n}\right)=h\left(\xi_{1}, \ldots, \xi_{n}\right)[p], \quad h \in[p],
$$

is a lattice Λ of determinant $\boldsymbol{p}^{\boldsymbol{n - 1}}$ and so there is a point $\mathbf{x} \neq \mathbf{0}$ of Λ in the oube

$$
\left|x_{i}\right| \leqslant p^{1-n^{-1}} \quad(i=1,2, \ldots, n)
$$

and this point will satisfy $f(\mathbf{x})=0[p]$, by the homogeneity of $\dagger f(\mathbf{x})$. However, for the general case, we have no information.
2. Estimation of $N(C)$. In 1954 Lang and Weil [6] deduced (as a consequence of Weil's work on algebraic curves) an estimate for the number of points of an absolutely irreducible variety V, of algebraic dimension r and degree d in m-dimensional projective space P^{m} over a finite field k_{q} with q elements. As pointed out by Birch and Lewis [1], the following lemma is the special case of this with $r=m-1=n-2$ and $q=p$.

Lemma 2. If $f(\mathbf{x})$ is an absolutely irreducible form \ddagger over $[p]$ in n variables and of degree d then

$$
\begin{equation*}
N(C)=p^{n-1}+O\left(p^{n-3 / 2}\right) \text {, as } p \rightarrow \infty \tag{25}
\end{equation*}
$$

They also deduced from Lang and Weil's paper the following two lemmas.

[^2]Lemma 3. If $f(\mathbf{x})$ is a form which is irreducible over $[p]$, but not absolutely irreducible, then all the zeros of $f(\mathbf{x})$ are singular.

Lemma 4. If $f(\mathbf{x})$ is a form over $[p]$ of degree d in n variables with no squared factors over $[p]$, then the number N^{*} of singular zeros of f satisfies

$$
\begin{equation*}
N^{*}=O\left(p^{n-2}\right), \text { as } p \rightarrow \infty \tag{26}
\end{equation*}
$$

Combining Lemmas 3 and 4, we have
Lemma 5. If $f(\mathbf{x})$ is a form which is irreducible over [p], but not absolutely irreducible, then

$$
\begin{equation*}
N(C)=O\left(p^{n-2}\right) \text {, as } p \rightarrow \infty \tag{27}
\end{equation*}
$$

The bound for $N(C)$ in the following lemma is well known; a proof, by induction on n, was given by S. H. Min [7] in 1947.

Lemma 6. Let $f(\mathbf{x})$ be a polynomial with coefficients in $[p]$, not identically zero. Then

$$
\begin{equation*}
N(C)=O\left(p^{n-1}\right), \text { as } p \rightarrow \infty \tag{28}
\end{equation*}
$$

A similar result can be deduced for a pair of polynomials \dagger; to do this we use the fact that if $F_{1}(\mathbf{x}), \ldots, F_{k}(\mathbf{x})$ are k polynomials over $[p]$, at least one of which does not vanish identically, then there exist k polynomials $\Phi_{1}(\mathbf{x}), \ldots, \Phi_{k}(\mathbf{x})$ over $[p]$, such that

$$
F_{1} \Phi_{1}+\ldots+F_{k} \Phi_{k}=d \Omega,
$$

where $d=d(\mathbf{x})$ is the highest common factor of F_{1}, \ldots, F_{k} and Ω is a polynomial over $[p]$ which does not vanish identically and in which the variable x_{1} does not appear (for a proof, see [10; p. 192, Satz 101]). Further, the degree of Ω is bounded in terms of the degrees of F_{1}, \ldots, F_{k}. Here, the special rôle played by the variable x_{1} could equally well be taken by any of the other variables $x_{r}(2 \leqslant r \leqslant n)$. We also note that the greatest common divisor is unique, apart from units; in particular, the greatest common divisor of f and g over $[p]$ will be denoted by $(f, g)_{p}$. If either f or g is independent of some x_{i}, i.e. it is a polynomial in $x_{i}(j \neq i$: $j=1,2, \ldots, n$), then so is $(f, g)_{p}$. Thus if, say f, is identically zero then $(f, g)_{p}=g$, apart from unit factors.

Lemma \ddagger 7. If $f(\mathbf{x})$ and $g(\mathbf{x})$ are polynomials in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, where $n \geqslant 2$, with coefficients in $[p]$, of degrees k_{1} and k_{2} respectively, such that $(f, g)_{p}=1$, then the number of solutions of the pair of simultaneous equations

$$
f(\mathbf{x})=g(\mathbf{x})=0, \quad[p],
$$

[^3]is $O\left(p^{n-2}\right)$, where the constant implied in the O-symbol depends only on n, k_{1} and k_{2}.

