
274 Handbook of Finite Fields

two isotopism classes, so that there are sound reasons for considering the strong isotopism
problem on planar DO polynomials instead of the more difficult isotopism problem.

9.5.28 Theorem (Strong isotopy and planar equivalence) [722] Let f, g ∈ Fq[x] be planar DO
polynomials with corresponding commutative presemifields Sf and Sg. There is a strong
isotopism (N,N,L) between Sf and Sg if and only if f(N(x)) ≡ L(g(x)) mod (xq − x).

See Also

§9.2 For APN functions that are closely related to planar functions.
§9.3 For bent functions that are closely related to planar functions.
§14.3 For affine and projective planes; the seminal paper [802] clearly outlines the

main properties of the planes constructed via planar functions.
§14.6 Discusses difference sets. Ding and Yuan [868] used the examples of

Proposition 9.5.11 Part 3 to disprove a long-standing conjecture on skew
Hadamard difference sets; see also [865, 2953].

[271] Construct further classes of planar DO polynomials; see also [272], [446], [447],
[2368], [3036], [3037]. The problem of planar (in)equivalence between these
constructions is not completely resolved at the time of writing. An incredible
new class, which combines Albert’s twisted fields with Dickson’s semifields,
was very recently discovered by Pott and Zhou [2410].

[722] Classifies planar DO polynomials over fields of order p2 and p3. This does not
constitute a classification of planar polynomials over fields of these orders.

[723] Applies Theorem 9.4.22 to commutative presemifields of odd order to restrict
both the form of the DO polynomials and the isotopisms that need to be
considered; see also [1786]. A promising alternative approach (which applies
also to APN functions, see Section 9.2) is outlined in [272], while a third
approach was given recently in [2954].

[1496] For results on possible forms of planar functions not defined over finite fields.
[1786] Gives specific forms for planar DO polynomials corresponding to the Dickson

semifields [841], the Cohen-Ganley semifields [683], the Ganley semifields [1164],
and the Penttila-Williams semifield [2368].

References Cited: [261, 271, 272, 324, 446, 447, 683, 720, 722, 723, 725, 726, 728, 781, 802,
805, 841, 865, 868, 1164, 1278, 1495, 1496, 1599, 1746, 1786, 1805, 2368, 2378, 2410, 2465,
2953, 2954, 3036, 3037]
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9.6.1 Basics

9.6.1 Definition Let n be a positive integer. For a ∈ Fq, we define the n-th Dickson polynomial
of the first kind Dn(x, a) over Fq by

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i.

9.6.2 Theorem (Waring’s formula, [1927, Theorem 1.76]) Let σ1, . . . , σk be elementary symmetric
polynomials in the variables x1, . . . , xk over a ring R and sn = sn(x1, . . . , xk) = xn1 + · · ·+
xnk ∈ R[x1, . . . , xk] for n ≥ 1. Then we have

sn =
∑

(−1)i2+i4+i6+··· (i1 + i2 + · · ·+ ik − 1)!n

i1!i2! · · · ik!
σi11 σ

i2
2 · · ·σikk ,

for n ≥ 1, where the summation is extended over all tuples (i1, i2, . . . , in) of nonnegative
integers with i1 + 2i2 + · · ·+ kik = n. The coefficients of the σi11 σ

i2
2 · · ·σikk are integers.

9.6.3 Theorem Dickson polynomials of the first kind are the unique monic polynomials satisfying
the functional equation

Dn

(
y +

a

y
, a

)
= yn +

an

yn
,

where a ∈ Fq and y ∈ Fq2 . Moreover, they satisfy the recurrence relation

Dn(x, a) = xDn−1(x, a)− aDn−2(x, a),

for n ≥ 2 with initial values D0(x, a) = 2 and D1(x, a) = x.

