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Abstract. We explore a connection between permutation polynomials
of the form z” f(a:(q_l)/ 1 and cyclotomic mapping permutation poly-
nomials over finite fields. As an application, we characterize a class of
permutation binomials in terms of generalized Lucas sequences.
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1 Introduction

Let p be prime and ¢ = p™. A polynomial is a permutation polynomial (PP)
of a finite field I, if it induces a bijective map from F, to itself. The study of
permutation polynomials of a finite field goes back to 19-th century when Her-
mite and later Dickson pioneered this area of research. In recent years, interests
in permutation polynomials have significantly increased because of their poten-
tial applications in public key cryptosystems ([12],[13],[14]), RC6 block ciphers
([21], [22]), combinatorial designs like de Bruijn sequences ([6]), Tuscan-k arrays
([8]), and Costas arrays ([5], [11]), among many others. Permutation polynomials
are also used in coding theory, for instance, permutation codes in power com-
munications ([7]), and interleavers in Turbo codes ([26]) etc. In some of these
applications, the study of permutation polynomials over finite fields has also
been extended to the study of permutation polynomials over finite rings and
other algebraic structures. For more background material on permutation poly-
nomials we refer to Chap. 7 of [18]. For a detailed survey of open questions and
recent results see [9], [15], [16], and [19].

Every polynomial P(z) over F, such that P(0) = 0 has the form z" f(2*) with
r > 0 and some positive integer s | ¢ — 1. Here we are interested in permutation
behavior of polynomials P(z) = z" f(x®) over finite field F,, where f(z) is an
arbitrary polynomial of degree e > 0, 0 < r < ¢—1, and ¢ — 1 = Is for
some positive integers [ and s. In Sect. 2, we introduce the notion of r-th order
cyclotomic mappings fj. 4, ... a,_, of index [ and reveal a simple and very useful
connection between polynomials of the form z” f(x®) and so-called r-th order
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cyclotomic mapping polynomials. That is, P(z) = 2" f(2°) = fi, a,...a,_,(T)
where A; = f(¢%) for 0 <4 <1 —1 and ( is a primitive [-th root of unity. This
provides us an easier way to study polynomials of the form z” f(x®). Indeed,
many different criteria of when these polynomials are permutation polynomials
are summarized in Theorem 1. Some new classes of permutation polynomials are
given to demonstrate the potential applications of these criteria. In particular,
in Sect. 3, we characterize permutation binomials of the form P(z) = z"(x°® +1)
over F, in terms of the generalized Lucas sequences of order 5t over F, as a
concrete application (Theorem 3). Earlier study in this direction can be found

in [1], [2] and [3].

2 Cyclotomic Mapping Permutation Polynomials

Let «y be a primitive element of IF,, ¢ — 1 = s for some positive integers | and s,
and the set of all nonzero I-th powers of F, be Co = {7% : j = 0,1,---,s — 1}.
Then Cp is a subgroup of F; of index I. The elements of the factor group F; /Co
are the cyclotomic cosets

Ci:=~'Cy, i=0,1,---,1-1.

For any integer r > 0 and any Ag, A1, -, Ai—1 € IF;, we define an r-th order cy-
clotomic mapping fi; 4, ... a,_, of indexl from Fy toitself by fi 4 .. 4, ,(0) =
0 and

Tho Ay, ar (@) = Aix"  ifz e, i=0,1,---,1-1.

Moreover, fj 4, . a,_, is called an r-th order cyclotomic mapping of the least
indez [ if the mapping can not be written as a cyclotomic mapping of any smaller
index. The polynomial f} 4, .. 4, ,(®) € Fy[z] of degree at most ¢ — 1 repre-
senting the cyclotomic mapping f}, 4, ... 4, , is called an r-th order cyclotomic
mapping polynomial. In particular, when r = 1, it is known as a cyclotomic
mapping polynomial (see [10] or [20]).

Let ( = ~® be a primitive I-th root of unity. Next we show that polyno-
mials of the form z” f(x*) and the r-th order cyclotomic mapping polynomials
fho Ay, () where A; = f(¢*) for 0 <@ <1—1 are the same.

Lemma 1. For any r > 0, " f(2°) = f}, a,.. a,_, (%) where A; = f(¢Y) for
0<i<Il—1.

