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Abstract

We give an explicit formula of the inverse polynomial of a permutation polynomial
of the form xrf(xs) over a finite field Fq where s | q − 1. This generalizes results in
[6] where s = 1 or f = g

q−1
s were considered respectively. We also apply our result

to several interesting classes of permutation polynomials.
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1 Introduction

Let p be prime, q = pm, and Fq be a finite field of order q. Let P (x) be a permu-
tation polynomial (PP) over Fq and Q(x) be the compositional inverse polynomial of
P (x). By the modulo reduction xq − x, we only need to consider polynomials of de-
gree less than or equal to q − 1. Because a permutation polynomial can not have degree
q − 1, we let P (x) = a0 + a1x + · · · + aq−2x

q−2 be a permutation polynomial of Fq and
Q(x) = b0 + b1x + · · ·+ bq−2x

q−2 be the inverse polynomial of P (x) modulo xq − x. In [5],
G. L. Mullen posed the problem of computing the coefficients of the inverse polynomial
of a permutation polynomial efficiently (Problem 10). Recently Muratović-Ribić [6] char-
acterized all the coefficients of the inverse polynomial of a permutation polynomial of the
form xrf(xs)(q−1)/s as follows:

Theorem 1.1 (Muratović-Ribić) Let P (x) = xrf(xs)
q−1

s ∈ Fq[x] where r ≥ 1 is an
integer with gcd(r, q − 1) = 1, s is a divisor of q − 1 and f(x) ∈ Fq[x] is a polynomial
without roots in Fq. Denote by Q(x) = b0 + b1x+ · · ·+ bq−2x

q−2 the inverse of permutation
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polynomial P (x) modulo xq − x. Let k0 be the least positive integer for which there exists
a positive integer l0 such that l0s = k0r + 1 and

f(xs)
q−1

s
k0 ≡

(q−1)/s∑
i=0

dix
is (mod xq − x).

Then bn 6= 0 only if s | rn− 1. Moreover, if bn 6= 0, then the following holds:
(i) If rn 6≡ 1 (mod q − 1) and i ≡ rn−1

s
(mod q−1

s
) then bn = di.

(ii) If rn ≡ 1 (mod q − 1) then bn = d0 + d(q−1)/s.

The method used in the proof of Theorem 1.1 is based on Equation (3) in [6] which applies
to more general polynomial P (x), for example, P (x) = xrf(xs) where s = 1.

It is well-known that any nonconstant polynomial h(x) ∈ Fq[x] can be written as axrf(xs)+
b where a 6= 0 and s | q − 1. To find the inverse of h(x), it is enough to find the inverse
of permutation polynomial xrf(xs). We refer to [4] or [8] for some general characteriza-
tion of permutation polynomials P (x) = xrf(xs). For s = 1, an explicit formula of the
inverse of permutation polynomial xrf(x) is obtained directly from Equation (3) in [6]. In
this paper, we use the similar method as in [6] to give an explicit formula of the inverse
polynomial of a permutation polynomial of the form xrf(xs) over a finite field Fq for any
s | q−1 (Theorem 2.1). We also apply Theorem 2.1 to several interesting classes of permu-
tation polynomials considered in [4]. These results (Corollaries 2.3, 2.4) are presented in
Section 2. Finally we explore the connection (Theorem 3.1) between inverse polynomials
of permutation binomials of the form xr(xes + 1) over Fq and so-called generalized Lucas
sequences over Fp. Some examples of inverse polynomials of permutation binomials are
also provided in Section 3.

2 General results

Let us assume that P (x) = xrf(xs) is a permutation polynomial of Fq. It is well known
that if P (x) = xrf(xs) is a permutation polynomial of Fq then we must have (r, s) = 1.
Hence the inverse of r modulo s exists and we denote it by r̄ = r−1 mod s. The notation
a = b mod c means that a is an integer such that 0 ≤ a < c and a ≡ b (mod c). We will
use this notation and the fact r̄ = r−1 mod s frequently later on.

First we show that the inverse polynomial Q(x) of P (x) = xrf(xs) has at most ` := q−1
s

nonzero coefficients and give the explicit formula to compute these coefficients. We assume
that ` ≥ 2 in this paper since ` = 1 is the trivial case.

Theorem 2.1 Let P (x) = xrf(xs) ∈ Fq[x] be a permutation polynomial of Fq where
r ≥ 1, s = q−1

`
, ` ≥ 2 is a divisor of q − 1. Denote by Q(x) = b0 + b1x + · · · + bq−2x

q−2

the inverse polynomial of P (x) modulo xq − x. Then the following holds.

