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Polynomials over finite fields: an index
approach
Qiang Wang

Abstract. The degree of a polynomial is an important parameter in the study of numerous
problems on polynomials over finite fields. Recently, a new notion of the index of a polynomial
over a finite field has been introduced to study the distribution of permutation polynomials
over finite fields. This parameter also turns out to be very useful in studying bounds for the
size of value sets, character sum bounds, among others. In this paper we survey this new index
approach and report some recent results on polynomials over finite fields.
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1 Introduction

Let Fq be the finite field of q elements with characteristic p. Let γ be a fixed primitive
element of Fq throughout the paper. The degree of a polynomial is an important pa-
rameter in the study of numerous problems on polynomials over finite fields, especially
in the study of distribution of polynomials over finite fields.

It is well known that every polynomial g over Fq such that g(0) = b has the form
axrf(xs) + b for some positive integers r, s such that s | (q − 1). There are different
ways to choose r, s in the form axrf(xs)+ b. However, in [2], based on [75], the con-
cept of the index of a polynomial was first introduced. Any non-constant polynomial
g(x) ∈ Fq[x] of degree≤ q−1 can be written uniquely as g(x) = a(xrf(x(q−1)/`))+b
such that the degree of f is less than the index ` which is defined below. Namely, write

g(x) = a(xd + ad−i1x
d−i1 + · · ·+ ad−ikx

d−ik) + b,

where a, ad−ij 6= 0, i0 = 0 < i1 < · · · < ik < d, j = 1, . . . , k. The case that k = 0
is trivial and we have ` = 1. Thus we shall assume that k ≥ 1. Write d − ik = r,
the vanishing order of x at 0 (i.e., the lowest degree of x in g(x) − b is r). Then
g(x) = a

(
xrf(x(q−1)/`)

)
+b,where f(x) = xe0 +ad−i1x

e1 +· · ·+ad−ik−1x
ek−1 +ar,

s = gcd(d− r, d− r − i1, . . . , d− r − ik−1, q − 1), d− r = e0s, d− r − ij = ejs,
1 ≤ j ≤ k − 1, and ` := q−1

s . Hence in this case gcd(e0, e1, . . . , ek−1, `) = 1.
The integer ` = q−1

s is called the index of g(x). One can see that the greatest common
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divisor condition in the defintion of smakes the index `minimal among those possible
choices.

We note that the index of a polynomial is closely related to the concept of the least
index of a cyclotomic mapping polynomial [75]. Recall that γ is a fixed primitive
element of Fq. Let ` | (q − 1) and the set of all nonzero `-th powers be C0. Then
C0 is a subgroup of F∗q of index `. The elements of the factor group F∗q/C0 are the
cyclotomic cosets

Ci := γiC0, i = 0, 1, . . . , `− 1.

For any a0, a1, . . . , a`−1 ∈ Fq and a positive integer r, the r-th order cyclotomic
mapping f ra0,a1,...,a`−1

of index ` from Fq to itself (see Niederreiter and Winterhof [75]
for r = 1 or Wang [87] for general r) is defined by

f ra0,a1,...,a`−1
(x) =

{
0, if x = 0,
aix

r, if x ∈ Ci, 0 ≤ i ≤ `− 1.
(1.1)

It is shown that r-th order cyclotomic mappings of index ` produce the polynomials
of the form xrf(xs) where s = q−1

` . Indeed, the polynomial representation of (1.1) is
given by

g(x) =
1
`

`−1∑
j=0

(
`−1∑
i=0

aiζ
−ji

)
xjs+r, (1.2)

where ζ = γs is a fixed primitive `-th root of unity. On the other hand, each polynomial
f(x) such that f(0) = 0 with index ` can be written as xrf(x(q−1)/`), which is an
r-th order cyclotomic mapping with the least index ` defined as in (1.1) such that
ai = f(ζi) for i = 0, . . . , `− 1. An application of cyclotomic mapping permutations
in check-digit systems can be found in [78] or [94].

The notion of the index of a polynomial over a finite field was introduced initially
to study the distribution of permutation polynomials over finite fields. This parame-
ter also turns out to be very useful in studying value set size bounds, character sum
bounds, among others. In this paper we survey this new index approach in the study of
polynomials over finite fields, and report some recent results on several specific prob-
lems. In Section 2 we briefly review an index bound for character sums of polynomials
over finite fields [85]. This bound is very good when the polynomial has small index
and large degree, a case when the classical Weil bound becomes trivial. The value
set of a polynomial g over Fq is the set Vg of images when we view g as a mapping
from Fq to itself. Clearly g is a permutation polynomial (PP) of Fq if and only if the
cardinality |Vg| of the value set Vg is q. There are also several results on explicit upper
bounds for |Vg| if g is not a PP over Fq; see for example [41, 80, 82]. In Section 2,
we review an index bound due to Mullen, Wan, and Wang [74] for the value set size of
polynomials, which is an analogue of the well-known degree bound due to Wan [82].
The value set size of a polynomial with index ` is determined by the size of the cor-
responding cyclotomic mapping with the least index `. The statistics of the value set
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size for a random r-th order cyclotomic mapping polynomial with index ` is studied
by Gao and Wang [37]. Moreover, the distribution of missing values is asymptotically
normal. These results are described in Section 3. Then we focus on permutation poly-
nomials in Sections 4 and 5. We first describe Akbary, Ghioca, and Wang’s result [2]
on the enumeration of permutation polynomials with prescribed indices in Section 4,
and then we classify many recent constructions of permutation polynomials in terms
of indices in Section 5; see related work in [1]-[6], [10]-[17], [33]-[34], [43]-[46],
[51]-[68], [81], [86]-[91], [95]-[106] and reference therein. Finally in Section 6 we
comment on other recent results such as a bound on the Carlitz rank in terms of the
index by Işik and Winterhof [48] and propose several more problems.