9.6.4 Remark The Dickson polynomial Dn(x, a) of the first kind satisfies a commutative type
of relation under composition. That is, Dmn(x, a) = Dm(Dn(x, a), an). Hence the set of
all Dickson polynomials Dn(x, a) of even degree over Fq are closed under composition if
and only if a = 0 or a = 1. In particular, if a = 0 or 1 then Dm(x, a) ◦ Dn(x, a) =
Dn(x, a) ◦ Dm(x, a). Moreover, the set of all Dickson polynomials Dn(x, a) of odd degree
over Fq is closed under composition if and only if a = 0, a = 1 or a = −1. See [1924, 1927]
for more details.

9.6.5 Definition For a ∈ Fq, we define the n-th Dickson polynomial of the second kind En(x, a)
over Fq by

En(x, a) =

bn/2c∑
i=0

(
n− i
i

)
(−a)ixn−2i.

9.6.6 Theorem Dickson polynomials of the second kind have a functional equation

En(x, a) = En

(
y +

a

y
, a

)
=
yn+1 − an+1/yn+1

y − a/y ,

for y 6= ±√a; for y = ±√a, we have En(2
√
a, a) = (n + 1)(

√
a)n and En(−2

√
a, a) =

(n+ 1)(−√a)n; here a ∈ Fq and y ∈ Fq2 . Moreover, they satisfy the recurrence relation

En(x, a) = xEn−1(x, a)− aEn−2(x, a),



276 Handbook of Finite Fields

for n ≥ 2 with initial values E0(x, a) = 1 and E1(x, a) = x.

9.6.7 Remark In the case a = 1, denote Dickson polynomials of degree n of the first and the
second kinds by Dn(x) and En(x), respectively. These Dickson polynomials are closely
related over the complex numbers to the Chebyshev polynomials through the connections
Dn(2x) = 2Tn(x) and En(2x) = Un(x), where Tn(x) and Un(x) are Chebyshev polynomials
of degree n of the first and the second kind, respectively. In recent years these polynomials
have received an extensive examination. The book [1924] is devoted to a survey of the
algebraic and number theoretic properties of Dickson polynomials.

9.6.8 Remark Suppose q is odd and a is a nonsquare in Fq. Then

(x+
√
a)n = rn(x) + sn(x)

√
a,

where

rn(x) =

bn/2c∑
i=0

(
n

2i

)
aixn−2i, sn(x) =

bn/2c∑
i=0

(
n

2i+ 1

)
aixn−2i−1.

The Rédei function is the rational function Rn(x) = rn(x)
sn(x) . It is shown in [1110] that

2rn(x) = Dn(2x, x2 − a).

9.6.9 Remark Permutation properties of Dickson polynomials are important; see Section 8.1. The
famous Schur conjecture postulating that every integral polynomial that is a permutation
polynomial for infinitely many primes is a composition of linear polynomials and Dickson
polynomials was proved by Fried [1103]. We refer readers to Section 9.7.

9.6.2 Factorization

9.6.10 Remark The factorization of the Dickson polynomials of the first kind over Fq was given
[620] and simplified in [264].

9.6.11 Theorem [264, 620] If q is even and a ∈ F∗q then Dn(x, a) is the product of squares of
irreducible polynomials over Fq which occur in cliques corresponding to the divisors d of
n, d > 1. Let kd be the least positive integer such that qkd ≡ ±1 (mod d). To each such d
there corresponds φ(d)/(2kd) irreducible factors of degree kd, each of which has the form

kd−1∏
i=0

(x−√a(ζq
i

+ ζ−q
i

))

where ζ is a d-th root of unity and φ is Euler’s totient function.