Proof. We first prove the result for $n=2$. Since

$$
\left(f\left(x_{1}, x_{2}\right), g\left(x_{1}, x_{2}\right)\right)_{p}=1
$$

we can find $a_{1}\left(x_{1}, x_{2}\right), a_{2}\left(x_{1}, x_{2}\right), b_{1}\left(x_{1}, x_{2}\right), b_{2}\left(x_{1}, x_{2}\right), \Omega_{1}\left(x_{1}\right) \neq 0$ and $\Omega_{2}\left(x_{2}\right) \neq 0$ such that
and

$$
\begin{aligned}
& a_{1} f+b_{1} g=\Omega_{1}\left(x_{1}\right) \\
& a_{2} f+b_{2} g=\Omega_{2}\left(x_{2}\right)
\end{aligned}
$$

Thus $N(f=g=0) \leqslant N\left(\Omega_{1}=\Omega_{\mathrm{a}}=0\right)=O(1)$.
We now suppose that $n \geqslant 3$ and make the inductive hypothesis that the result is true for all polynomials in $(n-1)$ variables satisfying the conditions of the lemma. We consider three cases:

Case (i). Suppose that for some fixed $i(1 \leqslant i \leqslant n), f$ and g are polynomials in $x_{j}(j=1,2, \ldots, n)$ with $j \neq i$. Then we can apply the inductive hypothesis to the pair f, g and obtain

$$
N(f=g=0)=O\left(p \cdot p^{(n-1)-2}\right)=O\left(p^{n-2}\right)
$$

since to each set $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$ there corresponds at most p values for x_{i}.

Case (ii). We now show that it is sufficient to consider the case when at least one of f and g is a polynomial in at most $n-1$ of x_{1}, \ldots, x_{n}. For, if $(f, g)_{p}=1$, we can find polynomials a_{1} and b_{1} and a polynomial $\Omega=\Omega\left(x_{2}, \ldots, x_{n}\right)$, independent of x_{1}, satisfying

$$
a_{1} f+b_{1} g=\Omega\left(x_{2}, \ldots, x_{n}\right)
$$

If $d_{1}=(g, \Omega)_{p}$, then $d_{1}=d_{1}\left(x_{2}, \ldots, x_{n}\right)$ and $\left(f, d_{1}\right)_{p}=1$. Putting $g=d_{1} g_{1}$, $\Omega=d_{1} \Omega_{1}$, where $\left(g_{1}, \Omega_{1}\right)_{p}=1$, we have

$$
\begin{aligned}
N(f=g=0) & =N(f=g=\Omega=0) \\
& =N\left(f=d_{1} g_{1}=d_{1} \Omega_{1}=0\right) \\
& \leqslant N\left(g_{1}=\Omega_{1}=0: d_{1} \neq 0\right)+N\left(f=d_{1}=0\right) \\
& \leqslant N\left(g_{1}=\Omega_{1}=0\right)+N\left(f=d_{1}=0\right) .
\end{aligned}
$$

Since Ω_{1} and d_{1} are independent of x_{1} and

$$
\left(g_{1}, \mathbf{\Omega}_{1}\right)_{p}=\left(f, d_{1}\right)_{p}=1
$$

it euffices to conaider the cese dencribed.

Case (iii). Suppose now that g, say, does not contain x_{1}. Proceed as in Case (ii), and define $a_{1}, b_{1}, \Omega, d_{1}, g_{1}, \Omega_{1}$. If $d_{1}=1$, then

$$
N(f=g=0) \leqslant N\left(g_{1}=\Omega_{1}=0\right)
$$

and Case (i) can be applied to give the required result. If $d_{1} \neq 1$, we get

$$
N(f=g=0) \leqslant N\left(g_{1}=\Omega_{1}=0\right)+N\left(f=d_{1}=0\right)
$$

just as for Case (ii). Since $g=d_{1} g_{1}$ is independent of x_{1} so is g_{1} and since $\left(g_{1}, \Omega_{1}\right)_{p}=1$, Case (i) applies to $N\left(g_{1}=\Omega_{1}=0\right)$. Also, for $N\left(f=d_{1}=0\right)$, we note that d_{1} is independent of x_{1} and $\left(f, d_{1}\right)_{p}=1$. Hence the pair f and d_{1} satisfy the same hypotheses as the pair f and g. Moreover, d_{1} is a non-unit divisor of g and therefore has lower degree than that of g. Hence the process can be repeated and after a certain number of steps, bounded in terms of the degree of g, we reach the condition $\left(d_{r}, \Omega_{r}\right)_{p}=1$ when the inductive hypothesis is applicable. Thus, writing $g=d_{0}$, we have

$$
\begin{aligned}
& N(f=g=0)=N\left(f=d_{0}=0\right) \\
& \leqslant N\left(g_{1}=\Omega_{1}=0\right)+\ldots+N\left(g_{r-1}=\Omega_{r-1}=0\right)+N\left(f=d_{r}=0\right), \\
& \quad N\left(g_{t}=\Omega_{l}=0\right)=O\left(p^{n-2}\right), \quad(1 \leqslant t \leqslant r-1)
\end{aligned}
$$

where
by Case (i), and

$$
N\left(f=d_{r}=0\right) \leqslant N\left(d_{r}=\Omega_{r}=0\right)=O\left(p^{n-2}\right),
$$

by our induction hypothesis. Moreover, the constants implied in the O-symbols are, by our process, bounded in terms of n, k_{1} and k_{2}. This proves the lemma. We can now prove