2 Index bound for character sums
Let g(x) be a polynomial of degree d > 0 and ψ : Fq → C∗ be a nontrivial additive
character. If g(x) is not of the form c + fp − f for some f(x) ∈ Fq[x] and constant
c ∈ Fq, then the Weil bound, see Page 233 in [63], is∣∣∣∣∣∣

∑
x∈Fq

ψ(g(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q. (2.1)

This is the case if the degree d is not divisible by p. The Weil bound has a lot of
applications in many different areas. However, the bound is trivial if the degree d of
g(x) is bigger than

√
q. In [85], Wan and Wang used the index of a polynomial to

obtain the following index bound for character sums.

Theorem 2.1 (Wan-Wang 2016 [85]). Let g(x) = xrf(x(q−1)/`)+b be any polynomial
with index `. Let ζ be a primitive `-th root of unity and n0 = #{0 ≤ i ≤ `−1 | f(ζi) =
0}. Let ψ : Fq → C∗ be a nontrivial additive character. Then∣∣∣∣∣∣

∑
x∈Fq

ψ(g(x))− q

`
n0

∣∣∣∣∣∣ ≤ (`− n0) gcd(r,
q − 1
`

)
√
q. (2.2)

This implies that for many polynomials of large degree with small indices (for which
the Weil bound becomes trivial), we have nontrivial bounds for the character sums in
terms of indices. As a result, for any polynomial with index ` and vanishing order r at
0 such that gcd(r, p) = 1, if both ` and gcd(r, q−1

` ) are small, we obtain a nontrivial
bound for its character sum.

If f(x) has no roots in µ`, then n0 = 0 in Theorem 2.1. We note that all `-th roots
of unity belong to Fq because ` | q−1. Therefore, if f(x) is an irreducible polynomial
over Fq of degree ≥ 2, then f(x) does not vanish at any `-th root of unity and thus
n0 = 0.
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Corollary 2.2. Let g(x) = xrf(x(q−1)/`) + a ∈ Fq[x] where f(x) is any irreducible
polynomial over Fq of degree ≥ 2. Then∣∣∣∣∣∣

∑
x∈Fq

ψ(g(x))

∣∣∣∣∣∣ ≤ ` gcd(r,
q − 1
`

)
√
q.

There are more examples such that f(x) has no roots in µ`. For example, f(x) =∏
a∈T (x− a) where T is a multisubset of F∗q \ µ` or

f(x) =
∏
a∈T

(x− a)
∏

fi irred
degfi≥2

fi(x)
ei .

On the other hand, n0 can be very large and this gives large character sum. It is
known by definition that all the roots of the `-th order cyclotomic polynomial Φ`(x)
over Fq are primitive `-th roots of unity. Therefore we obtain the following new non-
trivial character sum estimate for a class of polynomials with large degree formed by
cyclotomic polynomials.

Corollary 2.3. Let q be a prime power, ` be a prime such that ` | q−1, and gcd(r, q−1
` ) =

1. Let g(x) = xrΦ`(x
(q−1)/`) ∈ Fq[x] where Φ`(x) is the `-th cyclotomic polynomial

over Fq. Then
∣∣∣∑x∈Fq

ψ(g(x))− `−1
` q
∣∣∣ ≤ √q.

There are many applications of character sums of binomials in the study of correla-
tion spectrum of sequences, nonlinearity of monomials, among others. In the following
we give estimates for the character sums of these binomials.

Corollary 2.4 (Wan-Wang 2016 [85]). Let g(x) = xd + axr ∈ Fq[x] with a ∈ F∗q and
q − 1 ≥ d > r ≥ 1. Let ` = q−1

gcd (d−r,q−1) , t = gcd (d, r, q − 1). Let ψ : Fq → C∗ be a

nontrivial additive character. If xd−r + a has a solution in the subset of all `-th roots
of unity of Fq, then ∣∣∣∣∣∣

∑
x∈Fq

ψ(xd + axr)− qu

`

∣∣∣∣∣∣ ≤ (`− u)t√q, (2.3)

otherwise, ∣∣∣∣∣∣
∑
x∈Fq

ψ(xd + axr)

∣∣∣∣∣∣ ≤ `t√q. (2.4)

We remark that xd−r + a has a solution in the subset of all `-th roots of unity of Fq
if and only if q−1

` | k where k = logγ(−a) is the discrete logarithm of −a. So there
are only ` possible a’s such that the main term in the estimate (2.3) is q

` . Otherwise,
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we have the main term 0 and the index bound `t
√
q for binomials xd + axr. Because

t = gcd(d, r, q−1) can easily achieve 1, our bound for many character sums evaluated
in binomials is essentially `

√
q. We note that if ` <

√
q − 1, then ` < q−1

` ≤ d − 1
and thus our bound `

√
q is better than the Weil bound (d− 1)

√
q.

We can generalize the above results to polynomials of large indices that are defined
by a small number of cyclotomic cosets. For more details we refer the readers to
[88]. We expect that our technique also applies to other types of polynomials defined
piece-wisely.