(i) If bn 6= 0, then s | (rn − 1). In particular, there are at most ` such nonzero bn’s such
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that 0 ≤ n ≤ q − 2 and n ≡ r−1 (mod s). That is, n = is + r̄ where i = 0, · · · , `− 1 and
r̄ = r−1 mod s.

(ii) Let ā ≡ rr̄−1
s

(mod `). Then

bis+r̄ =
1

`

`−1∑
t=0

ζ−(ir+ā)tf(ζt)q−1−r̄−is, i = 0, · · · , `− 1,

where ζ is a primitive `-th root of unity.

(iii) For each i = 0, · · · , ` − 1, let f(xs)q−1−r̄−is ≡ ∑`
j=0 di,jx

js (mod xq − x) and mi =
ir + ā mod `. Then bis+r̄ = di,mi

if mi 6= 0 and bis+r̄ = di,0 + di,` if mi = 0.

Proof. By Equation (3) in [6],

bn = −
∑
x∈Fq

xP (x)q−1−n = −
∑
x∈Fq

x
q−1∑
i=0

cix
i = cq−2,

where P (x)q−1−n (mod xq − x) = c0 + c1x + · · · + cq−1x
q−1. If bn is nonzero, then the

coefficient of xq−2 in the expansion of P (x)q−1−n is nonzero. Hence there exists some j
such that js + r(q − 1) − rn ≡ q − 2 (mod q − 1) and thus js ≡ rn − 1 (mod q − 1).
Therefore, s | (rn − 1). That is, rn ≡ 1 (mod s). Because (r, s) = 1, we have n ≡ r−1

(mod s). Therefore there are at most ` nonzero coefficients in the inverse polynomial
Q(x) corresponding to n ≡ r−1 (mod s). Hence n = is + r̄ for i = 0, · · · , ` − 1 where
r̄ = r−1 mod s. It is therefore straightforward to obtain bis+r̄ = −∑s∈Fq

xP (x)q−1−is−r̄ =
1
`

∑`−1
t=0 ζ−(ir+ā)tf(ζt)q−1−r̄−is.

Finally, q − 1 = `s implies that −s and 1
`

are the same in Fq. Since mi = ir + ā mod `,
we have

1

`

`−1∑
t=0

ζ−(ir+ā)tf(ζt)q−1−r̄−is =−s
`−1∑
t=0

ζ−(ir+ā)tf(ζt)q−1−r̄−is

=−
∑
x∈Fq

xq−1−misf(xs)q−1−r̄−is.

However, the last term is equal to di,mi
if mi 6= 0 and is equal to di,0 + di,` otherwise. 2

Remark: For positive integers n, `, a, the lacunary sum for the coefficient C(n, j, k) of xj

in the polynomial expansion of f(x)n = (f0 + f1x + f2x
2 + ... + fkx

k)n is defined as

S(n, `, a, k + 1) =
nk∑
j=0

j≡a (mod `)

C(n, j, k),
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where

C(n, j, k) =
∑

n0 + n1 + · · · + nk = n

n1 + 2n2 + · · · + knk = j

n!

n0! n1! · · ·nk!
fn0

0 fn1
1 · · · fnk

k .

Using
nk∑
j=0

j≡a(mod `)

C(n, j, k) =
1

`

`−1∑
t=0

ζ−at
nk∑
j=0

C(n, j, k)ζjt =
1

`

`−1∑
t=0

ζ−atf(ζt)n, (1)

we obtain that

S(n, `, a, k + 1) =
1

`

`−1∑
t=0

ζ−atf(ζt)n. (2)

Hence (ii) of Theorem 2.1 can also be written as

bis+r̄ = S(q − 1− r̄ − is, `, ir + ā, k + 1), i = 0, · · · , `− 1, (3)

From the above theorem, we need to compute ` different powers of f(xs) in order to find
all the coefficients of the inverse polynomial of P (x). We note that it is not efficient to find
all the coefficients of the inverse polynomial if s = 1. However, if s is big (i.e., ` is small),
it is quite efficient to compute the inverse polynomial by using the above theorem. For
example, for odd q, it is well known that P (x) = xrf(x(q−1)/2) is a permutation polynomial

of Fq if and only if (r, (q−1)/2) = 1 and (f(−1)f(1))
q−1
2 = (−1)r+1. The next result gives

the explicit format of the inverse polynomial of such permutation polynomial by applying
Theorem 2.1.