Lemma 8. Let $f(\mathbf{x})$ be a form of degree d in n variables, with coefficients in $[p]$, which does not vanish identically. Let s denote the number of absolutely irreducible factors over $[p]$ in the unique decomposition (apart from units and order) of $f=f_{1}{ }^{\alpha_{1}} \ldots f_{r}^{\alpha_{r}}$ into powers of irreducible factors. Then

$$
\begin{equation*}
N(C)=O\left(p^{n-2}\right) \text {, as } p \rightarrow \infty, \text { if } s=0 \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
N(C)=s p^{n-1}+O\left(p^{n-s / 2}\right) \text {, as } p \rightarrow \infty \text {, if } s \geqslant 1 \text {. } \tag{30}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
N(C) & =N(f(\mathbf{x})=0) \\
& =N\left(f_{1} \ldots f_{r}=0\right) \\
& =\sum_{1 \leqslant i<r} N\left(f_{i}=0\right)-\sum_{1 \leqslant i<j<r} N\left(f_{i}=f_{i}=0\right)+\ldots \\
& +(-1)^{r-1} N\left(f_{1}=\ldots=f_{r}=0\right),
\end{aligned}
$$

we have

$$
\left|N(C)-\sum_{1<i \leqslant r} N\left(f_{i}=0\right)\right|=O\left\{\max _{1 \leqslant i<j \leqslant r} N\left(f_{i}=f_{j}=0\right)\right\}=O\left(p^{n-2}\right),
$$

by Lemma 7. Thus if f_{1}, \ldots, f_{s}, say, are absolutely irreducible over [p],

$$
\begin{aligned}
N(C) & =\sum_{1 \leqslant i \leqslant s}\left(p^{n-1}+O\left(p^{n-3 / 2}\right)\right)+\sum_{s+1 \leqslant i \leqslant r} O\left(p^{n-2}\right)+O\left(p^{n-2}\right) \\
& =s p^{n-1}+s . O\left(p^{n-3 / 2}\right)+O\left(p^{n-2}\right)
\end{aligned}
$$

as required.
The next two lemmas are required for the proof of Theorems 2 and 3. They tell us, roughly, that if $f(x)$ is a non-singular form over [p], then both $f(\mathbf{x})$ and $f\left(x_{1}, \ldots, x_{n-1}, 0\right)$ are absolutely irreducible over [p], if n is large enough.

Lemma 9. If $f(\mathbf{x})$ is a non-singular form over $[p]$ of degree d in $n \geqslant d+1$ variables, then $f(\mathbf{x})$ is absolutely irreducible over $[p]$.

Proof. Suppose, if possible, that the conclusion is false for some such f. Then there are two possibilities; case (a), f is irreducible but not absolutely irreducible over [p], case (b), f is reducible over [$p f$].

Case (a). Since $n \geqslant d+1$, Chevalley's theorem [4] implies the existence of at least one non-zero solution \mathbf{x} of $f(\mathbf{x})=0[p]$. By Lemma 3, this is a singular zero of f; a contradiction.

Case (b). Suppose $f=g h$, where $\operatorname{deg} g=d_{1}, \operatorname{deg} h=d_{2}$ and $d_{1}+d_{2}=d$. As $n \geqslant d+1$, (i.e. $n>d_{1}+d_{2}$) Chevalley's theorem tells us that there is a non-zero solution of $g=h=0$. But for such a solution we have

$$
\frac{\partial f}{\partial x_{i}}=g \frac{\partial h}{\partial x_{i}}+h \frac{\partial g}{\partial x_{i}}=0, \quad(i=1,2, \ldots, n)
$$

whence it is a singular zero of f; a contradiction.
Remark. The following example shows that the converse is false, i.e. there exist absolutely irreducible forms of degree d in $n \geqslant d+1$ variables which are singular over $[p]$. Take

$$
\begin{equation*}
f(\mathbf{x})=x_{1} x_{2}^{d-1}-x_{n}^{d} \tag{31}
\end{equation*}
$$

where $n \geqslant d+1>3$; then f is absolutely irreducible over [p] (see [1 ; Lemma 3]), but has a singular zero ($1,0, \ldots, 0$).

Lemma 10. Let $f(\mathbf{x})$ be a non-singular form over $[p]$ in $n \geqslant 2 d+1$ variables. Then $f\left(x_{1}, \ldots, x_{n-1}, 0\right)$ is absolutely irreducible over $[p]$.

Proof. Put

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{n}\right)=a_{d} x_{n}^{d}+a_{d-1} x_{n}^{d-1}+\ldots+a_{1} x_{n}+a_{0} \\
\quad a_{i}=a_{i}\left(x_{1}, \ldots, x_{n-1}\right), \quad i=0,1,2, \ldots, d
\end{gathered}
$$

where
is a form of degree $d-i$, which possibly vanishes identically, and $a_{0}=f\left(x_{1}, \ldots, x_{n-1}, 0\right)$. By Lemma $9, f(\mathbf{x})$ is absolutely irreducible over [p] since $n \geqslant 2 d+1 \geqslant d+1$. Hence it is irreducible over [p] and a_{0} cannot vanish identically. Now suppose a_{0} is not absolutely irreducible over [$\left.p\right]$. Then there are two possibilities; case (a), a_{0} is irreducible over [p] but is not absolutely irreducible over [p], case (b), a_{0} is reducible over $[p]$.