9.6.12 Theorem [264, 620] If q is odd and a ∈ F∗q then Dn(x, a) is the product of irreducible
polynomials over Fq which occur in cliques corresponding to the divisors d of n for which
n/d is odd. Let md is the least positive integer satisfying qmd ≡ ±1 (mod 4d). To each such
d there corresponds φ(4d)/(2Nd) irreducible factors of degree Nd, each of which has the
form

Nd−1∏
i=0

(x−
√
aqi(ζq

i

+ ζ−q
i

))

where ζ is a 4d-th root of unity and

Nd =

 md/2 if
√
a /∈ Fq,md ≡ 2 (mod 4) and qmd/2 ≡ 2d± 1 (mod 4d),

2md if
√
a /∈ Fq and md is odd,

md otherwise.
.
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9.6.13 Example Let (q, n) = (5, 12). Then D12(x, 2) = x12 +x10 +x8 +4x6 +3x2 +3 is the product
of irreducible polynomials over F5 which occur in cliques corresponding to the divisors d = 4
and d = 12 of n = 12. By direct computation, m4 = N4 = 4 and m12 = N12 = 4. For d = 4,
there corresponds one irreducible factor of degree 4, while there are two irreducible factors
of degree 4 for d = 12, each of which has the form

∏Nd−1
i=0 (x −

√
aqi(ζq

i

+ ζ−q
i

)), where ζ
is a 4d-th root of unity.

9.6.14 Remark Similar results hold for Dickson polynomials of the second kind and they can be
found in [264] and [620]. Dickson polynomials of other kinds are defined in [2926] and the
factorization of the Dickson polynomial of the third kind is obtained similarly in [2926]. We
note that the factors appearing in the above results are over Fq, although their description
uses elements in an extension field of Fq. In [1073] Fitzgerald and Yucas showed that these
factors can be obtained from the factors of certain cyclotomic polynomials. This in turn
gives a relationship between a-self-reciprocal polynomials and these Dickson factors. In the
subsequent subsections we explain how this works. These results come mainly from [1073].

9.6.2.1 a-reciprocals of polynomials

9.6.15 Definition Let q be an odd prime power and fix a ∈ F∗q . For a monic polynomial f over Fq
of degree n, with f(0) 6= 0, define the a-reciprocal of f by

f̂a(x) =
xn

f(0)
f(a/x).

The polynomial f is a-self-reciprocal if f(x) = f̂a(x).

9.6.16 Remark We note that the notion of a 1-self-reciprocal is the usual notion of a self-reciprocal.

9.6.17 Lemma

1. If α is a root of f then a/α is a root of f̂a.

2. The polynomial f is irreducible over Fq if and only if f̂a is irreducible over Fq.

9.6.18 Remark The a-reciprocal of an irreducible polynomial f may not have the same order as f .
For example, consider f(x) = x3 + 3 when q = 7. Then f has order 9 while f̂3(x) = x3 + 2
has order 18.

9.6.19 Theorem [1073] Suppose f is a polynomial of even degree n = 2m over Fq. The following
statements are equivalent:

1. f is a-self-reciprocal;

2. n = 2m and f has the form

f(x) = bmx
m +

m−1∑
i=0

b2m−i(x
2m−i + am−ixi)

for some bj ∈ Fq.

9.6.20 Definition Let n be an even integer. Define

Dn = {r : r divides qn − 1 but r does not divide qs − 1 for s < n}.

For r ∈ Dn and even n, we write r = drtr where dr = (r, qm + 1) and m = n/2.



278 Handbook of Finite Fields

9.6.21 Theorem [1073] Suppose f is an irreducible polynomial of degree n = 2m over Fq. The
following statements are equivalent:

1. f is a-self-reciprocal for some a ∈ F∗q with ord(a) = t,

2. f has order r ∈ Dn and tr = t.

9.6.22 Theorem [1073] Let r ∈ Dn and suppose tr divides q − 1. Then the cyclotomic polynomial
Q(r, x) factors into all a-self-reciprocal monic irreducible polynomials of degree n and order
r where a ranges over all elements of Fq of order tr.

9.6.2.2 The maps Φa and Ψa

9.6.23 Definition Define the mapping Φa : Pm → Sn from the polynomials over Fq of degree m
to the a-self-reciprocal polynomials over Fq of degree n = 2m by

Φa(f(x)) = xmf(x+ a/x).