Corollary 2.2 For odd q and s = q−1
2

, the inverse polynomial Q(x) of the permuta-
tion polynomial P (x) = xrf(xs) is given by br̄x

r̄ + bs+r̄x
s+r̄ with br̄ = 1

2
(f(1)q−1−r̄ +

(−1)āf(−1)q−1−r̄) and bs+r̄ = 1
2
(f(1)s−r̄+(−1)ā′f(−1)s−r̄), where r̄ = r−1 mod s, ā ≡ rr̄−1

s

(mod 2), ā′ ≡ ā + r (mod 2).

Next we show in certain cases, we can also simplify this process by computing only one
fixed power of each f(xs) even for large `. The following theorem is one of such examples
which also generalizes Theorem 1.1. Indeed, if f(x) = g(x)` then f(x)s = 1.

Corollary 2.3 Let q − 1 = `s and P (x) = xrf(xs) ∈ Fq[x] be a permutation polynomial
of Fq where r ≥ 1 and s = q−1

`
. Denote by Q(x) = b0 + b1x + · · · + bq−2x

q−2 its inverse
polynomial modulo xq − x. Assume that f(ζt)s = 1 for a primitive `-th root of unity ζ
and any t = 0, · · · , `− 1. Let r̄ = r−1 mod s and ā ≡ rr̄−1

s
(mod `). Then, for all possible

nonzero coefficients bn corresponding to n = is + r̄ where i = 0, · · · , `− 1, we have

bis+r̄ =
1

`

`−1∑
t=0

ζ−(ir+ā)tf(ζt)q−1−r̄.

In particular, assume f(xs)q−1−r̄ ≡ ∑`
j=0 djx

js (mod xq−x) and mi = ir+ ā mod `. Then
bn = dmi

if mi 6= 0 and bn = d0 + d` if mi = 0.
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Proof. The first part follows immediately from Theorem 2.1 and f(ζt)s = 1. Be-
cause q − 1 = `s, −s and 1

`
are the same in Fq. Hence 1

`

∑`−1
t=0 ζ−(ir+ā)tf(ζt)q−1−r̄ =

−s
∑`−1

t=0 ζ−(ir+ā)tf(ζt)q−1−r̄ = −∑x∈Fq
xq−1−(ir+ā)sf(xs)q−1−r̄. However, the last term is

equal to dmi
if mi 6= 0 and is equal to d0 + d` otherwise. Hence the proof is complete. 2

By using a similar proof, we obtain

Corollary 2.4 Let q − 1 = `s and P (x) = xrf(xs) ∈ Fq[x] be a permutation polynomial
of Fq where r ≥ 1 and s = q−1

`
. Denote by Q(x) = b0 + b1x + · · · + bq−2x

q−2 its inverse
polynomial modulo xq−x. Let r̄ = r−1 mod s and ā ≡ rr̄−1

s
(mod `). Assume that f(ζt)s =

ζkt for a primitive `-th root of unity ζ and any t = 0, · · · , ` − 1. Then, for all possible
nonzero coefficients bn corresponding to n = is + r̄ where i = 0, · · · , `− 1, we have

bis+r̄ =
1

`

`−1∑
t=0

ζ−(ir+ā+ik)tf(ζt)q−1−r̄.

In particular, assume f(xs)q−1−r̄ ≡ ∑`
j=0 djx

js (mod xq − x) and mi = ir + ā + ik mod `.
Then bn = dmi

if mi 6= 0 and bn = d0 + d` if mi = 0.

We refer the readers to [4] for several interesting classes of permutation polynomials which
satisfy the assumptions of Corollary 2.3 and Corollary 2.4.

3 Binomials and sequences

In this section, we consider the inverse polynomial of a permutation binomial f(x) =
xr(xes + 1) over Fq where q = pm, q− 1 = `s for some positive integers `, s and (e, `) = 1.
We note that the characterization of permutation polynomials of the form xr(xes+1) have
been studied by Akbary and the author in [2], [3] and [9]. In particular, if f(x) = xr(xes+1)
is a permutation polynomial over Fq then p must be odd. Otherwise, P (0) = P (1) = 0.
Since ` | q − 1, let ζ ∈ Fq be a primitive `-th root of unity. Moreover, we must have
ζei 6= −1 for i = 0, · · · , ` − 1. Hence ` must be odd and then s must be even. So we can
assume that ` ≥ 3 as ` = 1 is trivial. Because both p and ` are odd, there exists η ∈ Fq

such that η2 = ζ. Hence η is a primitive 2`-th root of unity in Fq.