3 Value sets of polynomials
Let |Vg| be the cardinality of the value set Vg of a polynomial g ∈ Fq[x]. Asymptotic
formulas such as |Vg| = λ(g)q+O(q1/2), where λ(g) is a constant depending only on
certain Galois groups associated to g, can be found in Birch and Swinnerton-Dyer [18]
and Cohen [22]. Later Williams [93] proved that almost all polynomials g of degree d
satisfy λ(g) = 1− 1

2! +
1
3! + · · ·+ (−1)d−1 1

d! . Those polynomials are called general
polynomials.

There are also several results on explicit upper bounds for |Vg| if g is not a PP over
Fq; see for example [41, 80, 82]. Perhaps the most well-known result is due to Wan
[82] who proved that if a polynomial g of degree d is not a PP then

|Vg| ≤ q −
q − 1
d

. (3.1)

On the other hand, it is easy to see that |Vg| ≥ dq/de for any polynomial g over Fq
with degree d because g(x) = 0 has at most d solutions. The polynomials achieving
this lower bound are called minimal value set polynomials. The classification of min-
imal value set polynomials over Fpk with k ≤ 2 can be found in [20, 69], and in [19]
for all the minimal value set polynomials in Fq[x] whose value set is a subfield of Fq.
See [26, 84] for further results on lower bounds of |Vg| and [40] for some classes of
polynomials with small value sets. More recently, algorithms and complexity in com-
puting |Vg| have been studied in [21]. For a recent survey on value sets of polynomials
over finite fields, we refer the readers to Section 8.3 in [71].

Clearly, the study of the value set of g over Fq is equivalent to studying the value
set of xrf(x(q−1)/`) over Fq with index `. Recently Mullen, Wan and Wang [74] used
an index approach to study the upper bound of the value set for any polynomial which
is not a PP. They proved that if g is not a PP then

|Vg| ≤ q −
q − 1
`

. (3.2)

This result improves Wan’s result when the index ` of a polynomial is strictly smaller
than the degree d. We note that the index ` of a polynomial is always smaller than the
degree d as long as ` ≤ √q − 1.
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In [73], we obtained the following formula for the cardinality of the value set for an
arbitrary polynomial according to its index and the vanishing order at zero.

Proposition 3.1 (Proposition 2.3 in [73]). Let g(x) = axrf(x(q−1)/`) + b (a 6= 0) be
any polynomial over Fq with index `. Let s = q−1

` and gcd(r, s) = t. Let γ be a fixed
primitive element of Fq. Then

|Vg| = c
s

t
+ 1 or |Vg| = (c− 1)

s

t
+ 1,

where c = |{(γirf(γsi))s/t | i = 0, . . . , `− 1}|.

The proof of Proposition 3.1 uses the properties of cyclotomic mapping polynomi-
als. It is sufficient to assume that a = 1 and b = 0. That is, we can view g(x) as
an r-th order cyclotomic mapping polynomial with the least index `. In this case, we
have g(x) = aix

r when x ∈ Ci, where ai = f(γsi) for i = 0, . . . , ` − 1. Recall that
C0 is the subgroup of F∗q consisting of all the `-th powers of F∗q and we let T0 be the
subgroup of F∗q consisting of all the t`-th powers. Hence the Ti’s with 0 ≤ i ≤ t`− 1
give all the cyclotomic cosets of index t`. We also note that xr maps C0 onto T0 which
contains s

t distinct elements. So xr maps each coset Ci = γiC0 onto γirT0. Therefore
g maps Ci onto γirf(γsi)T0, which could be either the set {0} (if ai = f(γsi) = 0) or
one of the nonzero cyclotomic cosets of index t`. We observe that c is the number of
distinct cyclotomic cosets of the form γirf(γsi)T0, possibly along with the subset {0}
if one of ai’s is zero. Hence we have |Vg| = c st + 1 or (c− 1) st + 1, the latter happens
when some of ai’s in g(x) = aix

r equal 0.
Therefore the value set problem for a random r-th order cyclotomic mapping poly-

nomial (or random polynomial) g essentially requires us to study the number c in
Proposition 3.1, the size of the union of some cyclotomic cosets and possibly the sub-
set {0} if ai’s take zero. More specifically, for 0 ≤ i ≤ ` − 1, each Ci is mapped to
Ai+1 = g(Ci) which is one of T0, . . . , Tt`−1 or {0}. Then c is the number of distinct
Aj’s (1 ≤ j ≤ `) and the value set size is either c st + 1 or (c− 1) st + 1.

Let n = t` and let D0 = {0} and Dj = Tj−1 for 1 ≤ j ≤ t`. For a random
r-th order cyclotomic mapping polynomial with index ` where (r, s) = t, we let Yt`
be the number of cosets D1, . . . , Dt` which are not contained in ∪`j=1Aj . Then the
random variable Xt` = q − s

tYt` measures the size of the value set of a random r-th
order cyclotomic mapping polynomial with index `. We use P, E, V to denote the
probability, expectation, and variance of a random variable, respectively.