Proof. For any x € C;, * = "% for some 0 < j < s — 1. Hence f(z*) =
‘s

S
F(H7%)°) = f(+**) = f(¢') = Ai. Therefore P(z) = 2" f(2°) = f}, a,,....4,_, (2)-
u|

This simple connection provides us some useful criteria of when polynomials
P(z) = z" f(z*) are permutation polynomials of F,. It is well known that if
P(z) = z" f(x*) is a permutation polynomial of I, then (r,s) = 1, where (r, s)
denotes the greatest common divisor of r and s. Otherwise, let (r,s) =d # 1,
then two distinct d-th roots of unity are mapped to the same element by P(z),



a contradiction. Moreover, we note that A; # 0 for all j = 0,---1 — 1 in any
permutation polynomial f3 4, .. 4,_, (%) since, otherwise, f} 4, .. a,_, () has
more than 1 zeros. Hence we assume that (r,s) =1and A; Z0for 0<i<[—1
without loss of generality.

We first recall the following Lemma from [4].

Lemma 2. Let ! | ¢ — 1 and &, &1,---,&—1 be some l-th roots of unity in Fy.
Then &y, &1, --,&—1 are all distinct if and only if

-1
Y g=0, foralle=1,---,1—1.

=0

Proof. For the sake of completeness, we include the proof from [4]. First note
that for an [-th root of unity £, we have

_ 0 if 1,
L&t g lz{lifgil.
Now fort =0, ---, 1 —1, let
h(z) = &,
7=0
We have
0if t # j,
ht(fj):{lifti;’.
Let

-1 -1 -1
h(@) = hi(x) :z+z< 5@‘1) .
t=0 0

j=1 \t=

We consider h as a function from p; to Fy. Since the degree of h(z) is less than
or equal to [ — 1, it is clear that &y,&1,---,&—1 are all distinct if and only if
h(z) = l. This implies the result. |

Theorem 1. Let p be prime and ¢ = p™, q — 1 = ls for some positive integers
I and s, v be a given primitive element of F, and ( = v° be a primitive [-th
root of unity. Assume P(z) = z"f(2°) = f}, a,.. a,_,(x) with (r,s) =1 and
A; = f(¢Y) #0 for 0 < i <1—1. Then the following are equivalent:

(a) P(x) = z" f(x®) is a permutation polynomial of Fy.

(b) fay Ay, a_, () s a permutation polynomial of I, .

(c) AiCir # Ay Cyy for any 0 < i <i' <1 —1.

(d) Indw(ﬁf,) Zr@' —i) (modl) for any 0 <i < i <1—1, where ind,(a) is
residue class b mod q — 1 such that a = .

(e) {Ao, A1y, -+, Ai_17E=D"Y is a system of distinct representatives of F; /Cy.




(f) {A§, AsC™,-- -,Af_lg“(’_l)’} = i, where y; is the set of all distinct I-th roots

of unity.
-1

(9) chriAgs:0forallc=1,._,7l_1‘
1=0

Proof. By Lemma 1, (a) and (b) are equivalent. Since C; = {y¥*i : j =
0,1,---,8 — 1}, for any two elements * # y € C;, we have z = v+ and
y = v+ for some 0 < j # j' < s —1 . Since (r,s) = 1, we obtain A;z" =
AyIratir 4 Ay = Ay HT Moreover, it is easy to prove that Cf = Cp and
more generally C! = C;, for any 0 < <! —1. Hence (b) and (c) are equivalent.

Because A;y" is a coset representative of 4;C;,, it is easy to see that (c),
(d), (), and (f) are equivalent. Finally, since all of A3, Aj¢",---, A7 ,¢"=I" are
I-th roots of unity, (f) means that A3, A3¢", -+, AZ (=D are all distinct. By
Lemma, 2, (f) is equivalent to (g). O

We note that the equivalence of (a) and (d) was first found in [24] and the
equivalence of (a) and (g) was first proved in [4]. In fact, P(z) = z" f(z®) is a PP
of F, if and only if (r,s) =1, A; = f(¢") #0 for all 0 < i <[ —1, and any one
of the conditions in Theorem 1 holds. From now on, permutation polynomials
P(z) = a"f(2*) = fh, ay,....a,_,(x) Where A; = f(¢*) for 0 < i <1 —1 are
called r-th order cyclotomic mapping permutation polynomials of index I. In the
following, we use Theorem 1 (e) to obtain the number of r-th order cyclotomic
mapping permutation polynomials of F, of index [ as in Theorem 2 [20]. The
second part is obtained by using Md&bius inversion formula of ) dli Qq4=F.