9.6.24 Remark In the case a = 1 this transformation has appeared often in the literature. The
first occurrence is Carlitz [544]. Other authors writing about Φ are Chapman [584], Cohen
[673], Fitzgerald-Yucas [1073], Kyuregyan [1808], Miller [2086], Meyn [2077] and Scheerhorn
[2521].

9.6.25 Definition Define Ψa : Sn → Pm by

Ψa

(
bmx

m +

m−1∑
i=0

b2m−i(x
2m−i + am−ixi)

)
= bm +

m−1∑
i=0

b2m−iDm−i(x, a).

9.6.26 Theorem Maps Φa and Ψa are multiplicative and are inverses of each other.

9.6.2.3 Factors of Dickson polynomials

9.6.27 Theorem [1073] The polynomial Dn(x, a) is mapped to x2n + an by the above defined Φa,
namely, Φa(Dn(x, a)) = x2n + an.

9.6.28 Theorem [1073] The polynomial x2n + an factors over Fq as

x2n + an =
∏

f(x),

where each f is either an irreducible a-self-reciprocal polynomial or a product of an irre-
ducible polynomial and its a-reciprocal over Fq.

9.6.29 Theorem [1073] The polynomial Dn(x, a) factors over Fq as

Dn(x, a) =
∏

Ψa(f(x)),

where x2n + an =
∏
f(x) such that f is either an irreducible a-self-reciprocal polynomial

or a product of an irreducible polynomial and its a-reciprocal.

9.6.30 Theorem The following is an algorithm for factoring Dn(x, a) over Fq.
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1. Factor x2n + an.

2. For each factor f of x2n + an which is not a-self-reciprocal, multiply f with f̂a.

3. Apply Ψa.

9.6.31 Example We factor D12(x, 2) = x12 + x10 + x8 + 4x6 + 3x2 + 3 when q = 5.

x24 + 212 = [(x4 + x2 + 2)(x4 + 2x2 + 3)][(x4 + 3)(x4 + 2)][(x4 + 4x2 + 2)(x4 + 3x2 + 3)]

= (x8 + 3x6 + 2x4 + 2x2 + 1)(x8 + 1)(x8 + 2x6 + 2x4 + 3x2 + 1).

Then apply Ψ2 to obtain

D12(x, 2) = (D4(x, 2) + 3D2(x, 2) + 2)D4(x, 2)(D4(x, 2) + 2D2(x, 2) + 2)

= (x4 + 3)(x4 + 2x2 + 3)(x4 + 4x2 + 2).

9.6.32 Definition For a ∈ F∗q , define η(n, a) by

η(n, a) =

{
n · ord(an) if n is odd and a is a non-square,
4n · ord(an) otherwise.

9.6.33 Theorem [1073] For a monic irreducible polynomial f over Fq and a ∈ F∗q , the following
statements are equivalent:

1. f divides Dn(x, a).

2. There exists a divisor d of n with n/d odd and ord(Φa(f)) = η(d, a), where Φa
is defined in Definition 9.6.23.

9.6.2.4 a-cyclotomic polynomials

9.6.34 Definition For a ∈ F∗q , define the a-cyclotomic polynomial Qa(n, x) over Fq by

Qa(n, x) =
∏
d|n

d even

(xd − ad/2)µ(n/d).

9.6.35 Remark When n ≡ 0 (mod 4), we have Q1(n, x) = Q(n, x), the n-th cyclotomic poly-
nomial over Fq. When n ≡ 2 (mod 4), we have Q1(n, x) = Q(n/2,−x2). Similar to the
factorization of xn − 1 =

∏
d|nQ(d, x) [1927], we can reduce the factorization of x2n ± an

to the factorization of a-cyclotomic polynomials.

9.6.36 Theorem [1073] We have

1. x2n − an =
∏
d|n

Qa(2d, x);

2. x2n + an =
∏
d|n
d odd

Qa(4d, x).