Case (a). By Chevalley's Theorem [4], there is a non-zero solution ($x_{1}{ }^{*}, \ldots, x_{n-1}^{*}$) satisfying $a_{0}=a_{1}=0$, since $n-1>d+(d-1)$, i.e. $n \geqslant 2 d+1$. By Lemma 3, such a solution is a singular zero of a_{0}. Hence the partialderivatives $\frac{\partial a_{0}}{\partial x_{i}}(i=1,2, \ldots, n-1)$ vanish at $\left(x_{1}, \ldots, x_{n-1}\right)=\left(x_{1}{ }^{*}, \ldots, x_{n-1}^{*}\right)$. Put $\mathbf{x}^{*}=\left(x_{1}{ }^{*}, \ldots, x_{n-1}^{*}, 0\right) \neq \mathbf{0}$. Since

$$
\frac{\partial f}{\partial x_{i}}=\frac{\partial a_{d}}{\partial x_{i}} x_{n}{ }^{d}+\ldots+\frac{\partial a_{1}}{\partial x_{i}} x_{n}+\frac{\partial a_{0}}{\partial x_{i}}, \quad(i=1,2, \ldots, n-1)
$$

the derivatives $\frac{\partial f}{\partial x_{i}}(i=1,2, \ldots, n-1)$ vanish at $\mathbf{x}=\mathbf{x}^{*}$, and since

$$
\frac{\partial f}{\partial x_{n}}=a_{d} d x_{n}^{d-1}+\ldots+a_{2} 2 x_{n}+a_{1},
$$

$\frac{\partial f}{\partial x_{n}}$ vanishes when $\mathbf{x}=\mathbf{x}^{*}$. Hence \mathbf{x}^{*} is a singular zero of f, contradicting the hypothesis that f is non-singular over [p].

Case (b). Suppose $a_{0}=h k \quad[p]$, where $\operatorname{deg} h=d_{1}, \operatorname{deg} k=d_{2}$ and $d_{1}+d_{2}=d$. By Chevalley's Theorem [4], there is a solution

$$
\left(x_{1}^{*}, \ldots, x_{n-1}^{*}\right) \neq(0, \ldots, 0)
$$

satisfying $h=k=a_{1}=0$ over $[p]$, since $n-1>d_{1}+d_{2}+(d-1)$, i.e. $n \geqslant 2 d+1$. Then the argument of Case (a) is applicable and we can show, similarly, that ($x_{1}^{*}, \ldots, x_{n-1}^{*}, 0$) is a singular zero of f, contradicting our hypothesis for f. Hence $a_{0}=f\left(x_{1}, \ldots, x_{n-1}, 0\right)$ is absolutely irreducible over [p].
3. Estimation of $\mathscr{F}(\mathbf{y})$.

Definition. Let $a(u, \mathbf{y})=a(u, \mathbf{y}, p, f, C)$ denote the number of solutions $\mathrm{x} \in C$ of the pair of simultaneous equations

$$
\begin{equation*}
f(\mathbf{x})=\mathbf{x} \cdot \mathbf{y}-u=0 \quad[p] . \tag{32}
\end{equation*}
$$

Firstly, we express $\mathscr{F}(\mathbf{y})$, as defined in (7), in terms of $a(u, \mathbf{y})$ in
Levan 11. $\quad F(y)=p \sum_{u=0}^{p-1} e(-u) a(u, y)$.

Proof. From (7) we have

$$
\begin{aligned}
\mathscr{F}(\mathbf{y}) & =\sum_{\mathbf{x} \in C} \sum_{i=0}^{p-1} e(t f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}) \\
& =\sum_{\mathbf{x} \in C} e(-\mathbf{x} \cdot \mathbf{y}) \sum_{i=0}^{p-1} e(t f(\mathbf{x})) \\
& =\sum_{u=0}^{p-1} \sum_{\mathbf{x} \in \mathbf{x}=u} e(-\mathbf{x} \cdot \mathbf{y}) \sum_{i=0}^{p-1} e(t f(\mathbf{x})) \\
& =\sum_{u=0}^{p-1} \sum_{\mathbf{x} \in \in=u} e(-u) \sum_{t=0}^{p-1} e(t f(\mathbf{x})) \\
& =\sum_{u=0}^{p-1} e(-u) \sum_{\mathbf{x} \in \in=u} \sum_{i=0}^{p-1} e(t f(\mathbf{x})) .
\end{aligned}
$$

From the definition of $a(u, y)$ we have

$$
\begin{equation*}
a(u, \mathbf{y})=\frac{1}{p} \sum_{\substack{\mathbf{x}, \mathrm{y}=\boldsymbol{c}\\}} \sum_{i=0}^{p-1} e(t f(\mathbf{x})) \tag{34}
\end{equation*}
$$

and the lemma follows.
Next, we note the following two properties of $a(u, y)$ which lead to the interpretation of $\mathscr{F}(\mathbf{y})$ in Lemma 15.