Corollary 1. Let p be prime, ¢ = p™, and l | ¢ — 1 for some positive integer l.
For each positive integer r such that (r,s) = 1, there are P, = l!(q;—l)’ distinct 7-
th order cyclotomic mapping permutation polynomials of Fy of index . Moreover,
the number Q; of r-th order cyclotomic mapping permutation polynomials of I,

of least index [ is
l qg—1 d
= - {——) d.
a= 2 #(a) (7))

(r,(g=1)/d))=1

Therefore there are l!(%)lcb(%) distinct permutation polynomials of the
form z" f(z®) of IF, in total, which was also obtained in [24] through a study of
the group structure of these permutation polynomials.

In the rest of this section, we will see some examples of permutation poly-
nomials of this form. It is well known that P(z) = z"t% is a permutation
polynomial of F, if and only if (r + es, ¢ — 1) = 1, which is equivalent to condi-
tions (r + es,s) = 1 and (r + es,l) = 1. Obviously, (r + es,s) = 1 is the same
as (r,s) = 1. And the condition (r + es,l) = 1 is equivalent to the conditions
stated in Theorem 1 for f(z) = z°.

For | = 3 | ¢ —1 and an integer s = %, by Theorem 1, z" f(z®) is a
permutation polynomial of F, if and only if (r,s) = 1 and {A§, A507, A560%"} =



us = {1,0,0%} where > = 1 and A; = f(#%) for i = 0,1,2. The condition
{Ag, A567, A56°"} = {1,6,6%} is equivalent to A§ # AJO™, A # A560%", A50" #
A36°". However, in some cases, we always have A3 = 1. Next we construct some
new classes of permutation polynomials of this type.

Theorem 2. Let p be prime, ¢ = p™, and q—1 = 3s for some positive integer s.
Assume f(z) = az’+br+c (mod z3—1) such that a®> +b*>+c?—ab—ac—bc = 1.
Then P(z) = z" f(z®) is a permutation polynomial of B, if and only if (r,s) =1,
A§ =1 and Aj0" # A560%" where 62 =1 and A; = f(6%) for i =0,1,2.

Proof. If a®> + b¥> + ¢ —ab — ac — bec = 1, then A1 Ay = f(0)f(6?) = 1. If
P(z) is a PP, then che]Fz P(z) = —1 implies that A§ = 1. Hence P(z) =
2" f(z®) is a permutation polynomial of F, if and only if (r,s) =1, Aj =1 and
{A507, A56°"} = {0,62}. Since A§ = 1, we note that {4567, A56%"} = {0,6?} is
also equivalent to A" # A30%". Indeed, A§ = (A567)(A456%") = 1 implies that
either A{0™ = A50%" =1 or {A507, A56%"} = {6,6°}. O

Corollary 2. Let p be prime, ¢ = p™, and ¢ — 1 = 3s for some positive integer
s. Assume that f(z) = ax® +br+a (mod x® —1) such that (a —b)?> = 1. Then
2" f(z®) is a permutation polynomial of Fy if and only if (r,s) =1, (2a+b)° =1
and (r +s,3) =1.

Proof. Since f(z) = az® + br +a (mod 2° — 1) and 6% = 1, Ay = f(6?) =
0f(#) = 6A,. Hence A36" # A56%" reduces to 87+ # 1, which is equivalent to
(r +s,3) = 1. The rest follows from Theorem 2 and Ag = f(1) = 2a + b. m|

