3029. A generalisation of Cardan's solution of the cubic

I first recall Cardan's solution, presenting it in a different form from the usual, which lends itself to generalization.

Consider $x^{2}-\lambda x+a=0$.

Let the roots of this equation be α and β so

$$
\alpha+\beta=\lambda \quad \alpha \beta=a
$$

Now $\alpha^{3}+\beta^{3} \equiv(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=\lambda^{3}-3 a \lambda$

$$
\text { and } \alpha^{3} \beta^{3} \equiv(\alpha \beta)^{3}=a^{3}
$$

Thus the equation with roots α^{3} and β^{3} is

$$
y^{2}-\left(\lambda^{3}-3 a \lambda\right) y+a^{3}=0
$$

Let $\lambda^{3}-3 a \lambda=b \quad$ i.e. $\quad \lambda^{3}-3 a \lambda-b=0$
so $y^{2}-b y+a^{3}=0$

$$
\begin{array}{cc}
& \therefore \quad y=\frac{1}{2}\left\{b \pm \sqrt{b^{2}-4 a^{3}}\right\} \\
\therefore & \alpha^{3}=\frac{1}{2}\left\{b+\sqrt{b^{2}-4 a^{3}}\right\} \text { and } \beta^{3}=\frac{1}{2}\left\{b-\sqrt{b^{2}-4 a^{3}}\right\} \\
\therefore & \lambda=\alpha+\beta=\left[\frac{1}{2}\left\{b+\sqrt{b^{2}-4 a^{3}}\right\}\right]^{1 / 3}+\left[\frac{1}{2}\left\{b-\sqrt{b^{2}-4 a^{3}}\right\}\right]^{1 / 3}
\end{array}
$$

which is Cardan's solution of the cubic,

$$
\lambda^{3}-3 a \lambda-b=0
$$

Every cubic equation $A x^{3}+B x^{2}+C x+D=0$ can be put into this form $\lambda^{3}-3 a \lambda-b=0$ by the transformation $x=\lambda-\frac{B}{B^{2}}$ yielding $a=\frac{B^{2}}{9 A^{2}}-\frac{C}{3 A}$ and $b=\frac{B C}{3 A^{2}}-\frac{2 B^{3}}{27 A^{3}}-\frac{D}{A}$, so the solution is perfectly general.

Now we proceed to the general case. Consider

$$
x^{2}-\lambda x+a=0
$$

Let the roots of this equation be α and β so $\alpha+\beta=\lambda$ and $\alpha \beta=a$. Thus $(1-\alpha x)(1-\beta x) \equiv 1-\lambda x+a x^{2}$

$$
\begin{align*}
\therefore \log \left(1-\lambda x+a x^{2}\right) & =\log (1-\alpha x)(1-\beta x) \\
& =\log (1-\alpha x)+\log (1-\beta x) \\
& =-\sum_{m=1}^{\infty} \frac{\alpha^{m} x^{m}}{m}-\sum_{m=1}^{\infty} \frac{\beta^{m} x^{m}}{m} \tag{1}\\
& =-\sum_{m=1}^{\infty} \frac{\left(\alpha^{m}+\beta^{m}\right)}{m} x^{m} \tag{2}
\end{align*}
$$

Now $\log \left(1-\lambda x+a x^{2}\right)=\log (1-x(\lambda-a x))$

$$
\begin{align*}
& =-\sum_{r=1}^{\infty} \frac{x^{r}(\lambda-a x)^{r}}{r} \tag{3}\\
& =-\sum_{r=1}^{\infty} \frac{x^{r}}{r} \sum_{s=0}^{s=r}(-1)^{s}\binom{r}{s} \lambda^{r-s} a^{s} x^{s} \\
& =-\sum_{r=1}^{\infty} \sum_{s=0}^{s=r} \frac{(-1)^{s}}{r}\binom{r}{s} \lambda^{r-s} a^{s} x^{r+s}
\end{align*}
$$

(Now change the independent variables r and s to m and s by the transformation $r=m-s$.)

$$
\begin{equation*}
=-\sum_{m=1}^{\infty} \sum_{s=0}^{[m / 2]} \frac{(-1)^{s}}{m-s}\binom{m-s}{s} \lambda^{m-2 s} a^{s} x^{m} \tag{4}
\end{equation*}
$$

Equating coefficients of x^{m} we have

$$
\frac{\alpha^{m}+\beta^{m}}{m}=\sum_{s=0}^{[m / 2]} \frac{(-1)^{s}}{m-s}\binom{m-s}{s} \lambda^{m-2 d} a^{s}
$$

Taking $m=2 n+1$
$\therefore \quad \alpha^{2 n+1}+\beta^{2 n+1}=\sum_{s=0}^{n}(-1)^{s} \frac{2 n+1}{2 n-s+1}\binom{2 n-s+1}{s} \lambda^{2 n-28+1} a^{\prime}$
Also $\alpha^{2 n+1} \beta^{2 n+1} \equiv(\alpha \beta)^{2 n+1}=a^{2 n+1}$
So the equation with roots $\alpha^{2 n+1}$ and $\beta^{2 n+1}$ is
$y^{2}-\left\{\sum_{s=0}^{n}(-1)^{s} \frac{2 n+1}{2 n-s+1}\binom{2 n-s+1}{s} \lambda^{2 n-2 b+1} a^{s}\right\} y+a^{2 n+1}=0$
Let

$$
\sum_{s=0}^{n}(-1)^{s} \frac{2 n+1}{2 n-s+1}\binom{2 n-s+1}{s} \lambda^{2 n-2 s+1} a^{s}=b
$$

so $y^{2}-b y+a^{2 n+1}=0$
and exactly as before

$$
\lambda=\left[\frac{1}{2}\left(b+\sqrt{\left.b^{2}-4 a^{2 n+1}\right)}\right)^{\frac{1}{2 n+1}}+\left[\frac{1}{2}\left(b-\sqrt{b^{2}-4 a^{2 n+1}}\right)\right]^{\frac{1}{2 n+1}}\right.
$$

is the solution of

$$
\begin{gathered}
\lambda^{2 n+1}-(2 n+1) a \lambda^{2 n-1}+\frac{(2 n+1)(2 n-2)}{2} a^{2} \lambda^{2 n-3}-\cdots \\
+(-1)^{n}(2 n+1) a^{n} \lambda-b=0
\end{gathered}
$$

Thus we can solve such equations as
and $\quad \lambda^{7}-7 a \lambda^{5}+14 a^{2} \lambda^{3}-7 a^{3} \lambda-b=0 \quad(n=3)$
Many mathematicians tried to reduce the general quintic equation to the form $\lambda^{5}-5 a \lambda^{3}+5 a^{2} \lambda-b=0$ which is known as the reducible quintic. The best result was obtained by the Swedish mathematician, E. S. Bring, who, in 1786, reduced the general quintic to the trinomial form $\lambda^{5}-A \lambda-B=0$. It is now known however, that in general the reduction is impossible.