Lemana 12.

$$
\begin{equation*}
\sum_{u=0}^{p-1} a(u, y)=N(C) . \tag{35}
\end{equation*}
$$

Proof. Trivial.
Lemans 13. If $u \neq 0[p]$, then $a(u, y)=a(1, y)$.
Proof. As $u \neq 0[p], u^{-1}$ is uniquely defined by $u u^{-1}=1$. Then the substitution $\mathbf{x}=u \mathbf{z}$ maps C onto itself. Hence

$$
\begin{aligned}
a(u, \mathbf{y}) & =\frac{1}{p} \sum_{\substack{z \in \in \in=1 \\
z=y=1}} \sum_{i=0}^{p-1} e(t f(u z)) \\
& =\frac{1}{p} \sum_{\substack{z \in \in \\
z=y=1}} \sum_{i=0}^{p-1} e\left(t u^{d} f(\mathbf{z})\right),
\end{aligned}
$$

since f is homogeneous of degree d. As $u \neq 0[p]$, the substitution $v=t u^{d}$ permutes [p]. Thus

Lunos 14. If $u \neq 0[p]$, then

$$
\begin{equation*}
a(u, y)=(p-1)^{-1}\{N(C)-a(0, y)\} . \tag{87}
\end{equation*}
$$

Proof. By Lemmas 12 and 13,

$$
a(0, \mathbf{y})+(p-1) a(u, \mathbf{y})=N(C)
$$

since $u \neq 0[p]$.
Lemá 15.

$$
\begin{equation*}
\mathscr{F}(\mathbf{y})=\frac{p}{p-1}\{p a(0, \mathbf{y})-N(C)\} . \tag{38}
\end{equation*}
$$

Proof. By Lemma 11,

$$
\begin{aligned}
\mathscr{F}(\mathbf{y}) & =p \sum_{u=0}^{p-1} e(-u) a(u, \mathbf{y}) \\
& =p\left\{a(0, \mathbf{y})+\sum_{u=1}^{p-1} e(-u) a(u, \mathbf{y})\right\}, \\
& =p\left\{a(0, \mathbf{y})+\sum_{u=1}^{p-1} e(-u)\left[\frac{N(C)-a(0, \mathbf{y})}{p-1}\right]\right\}, \\
& =p\left\{a(0, \mathbf{y})-\frac{N(C)-a(0, \mathbf{y})}{p-1}\right\}, \\
& =\frac{p}{p-1}\{p a(0, \mathbf{y})-N(C)\},
\end{aligned}
$$

on using Lemma 14.
With this interpretation of $\mathscr{F}(\mathbf{y})$ the estimates available for $a(0, \mathbf{y})$ in Lemma 7 and for $N(C)$ in Lemma 8 are sufficient for our proof of Theorem 1. For Theorems 2, 3 we shall need a more precise estimate for $a(0, y)$:

Lsmas 16. If $f(\mathbf{x})$ is a form of degree d, which is non-singular over $[p]$ and in $n \geqslant 2 d+1$ variables then

$$
\begin{equation*}
a(0, \mathbf{y})=p^{n-2}+O\left(p^{n-6 / 2}\right) \tag{39}
\end{equation*}
$$

uniformly in $0 \neq \mathbf{y} \in C$.
Proof. By definition $a(0, y)$ is the number of $\mathbf{x} \in C$ satisfying the pair of equations

$$
f(\mathbf{x})=\mathbf{x} \cdot \mathbf{y}=0, \quad[p] .
$$

Since $\mathrm{y} \neq 0[p]$, we can transform x into x^{\prime} by a non-singular, homogeneous, linear transformation so that the above pair becomes

$$
f_{1}\left(\mathbf{x}^{\prime}\right)=x_{n}^{\prime}=0,[p]
$$

This does not affect $a(0, y)$ nor the non-singularity of f, but the coefficients of f_{1} will now depend on the y_{i} 's. Thus $a(0, y)$ is just the number of solutions ($x_{1}, \ldots, x_{n-1}^{\prime}, 0$) of

$$
f_{1}\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}, 0\right)=0
$$

By Lemma $10, f_{1}\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}, 0\right)$ is absolutely irreducible over $[p]$ and so, by Lemma 2, we have

$$
a(0, \mathrm{y})=p^{n-2}+O\left(p^{n-5 / 2}\right) \text {, as } p \rightarrow \infty
$$

uniformly in $\mathbf{0} \neq \mathbf{y} \in C$.
We give here an alternative interpretation of $\mathscr{F}(\mathbf{y})$ which is useful in special cases but not, however, effective for our general problem.