3 Permutation Binomials and Generalized Lucas
Sequences

In this section, we explain how permutation binomials and generalzied Lucas
sequences are closely related as a result of Theorem 1. Again, we let p be prime,
qg =p™, g — 1 = s for some positive integers [ and s, and { be a primitive [-th
root of unity. Here we consider permutation polynomials over F, of the form
P(z) = z"(z® + 1) with (e,!) = 1. That is, P(z) = z" f(2®) where f(z) =z°+1
and (e,l) = 1. We note that the case of f(z) = z° + b with an [-th root of unity
b is similar. In this case, p is odd. Otherwise, P(0) = P(1) = 0. Moreover, we
must have (¢* # —1 for i = 0,---,1 — 1. Hence [ must be odd. Then s must
be even. In fact, without loss of generality, we can assume [ > 3 from now on.
Moreover, since I | ¢ — 1 and both p and [ are odd, there exists n € F, such that
n? = (. Hence ) is a primitive 2I-th root of unity in F,.
We define the sequence {a,}52 4 by
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The sequence {a,}52, is then called generalized Lucas sequence of order ‘5t
because {an}52q = {L,}32, when I = 5, where the Lucas sequence {L,,}32, is
an integer sequence satisfying the recurrence relation L, 12— Ly4+1 — L, = 0 and
L0=2andL1=1.

For any integer n > 1 and a € F,, the Dickson polynomial of the first kind

Dy (z,a) € F,[z] of degree n with parameter a is defined by

& i i, n—2i
D,(z,a) = Z —\ (—a)'z" 7.

=0

Similarly, the Dickson polynomial of the second kind E,(x,a) € F,[z] of degree
n with parameter a is defined by

En(2,0) = % (” - ) (—a)iz"2,

=0

For a # 0, we write z = y + a/y with y an indeterminate. Then the Dickson
polynomials can often be rewritten as

yn—i-l _ an—i—l/yn—i-l
y—aly

In the case a = 1, we denote Dickson polynomials of degree n by Dj,(x)
and E,(z) respectively. It is well known that Dickson polynomials are closely
related to the Chebyshev polynomials by the connections D, (2z) = 2T, (z) and
E,(2z) = Up(z), where T,,(z) and U, () are Chebyshev polynomials of degree n,
of the first kind and the second kind respectively. More information on Dickson
polynomials can be found in [17].

We consider the Dickson polynomial E;_1(z) of the second kind of degree
 — 1 with parameter a = 1. It is well known that n + 1~ with 1 < ¢ <[ —1 are
all the roots of F;_1(x) where 7 is a primitive 2I-th root of unity. Let

a
En(waa) =E, (y + §7a> =

-1
Eif{(z) = |] @~ +n7%).

t=1
odd t

&

Then the characteristic polynomial of the sequence {a, }%2, is Ef%(z). Using
the factorization of U;_1(z) over Z (Theorem 2 in [23]) and the fact E;_1(2z) =
Ui—1(z), it is obvious to conclude that E?%{(z) is also a polynomial with integer
coefficients (thus over F,). It then follows from Waring’s formula (Theorem 1.76
in [18]) that {a,}52, is an integer sequence and thus a sequence over F,. For
more information on the sequence {a,}22,, one can also refer [1], [2], and [3].



Theorem 3. Let p be odd prime and ¢ = p™. Assume that I, s,r,e are positive
integers such that | is odd, ¢ — 1 =ls, and (e,l) = 1. Then P(z) = z"(x°° + 1)
is a permutation polynomial of Fy if and only if

(1) (r;5) =1;

(i) 2° =1 (mod p);
(iii) 2r +es Z0 (mod l);

cj/2 . .
() Z < (cg k) (=1)*acsicj—or = —1inTF, forallc=1,---,1—1, where
k=0

— cj— k k
{an}2, is the generalized Lucas sequence of order ‘51 and 2?1y +5=j
(mod 21).

Proof. Let P(z) be a PP of F,. It is well-known that (r,s) = 1. Moreover,

-1 8
H P(z) = —1 implies that H (z°° + 1) = 1. Then <H(Ci + 1)) = 1. Since

z€F; z€F; =0
-1 -1 _
lisodd, [J(¢"+1) = J](1 - (=¢")) = 1 — (—1) = 2. Hence 2° =1 (mod p) and
=0 =0
(if) holds.
Assume that 2r + es = 0 (mod [). Since s is even, 2r + es = 0 (mod 21). By
-1
Theorem 1 (g), we have ZCC”A;?S =Qforallc=1,---,1—1, where 4; = (' +1.
i=0

Since I | ¢ —1 and [ is odd, we can find 5 € F, such that 7 = (. Thus we obtain

-1
zn(2r+es)ci(nei + ,r’—ez')cs =0, fO’I‘ alle=1,---,1—1. (1)
=0

It follows from 2r + es = 0 (mod 21) that

-1
Z(nei +57)* =0, forallc=1,---,1—1.