Theorem 3.2 (Gao-Wang 2015 [37]). Let q − 1 = `s and r be a positive integer such
that (r, s) = t. Let f(x) be any random r-th order cyclotomic mapping polynomial
f ra0,...,a`−1

(x) with index ` over Fq. Let Xt` = q − s
tYt`, where Yt` is the number

of cosets D1, . . . , Dt` which are not contained in ∪`j=1Aj for a random r-th order
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cyclotomic mapping polynomial with index ` such that (r, s) = t. Then

E(Xt`) = q − (q − 1)
(

1− s

tq

)`
,

V(Xt`) = (q − 1)
(
q − 1− s

t

)
+
s(q − 1)

t

(
1− s

tq

)`
−(q − 1)2

(
1− s

tq

)2`

,

P(Xt` = 1 + ks/t) =

(
t`

k

) k∑
j=0

(−1)k−j
(
k

j

)(
1
q
+
sj

tq

)`
.

Theorem 3.3 (Gao-Wang 2015 [37]). Define

n = t`, µn = e−1/tn, σ2
n = e−2/t(e1/t − 1− 1/t)n.

Suppose t = o(n1/6) as n → ∞. Then the distribution of (Yn − µn)/σn tends to the
standard normal distribution, as n→∞.

When ` = q − 1 (hence s = t = 1), Theorem 3.2 becomes the known result for
random mappings over Fq; see for example, [8, 36]. More specifically, we note that
the value set problem for any random polynomial g with degree at most q−1 is in fact
the value set problem for a random r-th order cyclotomic mapping polynomial with
index ` = q − 1. Without loss of generality, we can assume g(0) = 0. Therefore,
Theorem 3.2 implies that the size of the value set of any random polynomial with
degree q−1 has expected value q−(q−1)(1− 1

q )
q−1 ∼ q− q

e . This verifies William’s
result [93] saying that almost all polynomials of degree q−1 are a general polynomials.
Moreover, by applying Theorem 3.2 to the case ` = q−1 (hence s = t = 1), we obtain
the exact probability distribution of the size of the value set for a random polynomial
over the finite field Fq.

Corollary 3.4 (Gao-Wang 2015 [37]). Let g(x) be a random polynomial of degree at
most q − 1 over Fq with g(0) = 0. Then

P(|Vg| = k + 1) =
(
q − 1
k

) k∑
j=0

(−1)k−j
(
k

j

)(
1 + j

q

)q−1

.

Consequently, for k = o(q), we have

P(|Vg| = k + 1) ∼ 1
k!
(q − 1)k

(
k + 1
q

)q−1

.

If k > 1 is small compared to q, then the number of polynomials over Fq, with
degree at most q − 1 and the value set size k, is exponential in q. Moreover we have
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Corollary 3.5 (Gao-Wang [37]). Let g(x) be any random polynomial of degree at most
q− 1 over the finite field Fq with g(0) = 0. Let Yq = q− |g(Fq)| denote the number of
missing nonzero values in the value set of g. Let µq = q/e and σ2

q = (e−1 − 2e−2)q.
Then the distribution of (Yq − µq)/σq tends to the standard normal distribution, as
q →∞.

4 Enumeration of permutation polynomials

We call f(x) ∈ Fq[x] a permutation polynomial (PP) of Fq if f induces a permutation
of Fq. The study of permutation polynomials over finite fields have attracted a lot of
interest for many years due to their wide applications in coding theory, cryptography
and combinatorial designs. For more background material on permutation polynomi-
als we refer to Chap. 7 of [63]. For a detailed survey of open questions and recent
results see [43], [61], [62], [70], [72] and references therein. The following problem is
Problem 6 in [61].

Problem 1 (Lidl-Mullen 1988 [61]). Let Nd(q) denote the number of PPs of Fq which
have degree d. We have the trivial boundary conditions: N1(q) = q(q−1), Nd(q) = 0
if d is a divisor of q − 1 larger than 1, and

∑
Nd(q) = q! where the sum is over all

1 ≤ d < q − 1 such that d is either 1 or it is not a divisor of q − 1. Find Nd(q).

An estimation of Nq−2(q) was first given by Das [25] in 2002 when q is prime,
and then in general by Konyagin and Pappalardi [49]. Later in 2006, Konyagin and
Pappalardi [50] also estimated the number of PPs with prescribed zero coefficients.
Therefore the number of PPs with degree q − 2 can be obtained from the number of
PPs whose coefficient of xq−2 is zero.

Theorem 4.1 (Das 2002 [25]). Np−2(p) ∼ (ϕ(p)/p)p! as p → ∞, where ϕ is the

Euler function. More precisely,
∣∣∣Np−2(p)− ϕ(p)

p p!
∣∣∣ ≤√pp+1(p−2)+p2

p−1 .

Theorem 4.2 (Konyagin-Pappalardi 2002 [49]). Let q be a prime power. Then

|Nq−2(q)− (q − 1)!| ≤
√

2e
π
q

q
2 .

Theorem 4.3 (Konyagin-Pappalardi 2006 [50]). Fix j integers k1, . . . , kj with the
property that 0 < k1 < · · · < kj < q − 1 and define N(k1, . . . , kj ; q) as the number
of PPs h of Fq of degree less than (q − 1) such that the coefficient of xki in h equals

0, for i = 1, . . . , j. Then
∣∣∣N(k1, . . . , kj ; q)− q!

qj

∣∣∣ < (1 +
√

1
e

)q
((q − k1 − 1)q)q/2.