Lrmas 17. Let $f(\mathbf{x})$ be a form in x_{1}, \ldots, x_{n} of degree $d \geqslant 2$, with coeffcients in $[p]$. Let k_{p-1} be the multiplicative group of $[p]$ and k_{m} the subgroup of k_{p-1} consisting of the $(d-1)$-th powers, where the order of $k_{i n}$ is $m=\frac{p-1}{l}$, $l=(d-1, p-1)$. Let $n_{1}, n_{2}, \ldots, n_{1}$ be elements of k_{p-1}, one from each coset of k_{m} relative to k_{p-1}. Then

$$
\begin{equation*}
\mathscr{F}(\mathbf{y})=\frac{p}{l} \sum_{i=1}^{l} N\left(C, f(\mathbf{x})-n_{i} \mathbf{x} \cdot \mathbf{y}\right)-p^{n} \tag{40}
\end{equation*}
$$

Proof. If the elements of k_{m} are denoted by $r_{1}, r_{2}, \ldots, r_{m}$, the cosets \mathscr{C}_{i} can be represented by $\left\{n_{i}{ }^{-1} r_{1}, \ldots, n_{i}^{-1} r_{m}\right\},(i=1,2, \ldots, l)$. Then, for $\mathbf{y} \neq \mathbf{0}$ [$p]$,

$$
\begin{aligned}
& \mathscr{F}(\mathbf{y})=\sum_{i=1}^{p-1} \sum_{\mathbf{x} \in C} e\{t f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\} \\
&=\sum_{i=1}^{l} \sum_{t \in \mathcal{Y}_{i}} \sum_{\mathbf{x} \in C} e\{t f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\} \\
&=\sum_{i=1}^{l} \sum_{\mathbf{x} \in C} \sum_{j=1}^{m} e\left\{n_{i}-1\right. \\
&\left.r_{s} f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\right\} \\
&=\frac{1}{l} \sum_{i=1}^{l} \sum_{\mathbf{x} \in C} \sum_{u=1}^{p-1} e\left\{n_{i}^{-1} u^{d-1} f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\right\}
\end{aligned}
$$

since $u^{d-1}=r_{j}[p]$ has exactly l solutions u, for each $j=1,2, \ldots, m$. Put $\mathbf{x}=u^{-1} \mathbf{z}[p]$, so that C is mapped onto itself over $[p]$ and note that

$$
f\left(u^{-1} \mathbf{z}\right)=u^{-d} f(\mathbf{z})
$$

Then

$$
\begin{aligned}
\mathscr{F}(\mathbf{y}) & =\frac{1}{l} \sum_{i=1}^{l} \sum_{\mathbf{x} \in C} \sum_{u=1}^{p-1} e\left\{u^{-1}\left[n_{i}^{-1} f(\mathbf{z})-\mathbf{z} \cdot \mathbf{y}\right]\right\} \\
& =\frac{1}{l} \sum_{i=1}^{l} \sum_{\mathbf{x} \in C} \sum_{u=1}^{p-1} e\left\{u\left[n_{i}^{-1} f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\right]\right\} \\
& =\frac{1}{l} \sum_{i=1}^{l} \sum_{\mathbf{x} \in C}\left[\left\{\sum_{u=0}^{p-1} e\left[u\left(n_{i}^{-1} f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\right)\right]\right\}-1\right], \\
& =\frac{p}{l} \sum_{i=1}^{l} N\left(C, n_{i}^{-1} f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\right)-p^{n}
\end{aligned}
$$

as required.
4. Proof of Theorem 1. By Lemmas 6 and 7,

$$
\begin{gathered}
N(C)=O\left(p^{n-1}\right) \\
a(0, \mathbf{y})=O\left(p^{n-2}\right), \text { uniformly in } \mathbf{y}
\end{gathered}
$$

Hence, by Lemma 15,

$$
\mathscr{F}(\mathbf{y})=O\left(p^{n-\mathbf{1}}\right)
$$

so we may take $\Phi=O\left(p^{n-1}\right)$ in Lemma 1 , obtaining the result.
Proof of Corollary 1. This is immediate on substituting the estimate for $N(C)$ given by Lemma 8 in the theorem.

Proof of Corollary 2. For arbitrary ϵ satisfying $0<\epsilon<n^{-1}$, take $h_{i}=\left[p^{1-n^{-1}+\varepsilon}\right]$ and $\nu_{i} \geqslant 0$ (subject to $\nu_{i}+p^{1-n^{-1}+\varepsilon}<p$) in Corollary 1 ; then

$$
h_{1} \ldots h_{n} p^{-n}\left\{s p^{n-1}+O\left(p^{n-3 / 2}\right)\right\}=O\left(p^{n-2+n \epsilon}\right)
$$

exceeds the error term $O\left(p^{n-2} \log ^{n} p\right)$ for $p \geqslant p_{0}=p_{0}(\epsilon, n, d)$, so $N(\mathfrak{B})>0$ and the result follows.

Proof of Theorem 2. By Lemma 9, $f(\mathbf{x})$ is absolutely irreducible over $[p]$ since $n \geqslant 2 d+1 \geqslant d+1$. Thus, by Lemma 2, $N(C)=p^{n-1}+O\left(p^{n-3 / 2}\right)$. Also, by Lemma 16, $a(0, y)=p^{n-2}+O\left(p^{n-5 / 2}\right)$ and so from Lemma 15 we have $\mathscr{F}(\mathbf{y})=O\left(p^{n-3 / 2}\right)$ for $y \neq 0$. The theorem then follows from Lemma 1 with $\Phi=O\left(p^{n-3 / 2}\right)$.

Proof of Corollary 1. This is immediate on substituting the estimate for $N(C)$ from Lemma 8.

