A NOTE ON THE QUADRATIC FORM $a x^{2}+2 b x y+c y^{2}$

By K. S. Wituams

The object of this note is to give a simple geometrical proof of the following well-known

Theorem. Let Λ be a 2-dimensional lattice of determinant $d(\Lambda) \neq 0$. Suppose $a>0$ and ac $>b^{2}$. Then there is a point $(u, v) \neq(0,0)$ of the lattice Λ such that

$$
a u^{2}+2 b u v+c v^{2} \leq \frac{2}{\sqrt{ } 3} \sqrt{ }\left(a c-b^{2}\right) d(\Lambda)
$$

Proof. Suppose all points $(x, y) \neq(0,0)$ of Λ satisfy

$$
a x^{2}+2 b x y+c y^{2}>\frac{2}{\sqrt{ } 3} \sqrt{ }\left(a c-b^{2}\right) d(\Lambda)
$$

Let $P=(u, v)$ be one of the lattice points nearest to the origin. Let α be the ellipse $a x^{2}+2 b x y+c y^{2}=k, k>0$, centre $(0,0)$, passing through P, so

$$
\text { * } \quad a u^{2}+2 b u v+c v^{2}=k
$$

Let $h=\frac{d(\Lambda)}{O P}$ and let l be a line parallel to, and at a distance h from, $O P$. Suppose l meets α in the 2 points $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$. The equation of l is

$$
v x-u y= \pm h \sqrt{ }\left(u^{2}+v^{2}\right)
$$

Eliminating x between α and l and using * we have that y_{1} and y_{2} are the roots of

$$
\begin{aligned}
& \quad k y^{2} \pm 2 h \sqrt{\left(u^{2}+v^{2}\right)}(a u+b v) y+\left(a h^{2}\left(u^{2}+v^{2}\right)-k v^{2}\right)=0 \\
& \therefore y_{1}+y_{2}=\mp \frac{2 h}{k} \sqrt{u^{2}+v^{2}}(a u+b v) ; y_{1} y_{2}=\left\{a h^{2}\left(u^{2}+v^{2}\right)-k v^{2}\right\} / k \\
& \text { Thus }\left(y_{1}-y_{2}\right)^{2}=\left(y_{1}+y_{2}\right)^{2}-4 y_{1} y_{2} \\
& \\
& \qquad=\frac{4 v^{2}}{k^{2}}\left[k^{2}-\left(a c-b^{2}\right) h^{2}\left(u^{2}+v^{2}\right)\right] \quad \text { (using *) }
\end{aligned}
$$

Similarly

$$
\left(x_{1}-x_{2}\right)^{2}=\frac{4 u^{2}}{k^{2}}\left[k^{2}-\left(a c-b^{2}\right) h^{2}\left(u^{2}+v^{2}\right)\right]
$$

Hence $A B^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$

$$
=\frac{4}{k^{2}}\left(u^{2}+v^{2}\right)\left[k^{2}-\left(a c-b^{2}\right) h^{2}\left(u^{2}+v^{2}\right)\right]
$$

Dut as a it dovold of lindien points axeopt $(0,0)$

$A B \leq O P$
and so $k \leq \frac{2}{\sqrt{3}} \sqrt{ }\left(a c-b^{2}\right) d(\Lambda)$
This contradicts the assumption and the theorem follows.
K. 8. Wriryam