We define the sequence {an}∞n=0 by

an =

`−1
2∑

t=1

(
(−1)t+1(ηt + η−t)

)n
=

`−1∑
t=1

t odd

(
ηt + η−t

)n
.

The sequence {an}∞n=0 is called generalized Lucas sequence of order `−1
2

because {an}∞n=0 =
{Ln}∞n=0 when ` = 5, where the sequence {Ln}∞n=0 is the so-called Lucas sequence satisfying
the recurrence relation Ln+2 − Ln+1 − Ln = 0 and L0 = 2 and L1 = 1.
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For any integer n ≥ 1, we recall that the Dickson polynomial of the first kind Dn(x) ∈ Fq[x]
of degree n is defined by

Dn(x) =
bn/2c∑
i=0

n

n− i

(
n− i

i

)
(−1)ixn−2i.

Similarly, the Dickson polynomial of the second kind En(x) ∈ Fq[x] of degree n is defined
by

En(x) =
bn/2c∑
i=0

(
n− i

i

)
(−1)ixn−2i.

We consider the Dickson polynomial E`−1(x) of the second kind with degree ` − 1. It is
well known that ηt + η−t with 1 ≤ t ≤ ` − 1 are all the roots of E`−1(x) where η is a
primitive 2`-th root of unity. Let

Eodd
`−1(x) =

`−1∏
t=1

odd t

(x− (ηt + η−t)).

Then the characteristic polynomial of the sequence {an}∞n=0 is Eodd
`−1(x) and {an}∞n=0 is a

sequence over the prime field Fp.

Now we prove the following result which gives the explicit format of the inverse polyno-
mials of permutation binomials of the form xr(xe(q−1)/` +1) in terms of generalized Lucas
sequence of order `−1

2
.

Theorem 3.1 Let p be odd prime and q = pm. Assume that `, s, r, e are positive integers
such that ` ≥ 3 is odd, q − 1 = `s, and (e, `) = 1. If P (x) = xr(xes + 1) is a permutation
polynomial of Fq and Q(x) = b0 + b1x + · · ·+ bq−2x

q−2 is the inverse polynomial of P (x)
modulo xq − x, then the following holds.

(i) If bn 6= 0, then n ≡ r−1 (mod s). Hence Q(x) has at most ` nonzero coefficients bn

corresponding to n = is + r̄ where r̄ = r−1 mod s and i = 0, · · · , `− 1.

(ii)

bn =
1

`
(2q−1−n +

bun/2c∑
i=0

t
(un)
i aq−1−n+un−2i), (4)

where n̄ = rn−1
s

mod `, un = 2n̄eφ(`)−1 + n mod 2`, t
(un)
i = un

un−i

(
un−i

i

)
(−1)i, and {an}∞n=0

is the generalized Lucas sequence of order `−1
2

.

Proof. By Theorem 2.1, Q(x) has at most ` nonzero coefficients bn with n ≡ r−1

(mod s) and 1 ≤ n ≤ q − 2. Then n = is + r̄ where r̄ = r−1 mod s and i = 0, · · · , ` − 1.
Moreover, n̄ ≡ rn−1

s
≡ ir + ā (mod `) where ā ≡ rr̄−1

s
(mod `).

Let ξ = ζe. Since (e, `) = 1, ξ is also a primitive `-th root of unity. Moreover, because
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2` | q − 1, then there exists η ∈ Fq such that η2 = ξ. Because ζ−1 is also a primitive `-th
root of unity, by Theorem 2.1, we obtain

bn =
1

`

`−1∑
t=0

ζ n̄tf(ζ−t)q−1−n

=
1

`

`−1∑
t=0

ζ n̄t(ζ−et + 1)q−1−n

=
1

`

`−1∑
t=0

ξn̄eφ(`)−1t(ξ−t + 1)q−1−n

=
1

`
(2q−1−n +

`−1∑
t=1

η2n̄eφ(`)−1t−(q−1−n)t(η−t + ηt)q−1−n)

=
1

`
(2q−1−n +

`−1
2∑

t=1

(η(2n̄eφ(`)−1+n)t + η−(2n̄eφ(`)−1+n)t)(η−t + ηt)q−1−n),

where the last identity holds because q, n are odd and η` = −1. Hence the result follows
from the definition of {an}∞n=0 and the fact

ηunt + η−unt = Dun(ηt + η−t) =
bun/2c∑

i=0

un

un − i

(
un − i

i

)
(−1)i(ηt + η−t)un−2i.

