3039. On the divisibility of F_{0} by 274, 177

In 1640 the French Mathematician, Pierre Fermat (1601-65) asserted that the numbers defined by $F_{n}=2^{2^{n}}+1$ (so that $F_{1}=5$, $F_{\mathbf{2}}=17, F_{\mathbf{3}}=257, F_{4}=65,537$ etc.) are prime for all integral values of n. The first four are prime but, however, in 1732, the great Swiss Mathematician, Leonhard Euler (1707-83) found that

$$
F_{5}=2^{2^{5}}+1=2^{92}+1=4,294,967,297=641.6,700,417
$$

is composite.
Later, in 1880 , Landry proved that

$$
\begin{aligned}
F_{\mathrm{a}}=2^{20}+1=2^{204}+1 & =18,446,744,073,709,551,617 \\
& =274,177.67,280,421,310,721
\end{aligned}
$$

was also composite. Here is a simple proof that 274,177 divides F_{6} involving very little numerical calculation. We first show that

$$
274,177=1071 \cdot 2^{8}+1=516^{2}+89^{2} .
$$

Then, working modulo 274,177, we prove a result we need later in the proof.

Lemma.

$$
\begin{aligned}
& 89 \cdot 15,409 \equiv 516 \\
& \therefore 89^{2} \cdot 15,409^{2} \equiv 516^{2} \equiv-89^{2} \\
& \therefore 15,409^{2} \equiv-1 .
\end{aligned}
$$

Proof. Now

$$
2^{12}+1=\left(2^{4}\right)^{3}+1=\left(2^{4}+1\right)\left(\left(2^{4}\right)^{2}-2^{4}+1\right)=17.241
$$

and thus

$$
\begin{aligned}
& 2^{24}-1=\left(2^{3}-1\right)\left(2^{3}+1\right)\left(2^{8}+1\right)\left(2^{18}+1\right) \\
&=7 \cdot 9 \cdot 65 \cdot 17 \cdot 241 \\
&=(7 \cdot 9 \cdot 17) \cdot(65 \cdot 241) \\
&=1071 \cdot 15,665 \\
&=1071 \cdot 2^{8}+1071 \cdot 15,409 \\
& \therefore \quad 2^{24}=1+1071 \cdot 2^{8}+1071 \cdot 15,409 \equiv 1071 \cdot 15,409 \\
& \therefore \quad 2^{48} \equiv 1071^{2} \cdot 15,409^{2} \equiv-1071^{2} \quad(\text { using lemma }) \\
& \therefore \quad 2^{64} \equiv-1071^{2} \cdot 2^{16} \equiv-(274,177-1)^{2} \equiv-1 \\
& \therefore 2^{64}+1 \equiv 0(\bmod 274,177) \\
& \therefore 274,177 \mid F_{8} .
\end{aligned}
$$

University of Birmingham Krinerth S. Whliams