1=0

Since each (7% 4+ n~°)?% is an I-th root of unity, by Lemma 2, (n° 4+ n~¢)%, i =
0,---,1 — 1, are all distinct. However, since s is even, we have (¢ 4 n~¢)* =
(ne=9 4 =e=9)5 3 contradiction. Hence 2r + es Z 0 (mod [) and (iii) holds.

Using (e,1) = 1, we have e?®™ =1 (mod ) where ¢ is the Euler’s totient
function. Then we can rewrite (1) as

(I-1)/2
9cs 4 Z (nc(2e¢‘(l)—1r+s)t+nfc(2e¢(1)—1r+s)t)(nt+,’,}7t)cs — 0’ fOT all ¢ = 1’ . 1—1.
t=1

(2)
Let 2e?~1r + s =j (mod 21). Then it yields that n®* + 9=t = Dy;(n +
n~t) where D.;(nt +n~t) is the Dickson polynomial of the first kind of degree



cj/? . .

—k ,

cj. That is, Dgj(nt +n7t) = Z cgc—ik (CJ . )(—l)k(nt +n7t)=2k_ Because
k=0

both s and j are even, we obtain

(1-1)/2

9cs + Z (nC(Qed’(l)_lr—i-s)t + n—C(Qed’(l)_lr—f-s)t)( t

n + n—t)cs

(1=1)/2cj/2

=1+ > >

=1 k= ocj_

(1-1)/2cj/2 Cj cj—k .
=1+ 3 Z—k< & )(—1)k(nt+nt)”Qk(nt+nt)“

o G [ R U

cj/2 i i
—14 ]Z (TR C1)eaye
8 . k k cs+cj—2k

Hence (iv) follows. Conversely, assume that (i)-(iv) are satisfied, then it is
straightforward to show that P(z) = 2" (2°® + 1) is a permutation polynomial of
F, by Theorem 1. O

We can also rewrite the above theorem in the following way.

Corollary 3. Let ¢ = p™, p is an odd prime, and g—1 = ls for positive integers
l and s. Assume that p, I, v, s satisfies

lis odd,(e,l) =1,(r,s) =1,2° =1 (mod p),2r +es Z0 (mod ).

Then P(x) = z"(z°° + 1) is a permutation polynomial of Fy if and only if

Je
Ztgljc)acs+n =—-1lin ]F;DJ fOT all ¢ = 17'“7l_1’

where {a,}5%, is the generalized Lucas sequence of order 5, 2901y 4 5 =

j (mod 2l), j. = ¢j mod 2l and <) is the coefficient of o™ in the Dickson
polynomial of the first kind of degree j..

Furthermore, if (2r + es,1) = 1, then we let j' be the inverse of 2e¢()~1r 4 s
mod [. Then (2) can be rewritten as

(1-1)/2
200 3 O ) =0, Soralld = 1,121 (3

Using (3) and similar arguments as before, we can improve the previous result
by using Dickson polynomials of the first kind of smaller degrees. We note that



if ¢’ is even, then the coefficient t%cl) of ™ in the Dickson polynomial of the first

kind of degree ¢ is always 0 for all odd n. Similarly, if ¢’ is odd, then t(ncl) =
for all even n.

Corollary 4. Let g = p™, p is odd prime, and q — 1 = s for positive integers |
and s. Assume that p, 1, r, s satisfies

lis odd, (e,l)=1,(r,s) =1,2°=1 (mod p), (2r +es,l) = 1.

Then P(x) = z"(x°° + 1) is a permutation polynomial of Fy if and only if

Cl
S 8 a0 gpn = (1) in By, forall ¢ =1,---,1—1,
n=0

where {a, 152, is the generalized Lucas sequence of order l_Tl, §'(2e?D-1r45) =

1 (mod 1), £f') is the coefficient of ™ in the Dickson polynomial of the first
kind of degree c'.

In particular, when [ is a small prime (e.g. I = 3,5,7), the sequences {a,}
that correspond to permutation binomials can be further described explicitly by
using the above conditions (see [2], [25]).
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