In particular, Nq−2(q) = q!−N(q − 2; q).
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Motivated by Konyagin-Pappalardi’s results, the index concept was first introduced
by Akbary, Ghioca, and Wang [2] to study the distribution of permutation polynomials
over finite fields. Obviously, every monic polynomial of index ` with vanishing order
at zero r and degree less than or equal to q − 1 can be written uniquely as

xrf(xs) = xr
(
xems + bn1x

em−1s + · · ·+ bnm−1x
e1s + bnm

)
,

where

0 < e1 < · · · < em ≤ `− 1, (e1, . . . , em, `) = 1, and r + ems ≤ q − 1. (4.1)

Let m, r be positive integers, and ē = (e1, . . . , em) be an m-tuple of integers that
satisfy condition (4.1). We define by Nm

r,ē(`, q) the number of all monic permutation
polynomials of Fq with prescribed index ` and prescribed exponents (r+ems, . . . , r+
e1s, r). We note that these polynomials with prescribed shape all have the fixed degree
r + ems, the vanishing order at zero r, and m+ 1 nonzero terms in total.

Using Weil’s bound on character sums, we obtained the following.

Theorem 4.4 (Akbary-Ghioca-Wang 2009 [2]).∣∣∣∣Nm
r,ē(`, q)−

`!
``
qm
∣∣∣∣ < `!`qm−1/2.

We note that the proportion of PPs in the set of all these polynomials with prescribed
index ` and exponents asymptotically goes to `!

``
as q goes to infinity. This shows that

the density of PPs, in the set of polynomial with prescribed index and exponents,
is higher when the index ` is smaller, although the absolute number of these PPs is
smaller. To be more specific, we have

Theorem 4.5 (Akbary-Ghioca-Wang 2009 [2]). For any q, r, ē, m, ` that satisfy con-
ditions (4.1), (r, s) = 1, and q > `2`+2, there exists (bn1 , bn2 , . . . , bnm) ∈ (F∗q)m such
that the (m+ 1)-nomial of the form xrf(xs) is a permutation polynomial of Fq.

Remark 4.6. We note that for 1 ≤ t ≤ q − 2 the number of PPs of degree at least
(q−t−1) is q!−N(q−t−1, q−t, . . . , q−2; q). In [50] Konyagin and Pappalardi proved
that N(q − t− 1, q − t, . . . , q − 2; q) ∼ q!

qt holds for q →∞ and t ≤ 0.03983 q. This
result will guarantee the existence of PPs of degree at least (q−t−1) for t ≤ 0.03983 q
(as long as q is sufficiently large). However, the following theorem establishes the
existence of PPs with exact degree q − t− 1.

Theorem 4.7 (Akbary-Ghioca-Wang 2009 [2]). Let m ≥ 1. Let q be a prime power
such that q − 1 has a divisor ` with m < ` and `2`+2 < q. Then for every 1 ≤ t <
(`−m)
` (q−1) coprime with (q−1)/` there exists an (m+1)-nomial of degree q− t−1

which is a PP of Fq.
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For ` = m+ 1, we obtain the following.

Corollary 4.8 (Akbary-Ghioca-Wang 2009 [2]). Let m ≥ 1 be an integer, and let q be
a prime power such that (m + 1) | (q − 1). Then for all n ≥ 2m + 4, there exists a
permutation (m+ 1)-nomial of Fqn of degree q − 2.

The enumeration of PPs with prescribed index ` can be done through the enumera-
tion of cyclotomic mapping permutation polynomials with the least index `. For each
fixed vanishing order r at zero, we can count the number of r-th order cyclotomic
mapping permutation polynomials of Fq of index ` and then use the Möbius inversion
formula to derive the number of those with the least index `.

Corollary 4.9 (Wang 2007 [87]). Let p be prime, q = pm, and ` | q − 1 for some
positive integer `. For each positive integer r such that (r, s) = 1, there are P` =
`!( q−1

` )` distinct r-th order cyclotomic mapping permutation polynomials of Fq of
index `. Moreover, the number Q` of r-th order cyclotomic mapping permutation
polynomials of Fq of least index ` is

Q` =
∑
t|`

(r,(q−1)/t)=1

µ

(
`

t

)(
q − 1
t

)t
t!.

We end this section with the following problem analogous to Problem 1 proposed
by Akbary, Ghioca and Wang.

Problem 2. Let N(`, q) denote the number of permutation polynomials of Fq which
have index `. We have the trivial boundary conditions: N(1, q) = q(q − 1)ϕ(q − 1),
N(`, q) = 0 if ` is not a divisor of q − 1, and

∑
N(`, q) = q! where the sum is over

positive integers ` such that ` is a divisor of q − 1. Find N(`, q).

5 Classification of permutation polynomials by indices
Instead of classifying permutation polynomials according to their degrees, we can clas-
sify permutation polynomials in terms of indices. In particular, when the indices of
polynomials are small or moderate, one could possibly obtain a nicer characterization
according to the following multiplicative version of the AGW criterion (see [3] for
more detail) with the commutative diagram:

F∗q
P //

xs

��

F∗q

xs

��

µ` = {1, ζ, . . . , ζ`−1}
P̄ // µ` = {1, ζ, . . . , ζ`−1}
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Corollary 5.1 (Wan-Lidl 1991 [83], Park-Lee 2001 [76], Akbary-Wang 2007 [6],
Wang 2007 [87], Zieve 2009 [104]). Let q − 1 = `s for some positive integers ` and
s. Then P (x) = xrf(xs) is a PP of Fq if and only if (r, s) = 1 and xrf(x)s permutes
the set µ` of all distinct `-th roots of unity.