This completes the proof. 2

We note that the equation (4) can also be written as

bq−1−n =
1

`
(2n +

un∑
j=0

c
(un)
j an+j), (5)

where c
(un)
j is the coefficient of xj in the expansion of the Dickson polynomial of the first

kind Dun(x) of degree un = 2n̂eφ(`)−1 +(q− 1−n) (mod 2`) and n̂ = (q−1−n)r−1
s

(mod `).
Moreover, all the coefficients of the inverse polynomial Q(x) in Theorem 3.1 are in Fp.

Because the coefficients t
(un)
i and the general term of generalized Lucas sequence {an}∞n=0

over Fp are quite easy to find, one can generate many examples of inverse polynomials
by applying Theorem 3.1. For example, if ` = 3 and s = (q − 1)/3, then {an}∞n=0 is
a constant sequence 1, 1, · · · . Hence bn = 1

3
(2−r̄ + Dun(1)) because P (x) = xr(xes + 1)

is a permutation polynomial over Fq if and only if (r, s) = 1, 2s ≡ 1 (mod p), and
(2r + es, `) = 1. In the case ` = 5 and s = (q− 1)/5, the corresponding sequence {an}∞n=0

is the Lucas sequence. In this case, P (x) = xr(xes + 1) is a permutation polynomial over
Fq if and only if (r, s) = 1, 2s ≡ 1 (mod p), (2r + es, `) = 1, as = 2. In particular,
{an}∞n=0 is periodic with a period s. Hence we can use s-periodicity of {an}∞n=0 and 2s ≡ 1
(mod p) to simplify the computation of equation (4) or equation (5). We observe that
explicit formulas of inverse polynomials of permutation binomials for the cases ` = 3, 5
have also been obtained recently by Muratović-Ribić in [7] without using sequences. The
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formulas in [7] are similar to Equation (3) for ` = 3, 5. When ` ≥ 7, generalized Lucas
sequences were introduced so that we can evaluate the lacunary sums. Here we give some
examples of inverse polynomials of permutation binomials with ` ≥ 7.

Permutation binomials xr(x
e(q−1)

7 + 1) and inverse polynomials over F132

PP Inverse of PP

x + x25 7x + 7x25 + 6x49 + 7x73 + 6x97 + 7x121 + 6x145

x5 + x29 2x5 + 9x29 + 7x53 + 8x77 + 8x101 + 7x125 + 9x149

x7 + x31 5x7 + 5x55 + 10x79 + x103 + x127 + 10x151

x11 + x35 x59 + x131

x13 + x37 7x13 + 6x37 + 7x61 + 7x85 + 6x109 + 6x133 + 7x157

x17 + x41 9x17 + 9x41 + 8x65 + 7x89 + 2x113 + 7x137 + 8x161

x19 + x43 10x43 + x67 + 5x91 + 5x115 + x139 + 10x163

· · · · · ·

Permutation binomials xr(x
e(q−1)

9 + 1) and inverse polynomials over F172

PP Inverse of PP

x + x33 9x + 9x33 + 8x65 + 9x97 + 8x129 + 9x161 + 8x193 + 9x225 + 8x257

x3 + x35 x11 + 5x43 + 10x75 + 10x107 + 5x139 + x171

x7 + x39 16x23 + 9x55 + 7x87 + 2x119 + 7x151 + 9x183 + 16x215 + 2x247 + 2x279

x9 + x41 4x25 + x57 + 7x89 + 7x153 + x185 + 4x217 + x249 + x281

x13 + x45 5x5 + 12x37 + 3x69 + 7x101 + 5x133 + 5x165 + 7x197 + 3x229 + 12x261

x15 + x47 x47 + x111

x19 + x51 x27 + 5x59 + 10x91 + 10x123 + 5x155 + x187

· · · · · ·
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[7] A. Muratović-Ribić, Inverse of Some Classes of Permutation Binomials, Journal of Discrete
and Applicable Mathematics, accepted for publication.

[8] D. Wan, R. Lidl, Permutation polynomials of the form xrf(x(q−1)/d) and their group
structure, Monatsh. Math. 112 (1991), 149–163.

[9] Q. Wang, Cyclotomic mapping permutation polynomials, Sequences, Subsequences, and
Consequences 2007 (Los Angeles), Lecture Notes in Computer Science 4893, pp. 119-128.

9