Proof of Theorem 3. Applying Theorem 2, with n replaced by $n+1$, to the box \mathfrak{B}_{0} and the form F, we have

$$
N\left(\mathfrak{B}_{0}, F\right)=h_{1} \ldots h_{n} p^{-n-1} N\left(C_{n+1}, F\right)+O\left(p^{n-3 / 2} \log ^{n+1} p\right)
$$

as $p \rightarrow \infty$. By Lemma 9, F is absolutely irreducible over $[p]$ and so, by Lemma 2,

$$
N\left(C_{n+1}, F\right)=p^{n}+O\left(p^{n-1 / 2}\right)
$$

Since $N\left(\mathfrak{B}_{0}, F\right)=N(\mathfrak{B}, f)$, the result follows.
The proofs of the corollaries to Theorems 2 and 3 are straightforward and follow the lines of that for Corollary 2 of Theorem 1.
5. Extension to Galois Fields. Let k_{q} denote the finite field of $q=p^{m}$ elements and write k_{p} for $[p]$. Select any fixed basis $\alpha_{1}, \ldots, \alpha_{m}$ for k_{q}; then any $\alpha \in k_{q}$ may be expressed as

$$
\alpha=c_{1} \alpha_{1}+\ldots+c_{m} \alpha_{m}
$$

with $c_{i} \in k_{p}(i=1,2, \ldots, m)$. Denote the trace of α from k_{q} to k_{p} by $t(\alpha)$, so that

$$
t(\alpha)=\alpha+\alpha^{p}+\alpha^{p^{2}}+\ldots+\alpha^{p m-1} \in k_{p}
$$

and $t(\alpha+\beta)=t(\alpha)+t(\beta)$, for all α and β in k_{g}.
If we put

$$
e(\alpha)=\exp \left\{2 \pi i p^{-1} t(\alpha)\right\},
$$

then it is easy to verify that the orthogonal property

$$
\sum_{\alpha \in k_{g}} e(\lambda \alpha)=\left\{\begin{array}{l}
q, \text { if } \lambda=0 \\
0, \text { otherwise },
\end{array}\right.
$$

for the case $m=1$, is preserved. We can now extend the definition of the box \mathfrak{B} to the vector space V of points $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over k_{θ}, relative to our chosen basis, by

$$
\mathfrak{B}=\left\{\mathbf{x} \mid \mathbf{x} \in V, x_{i}=c_{i 1} \alpha_{1}+\ldots+c_{i m} \alpha_{m}, 0 \leqslant \nu_{i j} \leqslant c_{i j}<\nu_{i j}+h_{i j} \leqslant p\right\},
$$

where $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$. It is now a routine matter to check that Lemma 1 goes through as it stands, but with p replaced by q and $[p]$ replaced by k_{q}, apart from the estimate for $\mathscr{E}(\mathfrak{B})$ in (11). With $\mathscr{E}(\mathfrak{B})$ defined as
we shall repair this deficiency in Lemma 18. We note also that the estimates in \S_{2} (see Lemmas 6, 7 and 8) which are used in the proof of Theorem 1 and its first corollary are readily extended to k_{q}. Then Theorem 1, for example, has the following generalization :

Theorem 1'. Let $f(\mathbf{x})$ denote a form over k_{q}, of degree $d \geqslant 2$, which admits no linear factors over k_{q}. If $N(V)$ denotes the number of zeros of $f(\mathbf{x})$ in V, then

$$
\begin{equation*}
N(\mathfrak{B})=\left(\prod_{i, j=1}^{n, m} h_{i j}\right) q^{-n} N(V)+O\left(q^{n-2} \log ^{m n} p\right) \tag{41}
\end{equation*}
$$

where the constant in the O-symbol depends at most on m and n.
Counterparts for the other theorems about $N(\mathfrak{B})$ may also be given, since the only new idea required is that in Lemma 18; the proof of which follows:

Lemma 18. There is an absolute constant p_{0} such that

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\mathbf{y} \in V} \mid{\underset{\mathbf{z} \in \mathcal{H}}{ } e(\mathbf{y} \cdot \mathbf{z}) \mid<q^{n}(\log p)^{m n}, ~, ~ . ~}_{\text {, }} \tag{42}
\end{equation*}
$$

for all $p \geqslant p_{0}, m \geqslant 1, n \geqslant 1$.

Proof. Since the given sum splits into a product of n sums of the type

$$
\underset{y_{t} \in k_{g}}{ }\left|{ }_{\boldsymbol{e}_{i} \in \mathcal{H}_{t}} e\left(y_{i} z_{i}\right)\right|
$$

where

$$
\mathfrak{B}_{i}=\left\{z_{i} \mid z_{i} \in k_{q}, z_{i}=c_{i 1} \alpha_{1}+\ldots+c_{i m} \alpha_{m}, \nu_{i j} \leqslant c_{i j}<v_{i j}+h_{i j}\right\},
$$