Many classes of PPs are constructed via an application of this criterion. The cri-
terion appeared in different forms in many references such as Wan-Lidl 1991 [83],
Park-Lee 2001 [76], Akbary-Wang 2007 [6], Wang 2007 [87], and Zieve 2009 [104].
In this section, we use the index viewpoint to explain and classify many constructions
of permutation polynomials. Due to the large number of references on constructions
of permutation polynomials, we can only refer to some constructions that are closely
related to our index viewpoint due to page limitation. Let γ be a fixed primitive ele-
ment of Fq and ζ = γ(q−1)/` be a primitive `-th root of unity. We have the following
result.

Corollary 5.2 (Wan-Lidl 1991 [83], Wang 2007 [87], Wang 2017 [89]). Let q−1 = `s
for some positive integers ` and s. Then P (x) = xrf(xs) is a PP of Fq if and only
if (r, s) = 1 and {indγ(f(ζi)) + ir (mod `) | i = 0, . . . , ` − 1} = Z`, where
indγ(f(ζ

i)) denotes the discrete logarithm of f(ζi) relative to the base γ.

The benefit of this result is that we can use modular algorithms to generate all r-
th order cyclotomic PPs with prescribed index ` by employing Equation (1.1). Then
we can use the correspondence (1.2) to construct all permutation polynomials with
prescribed index ` and vanishing order at zero equals to r. See more details in [89].

5.1 Small indices

As shown in [89], all PPs of the form g(x) = xrf(x(q−1)/`) with small indices ` can
be generated algorithmically by Corollary 5.2 together with Equation (1.2). Theo-
retically, we can describe the coefficients of these PPs when ` is small as well. For
example, for odd q, the polynomial g(x) = xrf(x(q−1)/2) is a PP of Fq if and only if
(r, (q − 1)/2) = 1 and η(f(−1)f(1)) = (−1)r+1, where η is a quadratic character.
Let us fix r such that (r, (q − 1)/2) = 1. Because we only need to consider polynomi-
als with degree less than q−1, we have f(x) = ax+b and thus η(b2−a2) = (−1)r+1.
On the other hand, by Corollary 5.2, the parity of indγ(b + a) and indγ(b − a) + r
must be different. Hence b = (γ2i + γ2j+1+r)/2 and a = (γ2i − γ2j+1+r)/2, or
b = (γ2i+1 + γ2j+r)/2 and a = (γ2i+1− γ2j+r)/2 for some integers 0 ≤ i, j ≤ q− 2.

When ` ≥ 3, the following list of PPs with small indices with special formats for
f(x) has been characterized earlier.

• f(x) = xe + 1 for ` = 3, 5, 7 (L. Wang 2002 [86], Akbary-Wang 2005 [4]).

• f(x) = xe+1 for p ≡ −1 (mod `) or p ≡ 1 (mod `) and ` | m. (Akbary-Wang
2006 [5])
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• hk(x) = xk + xk−1 + · · ·+ x+ 1 and f(x) = hk(x); p ≡ −1 (mod 2`) where
` is either odd or 2`1 with odd `1. (Akbary-Wang 2007 [6])

• hk(x) := xk + xk−1 + · · ·+ x+ 1 for ` = 3, 5 or odd prime < 2p+ 1. (Akbary-
Alaric-Wang 2008 [1]).

• f(x) = hk(x
e)t for ` = 3, 5, 7, 11. (Zieve 2008 [103])

Because of the restriction on the forms of the polynomials, the description of these
PPs can be nice and clean. For example,

Theorem 5.3 (Akbary-Alaric-Wang 2008 [1]). Let ` be an odd prime such that ` <
2p + 1, then P (x) = xr(xks + · · · + xs + 1) is a PP of Fq if and only if (r, s) = 1,
(`, k + 1) = 1, (2r + ks, `) = 1, and (k + 1)s ≡ 1 (mod p).

Without restriction on the format of polynomials, it should be feasible to solve the
following problem.

Problem 3. Classify all PPs of Fq of small indices explicitly in terms of their coeffi-
cients.

Let g(x) = xrf(x(q−1)/`) with f(x) = b`−1x
`−1 + b`−2x

`−2 + · · · + b1x + b0.
First we use Corollary 5.2 to obtain conditions for f(ζi) for all i = 0, . . . , ` − 1.
Essentially f(ζi) = γci+`ti−ir for some positive integer ti, where 0 ≤ i ≤ ` − 1 and
(c0, c1, . . . , c`−1) is any permutation of Z`. This can be written as a system of linear
equations AX = C such that

A =


1 1 · · · 1 1
1 ζ1 · · · ζ`−2 ζ`−1

...
... · · ·

...
...

1 ζ`−1 · · · ζ(`−1)(`−2) ζ(`−1)(`−1)

 ,

X =


b0

b1
...

b`−1

 , C =


γc0+`t0

γc1+`t1−r

...
γc`−1+`t`−1−(`−1)r

 .

Then we can use the inverse of A (Inverse Discrete Fourier Transform) to solve for X
and find all possible coefficients of PPs with prescribed index `. This method works
for PPs of any index, although it is more efficient for PPs of small indices.
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5.2 Arbitrary indices

We can also obtain the following characterization of PPs of the form xrf(x(q−1)/`)
with arbitrary index `. In this case, further restrictions on either the polynomial f(x)
or the size of the finite field are required. For example, related to the work on small
indices, Marcos [67] studied some permutation polynomials such that f(x) = hk(x)+
bxd for ` ≥ 3 and 0 ≤ d ≤ ` − 1, where hk(x) = xk + xk−1 + · · · + x + 1. On the
other hand, we have the following result when the format of the polynomial f(x) is
not explicit.