9.6.37 Remark A factorization of these a-cyclotomic polynomials Qa(m,x) is also given in [1073].
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9.6.3 Dickson polynomials of the (k + 1)-st kind

9.6.38 Definition [2926] For a ∈ Fq, any integers n ≥ 0 and 0 ≤ k < p, we define the n-th Dickson
polynomial of the (k + 1)-st kind Dn,k(x, a) over Fq by D0,k(x, a) = 2− k and

Dn,k(x, a) =

bn/2c∑
i=0

n− ki
n− i

(
n− i
i

)
(−a)ixn−2i.

9.6.39 Definition [2926] For a ∈ Fq, any integers n ≥ 0 and 0 ≤ k < p, we define the n-th reversed
Dickson polynomial of the (k + 1)-st kind Dn,k(a, x) over Fq by D0,k(a, x) = 2− k and

Dn,k(a, x) =

bn/2c∑
i=0

n− ki
n− i

(
n− i
i

)
(−1)ian−2ixi.

9.6.40 Remark [2926] It is easy to see that Dn,0(x, a) = Dn(x, a) and Dn,1(x, a) = En(x, a).
Moreover, if char(Fq) = 2, then Dn,k(x, a) = Dn(x, a) if k is even and Dn,k(x, a) = En(x, a)
if k is odd.

9.6.41 Theorem [2926] For any integer k ≥ 1, we have

Dn,k(x, a) = kDn,1(x, a)− (k − 1)Dn,0(x, a) = kEn(x, a)− (k − 1)Dn(x, a).

9.6.42 Theorem [2926] The fundamental functional equation for Dn,k is

Dn,k(y + ay−1, a) =
y2n + yax2n−2 + · · ·+ kan−1y2 + an

yn

=
y2n + an

yn
+
ka

yn
y2n − an−1y2

y2 − a , for y 6= 0,±√a.

9.6.43 Theorem [2926] The Dickson polynomial of the (k+ 1)-st kind satisfies the following recur-
rence relation

Dn,k(x, a) = xDn−1,k(x, a)− aDn−2,k(x, a),

for n ≥ 2 with initial values D0,k(x, a) = 2− k and D1,k(x, a) = x.

9.6.44 Theorem [2926] The generating function of Dn,k(x, a) is

∞∑
n=0

Dn,k(x, a)zn =
2− k + (k − 1)xz

1− xz + az2
.

9.6.45 Remark The Dickson polynomial Dn,k(x, a) of the (k + 1)-st kind satisfies a second order
differential equation; see [2706, 2926] for more details.

9.6.46 Theorem [2926] Suppose ab is a square in F∗q . Then Dn,k(x, a) is a PP of Fq if and only if
Dn,k(x, b) is a PP of Fq. Furthermore,

Dn,k(α, a) = (
√
a/b)nDn,k((

√
b/a)α, b).



Special functions over finite fields 281

9.6.47 Definition Define Sq−1, Sq+1, and Sp by

Sq−1 = {α ∈ Fq : uq−1
α = 1}, Sq+1 = {α ∈ Fq : uq+1

α = 1}, Sp = {±2},

where uα ∈ Fq2 satisfies α = uα + 1
uα
∈ Fq.

9.6.48 Theorem [2926] As functions on Fq, we have

Dn,k(α) =


D(n)2p,k(α) if α ∈ Sp,
D(n)q−1,k(α) if α ∈ Sq−1,
D(n)q+1,k(α) if α ∈ Sq+1,

where for positive integers n and r we use the notation (n)r to denote n (mod r), the
smallest positive integer congruent to n modulo r.

9.6.49 Theorem [2926] Let α = uα + 1
uα

where uα ∈ Fq2 and α ∈ Fq. Let εα = ucα ∈ {±1} where

c = p(q2−1)
4 . As functions on Fq we have

Dc+n,k(α) = εαDn,k(α).

Moreover, Dn,k(x) is a PP of Fq if and only if Dc+n,k(x) is a PP of Fq.

9.6.50 Theorem [2926] For k 6= 1, let k′ = k
k−1 (mod p) and εα = ucα ∈ {±1} where c = p(q2−1)

4 .
For n < c, as functions on Fq we have

Dc−n,k′(α) =
−εα
k − 1

Dn,k(α).