$1 \leqslant j \leqslant m$, it is sufficient to prove that this is less than $(p \log p)^{m}$, under the conditions stated. Dropping the subscripts i and writing

$$
\begin{aligned}
y & =b_{1} \alpha_{1}+\ldots+b_{m} \alpha_{m} \\
z & =c_{1} \alpha_{1}+\ldots+c_{m} \alpha_{m} \\
v_{i j} & =\nu_{j}, h_{i j}=h_{j}
\end{aligned}
$$

for convenience, this sum has the shape

$$
\begin{equation*}
\sum_{b_{1}=0}^{p-1} \cdots \sum_{b_{m}=0}^{p-1}\left|\sum_{c_{1}=\nu_{1}}^{\nu_{1}+h_{1}-1} \cdots \sum_{c_{m}=\eta_{m}}^{\nu_{m}+h_{m}-1} e\left\{\left(b_{1} \alpha_{1}+\ldots+b_{m} \alpha_{m}\right)\left(c_{1} \alpha_{1}+\ldots+c_{m} \alpha_{m}\right)\right\}\right| \tag{43}
\end{equation*}
$$

Now, the inner sums over c_{1}, \ldots, c_{m} can be expressed as

$$
\prod_{k=1}^{m} \sum_{c_{k}=y_{k}}^{v_{k}+h_{k}-1} \exp \left\{2 \pi i p^{-1} \eta_{k} c_{k}\right\}
$$

where

$$
\eta_{k}=\sum_{j=1}^{m} b_{j} t\left(\alpha_{j} \alpha_{k}\right) .
$$

The $m \times m$ matrix

$$
T=\left\{t\left(\alpha_{j} \alpha_{k}\right)\right\}
$$

has determinant

$$
\left[\operatorname{det}\left(\alpha_{j} p^{p-1}\right)\right]^{2},
$$

and, as is well known [see, e.g., L. E. Dickson, Linear Groups (Dover, 1958), p. 52], this cannot vanish when $\alpha_{1}, \ldots, \alpha_{m}$ are linearly independent over k_{p}. Hence $\operatorname{det} T \not \equiv 0(\bmod p)$ and so the m-dimensional vector space V_{m} of points $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$ is mapped onto itself by T. Thus $\sum_{b \in V_{m}}$ can be replaced by $\sum_{\eta \in V_{m}}$, where $\eta=T \mathbf{b}$, and our sum (43) becomes

$$
\left.\prod_{k=1}^{m} \sum_{\eta_{k}=0}^{p-1}\right|_{c_{k}=\nu_{k}} ^{\nu_{k}+n_{k}-1} \exp \left\{2 \pi i p^{-1} \eta_{k} c_{k}\right\} \mid .
$$

Each of the m sums in this product is less than $p \log p$ (see, e.g., [11; Ch. III, 11c]) for $p \geqslant 60$ and so (42) holds with $p_{0}=60$.

References

1. B. J. Biroh and D. J. Lewis, "p-adic forms", J. Indian Math. Soc., 23 (1959), 11-32.
2. B. J. Birch, "Forms in many variables", Proc. Roy. Soc. (A), 265 (1962), 245-263. (See [5] p. 652.)
3. J. H. H. Chalk, "The number of solutions of congruences in incomplete residue systems ", Canadian J. of Math., 15 (1963), 291-296.
4. C. Chevalley, "Démonstration d'une hypothêse de M. Artin", Abh. Math. Sem. Hamburg., 11 (1935), 73-75.
5. H. Davenport and D. J. Lewis, "Exponential spms in many variables ", American J. of Math., 84 (1962), 649-605.
6. S. Lang and A. Weil, "Number of points of varieties in finite fields", American J. of Math., 76 (1954), 810-827.
7. S. H. Min, "On systems of algebraic equations and certain modtiple exponential sams ". Quart. J. of Math., (Oxford), 18 (1947), 133-142.
8. L. J. Mordell, "On the number of solutions in incomplete residue sets of quadratic congruences ", Archiv der Math., 8 (1957), 153-157.
9. --, "Incomplete exponential sums and incomplete remidue systems for congruепсея", Чехословацкии Математичестй Журвал (Сzесh. Манh. J.), 14 (1004), 235-242.
10. O. Perron, Algebra I (2nd. ed. Berlin 1932).
11. I. M. Vinogradov, Elements of number theory, (Dover 1954), Chap. V, problem 12a, p. 102.
12. A. Weil, Foundations of algebraic geometry (New York), Amer. Math. Soc. Colloq. Pub., 29 (1946).

Department of Mathematics, University of Toronto, Toronto, Canada.
(Recoived on the 26th of January, 1085.)

[^0]: \uparrow Hore, and throughout the paper, the conotant in the O-Eymbol depende oaly upon n and d, unlese explicitly stated otherwise.

[^1]: \dagger i.e., for any $x \neq 0$ of C, the n partial derivatives of the first order do not vaninh rimulteneouely.

[^2]: \dagger A special case of this was communicated to one of us by Dr. G. L. Watson.
 \ddagger We remark thet an abeokately irreducible form in n veriables definee an aboclutely
 oonverse, wee e.g. [12; Proposition 2, p. 74].

[^3]: \dagger We are indebted to Professor H. A. Heilbronn, for a remark which suggested a lemma of this type.
 \ddagger By elementary deductive arguments, it may be shown that this lemma is equivelent to Lemma 4. It would be of interest to know whether our elementary version of Lemms 7 is capable of extension to three or more polynomials.