Theorem 5.4 (Akbary-Wang 2007 [6]). Let q − 1 = `s. Assume that (f(ζi))s = ζik

for any i = 0, . . . , `− 1 and a fixed k. Then P (x) = xrf(xs) is a PP of Fq if and only
if (r, s) = 1 and (r + k, `) = 1.

In this case, xrf(x)s behaves like a monomial xr+k over µ`. The following corol-
laries are all important consequences of Theorem 5.4.

Corollary 5.5 (Akbary-Wang 2007 [6]). Let q−1 = `s. Assume that (f(ζi))s = 1 for
any i = 0, . . . , `− 1. Then P (x) = xrf(xs) is a PP of Fq if and only if (r, q− 1) = 1.

Corollary 5.6 (Rogers 1890, Dickson 1897, Wan and Lidl 1991, see Corollary 1.4 in
[83]). Let ` | q − 1 and f(x) be any polynomial over Fq. Then P (x) = xrf(xs)` is a
PP of Fq if and only if (r, q − 1) = 1 and f(ζi) 6= 0 for all 0 ≤ i ≤ `− 1.

Corollary 5.7 (Laigle-Chapuy 2007 [64]). Let p be a prime, ` be a positive integer
and v be the order of p in Z/`Z. For any positive integer n, take q = pm = p`vn

and `s = q − 1. Assume f(x) is a polynomial in Fpvn [x]. Then the polynomial
P (x) = xrf(xs) is a PP of Fq if and only if (r, q − 1) = 1 and f(ζi) 6= 0 for all
0 ≤ i ≤ `− 1.

In these corollaries xrf(x)s behaves like the monomial xr over µ`. The following
is an extension of the previous results. In this case, xrf(xe + a)s behaves like the
monomial x2r+tes over µ`.

Theorem 5.8 (Zieve 2009 [104]). Let t > 0 be an integer, and let f(x) = xtf̂(x`),
where f̂ ∈ Fq[x]. Let a ∈ F∗q and (e, `) = 1. Assume that every η ∈ µ`·(2,`) satisfies
η + a

η ∈ µts and xtf̂((η2e + a)`) ∈ µs. Then P (x) = xrf(xes + a) is a PP of Fq iff
(2r + tes, `) = 1 and (r, s) = 1.

5.3 Intermediate indices

In recent years, there have been several studies on constructing permutation polynomi-
als with indices ` close to the size of a subfield or the size of certain cosets (e.g., q− 1
or q + 1 over Fq2 , q − 1 or qn−1 + · · · + q + 1 over Fqn). We call them intermediate
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indices. Many of these permutation polynomials are often over finite fields with even
extensions.

Index ` = q − 1

Let us consider the finite field Fqn . When the index is q − 1, then s = qn−1
q−1 . We

can reduce a permutation of Fqn to a permutation over a subfield Fq (because xrf(x)s

maps 0 to 0 and µ` = F∗q). Then we obtain a direct consequence of Corollary 5.1.

Theorem 5.9 (Zieve 2013 [105]). Let q be a prime power, ` = q − 1 and s = (qn −
1)/(q − 1) = qn−1 + · · ·+ q + 1. Then P (x) = xrf(xs) is a PP of Fqn if and only if
(r, s) = 1 and xrf(x)f (q)(x) · · · f (qn−1)(x) permutes Fq, where f (q

i)(x) denotes the
polynomial obtained from f(x) by raising every coefficient to the qi-th power.

In particular, if f(x) ∈ Fq[x], i.e., all the coefficients of f(x) are in Fq, then we
must have, over Fq,

xrf(x)f (q)(x) · · · f (qn−1)(x) = xrf(x)n.

Namely, if f(x) ∈ Fq[x], then P (x) = xrf(x(q
n−1)/(q−1)) is a PP of Fqn if and

only if (r, (qn − 1)/(q − 1)) = 1 and xrf(x)n is a PP of Fq.
When the coefficients of f(x) are in Fqn \ Fq, several recent papers study the cases

when f(x) = xe + a and n is a small positive integer. This is related to the study
of complete permutation polynomials. A complete permutation polynomial (CPP) is a
polynomial f(x) such that both f(x) and f(x) + x induce bijections of Fq. The most
studied class of CPPs are monomials P (x) = a−1xd. It is well known that P (x) =
a−1xd is a PP of Fqn if and only if gcd(d, qn − 1) = 1. Hence the characterization of
CPP monomials P (x) = a−1xd is essentially reduced to the study of the permutation
behavior of the binomial xd + ax. If there exists a complete permutation monomial
of degree d over Fq, then d is called a CPP exponent over Fq. Related work has been
done recently in [12, 13, 15, 16, 66, 95].

Let q = pk and let a−1xd be the CPP monomial over Fpnk such that d = pnk−1
pk−1 + 1.

For any a ∈ Fpnk , let ai = ap
ik

, where 0 ≤ i ≤ n− 1. Define

ha(x) = x

n−1∏
i=0

(x+ ai).

Then Corollary 5.1 directly gives the following.