Moreover, Dn,k(x) is a PP of Fq if and only if Dc−n,k′(x) is a PP of Fq.

9.6.4 Multivariate Dickson polynomials

9.6.51 Definition [1924] The Dickson polynomial of the first kind D
(i)
n (x1, . . . , xt, a), 1 ≤ i ≤ t, is

given by the functional equations

D(i)
n (x1, . . . , xt, a) = si(u

n
1 , . . . , u

n
t+1), 1 ≤ i ≤ t,

where xi = si(u1, . . . , ut+1) are elementary symmetric functions and u1 · · ·ut+1 = a. The

vector D(t, n, a) = (D
(1)
n , . . . , D

(t)
n ) of the t Dickson polynomials is a Dickson polynomial

vector.

9.6.52 Remark Let r(c1, . . . , ct, z) = zt+1 − c1z
t + c2z

t−1 + · · · + (−1)tctz + (−1)t+1a be a
polynomial over Fq and β1, . . . , βt+1 be the roots (not necessarily distinct) in a suitable
extension of Fq. For any positive integer n, we let rn(c1, . . . , ct, z) = (z − βn1 ) . . . (z −
βnt+1). Then rn(c1, . . . , ct, z) = zt+1 − D(1)

n (c1, . . . , ct, a)zt + D
(2)
n (c1, . . . , ct, a)zt−1 + · · · +

(−1)tD
(t)
n (c1, . . . , ct, a)z + (−1)t+1at.

9.6.53 Remark For the Dickson polynomial D
(1)
n (x1, . . . , xt, a), an explicit expression, a generating

function, a recurrence relation, and a differential equation satisfied by D
(1)
n (x1, . . . , xt, a) can

be found in [1924]. Here we only give the generating function and recurrence relation.
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9.6.54 Theorem The Dickson polynomial of the first kind D
(1)
n (x1, . . . , xt, a) satisfies the generat-

ing function

∞∑
n=0

D(1)
n (x1, . . . , xt, a)zn =

∑t
i=0(t+ 1− i)(−1)ixiz

i∑t+1
i=0(−1)ixizi

, for n ≥ 0,

and the recurrence relation

D
(1)
n+t+1 − x1D

(1)
n+t + · · ·+ (−1)txkD

(1)
n+1 + (−1)t+1aD(1)

n = 0,

with the t+ 1 initial values

D
(1)
0 = t+ 1, D

(1)
j =

j∑
r=1

(−1)r−1xrD
(1)
j−r + (−1)j(t+ 1− j)xj , for 0 < j ≤ t.

9.6.55 Remark Much less is known for the multivariate Dickson polynomials of the second kind.

The same recurrence relation of D
(1)
n (x1, . . . , xt, a) is used to define the multivariate Dickson

polynomials of the second kind E
(1)
n (x1, . . . , xt, a) with the initial condition E0 = 1, Ej =∑j

r=1(−1)r−1xrEj−r for 1 ≤ j ≤ t. The generating function is
∑∞
n=0Enz

n = 1∑t+1
i=0(−1)ixizi

;

see [1924] for more details.

See Also

§8.1 For permutation polynomials with one variable.
§8.3 For value sets of polynomials over fnite fields.
§9.7 For Schur’s conjecture and exceptional covers.

[1924] For a comprehensive book on Dickson polynomials.
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9.7 Schur’s conjecture and exceptional covers

.
Michael D. Fried, University of California Irvine

9.7.1 Rational function definitions

9.7.1 Remark (Extend values) The historical functions of this section are polynomials and ratio-
nal functions: f(x) = Nf (x)/Df (x) with Nf and Df relatively prime (nonzero) polynomials,
denoted f ∈ F (x), F a field (almost always Fq or a number field). The subject takes off
by including functions f – covers – where the domain and range are varieties of the same
dimension. Still, we emphasize functions between projective algebraic curves (nonsingular),
often where the target and domain are projective 1-space.