Corollary 5.10 (Wu-Li-Helleseth-Zhang 2015 [96]). Let d = pnk−1
pk−1 + 1. Then xd +

ax ∈ Fpnk [x] is a PP of Fpnk if and only if ha(x) ∈ Fpk [x] is a PP of Fpk .
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In this case x(x+a)d−1 reduces to a polynomial ha(x) with a lower degree n+1 over
µpk−1 or Fpk . When n is small, we essentially need to study permutation polynomials
of low degree over a subfield Fpk .

Since the classification of low degree permutation polynomials over Fq is well
known (see for example [63]), we can obtain the classification of CPP monomials

P (x) = a−1x
qn−1
q−1 over Fqn for small n’s. Indeed, using cubic permutation polynomi-

als, Zieve solved the case when n = 2.

Corollary 5.11 (Zieve 2013 [105]). For α ∈ F∗
q2 and β ∈ Fq, the polynomial P (x) =

αxq+2 + βx is a complete permutation polynomial over Fq2 if and only if
• q ≡ 5 (mod 6) and αq−1 has order 6;
• q ≡ 2 (mod 6) and αq−1 has order 3; or
• q ≡ 0 (mod 3) and αq−1 = −1.

An extension of the above result for f(x) = αx2 + β can be found in [105] using
degree-4 permutation polynomials over Fq. Similarly, the following result holds.

Corollary 5.12 (Zieve 2013 [105]). For α ∈ F∗
q3 and β ∈ Fq, the polynomial P (x) =

αxq
2+q+2 + βx is a complete permutation polynomial over Fq3 if and only if

• q ≡ 0 (mod 2) and αq
2
+ αq

2−q+1 + α = 0;
• q = 7 and 2α24 + 4α12 + α6 + 1 = 0 and β 6∈ {0,−1};
• q = 3 and α12 + α8 + α2 + 1 = 0 and β = 1;
• q = 2 and α 6= 1.

In [15, 16, 95, 96], PPs of the form fa(x) = xd + ax over Fqn were thoroughly in-
vestigated for n = 2, 3, 4. For any odd p, Wu et al [95] give a necessary and sufficient
description for the case n = 4. For n = 6, sufficient conditions for fa(x) to be a PP
of Fq6 were provided in [95, 96] for the special cases of characteristic p ∈ {2, 3, 5},

whereas in [12] all a’s for which ax
q6−1
q−1 +1 is a CPP over Fq6 are explicitly listed. The

case n = p − 1 was dealt with in [96, 66] as well. Using the classification of ex-
ceptional polynomials, Bartoli et al. [13] classified complete permutation monomials
of degree d = qn−1

q−1 + 1 over the finite field with qn elements in odd characteristic,
where n+ 1 is a prime and (n+ 1)4 < q. However, when n+ 1 is large or not prime,
the classification of CPP exponents is still open. For example, when n + 1 is a prime
power such as 8 or 9, only a few new examples of CPPs are provided in [13]. Recently,
we constructed several new classes of complete permutation monomials a−1xd of Fq
using the AGW criterion, when ha(x) is either a Dickson permutation polynomial or
a degree p exceptional polynomial [33]. More interesting classes of PPs with inter-
mediate indices are expected to be constructed and classified in this way. Hence we
propose the following.
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Problem 4. Classify complete permutation monomials a−1x
qn−1
q−1 +1 of Fqn for more

general n.

For q = 2t and n = 2st, Bhattacharya and Sarkar [17] solved the problem for
a ∈ Fq2 . However, it is not known if a ∈ F2n . They also extended their study to
trinomials. Our next proposed problem is the following.

Problem 5. Classify sparse permutation polynomials of Fqn with index q − 1, i.e.,

sparse permutation polynomials of the form P (x) = xrf(x
qn−1
q−1 ) of Fqn .

Index ` = q + 1

In this subsection we consider PPs over Fq2 , ` = q + 1 and s = q − 1. Then we must
have xq = x−1 where x ∈ µ`. Because

xrf(x)q−1 = xr
f(x)q

f(x)
,

we can simplify f(x)q using xq = x−1 over µ` and study the permutation behavior of
xrf(x)s over µ` as a rational function. Sometimes this approach is called the fractional
method [55]. Under certain assumptions, xrf(x)s can behave very nicely over µq+1.

Theorem 5.13 (Zieve 2013 [105]). Let q be a prime power, ` = q + 1 and s = q − 1.
Let β be an `-th root of unity in Fq. Let f(x) ∈ Fq2 [x] be a polynomial of degree d
such that f(0) 6= 0 and xdf(1/x)q = βf(xq). Then P (x) = xrf(xs) is a PP of Fq2 if
and only if (r, s) = 1, (r − d, `) = 1, and f(x) has no roots in µ`.

Corollary 5.14 (Zieve 2013 [105]). Let ` = q + 1 and β` = 1. Then f(x) =
xr(xd(q−1) + β−1) is a PP of Fq2 if and only if (r, q − 1) = 1, (r − d, `) = 1,
and (−β)(q+1)/gcd(q+1,d) 6= 1.

In the previous result, xrf(x)s behaves like βxr−d over µq+1. For these permutation
binomials of index q+1, it was conjectured that there are only finitely many (q, β) for
which f(x) = xr(xd(q−1) + β−1) is a PP of Fq2 under the assumption that r > 2 be a
prime and βq+1 6= 1. See Hou and Lappano [43, 46, 52] and references therein for this
conjecture and partial results along this direction. We remark that they used different
techniques such as Hermite’s criterion, power sums, and combinatorial identities.

In a series of works on permutation binomials and trinomials using power sums,
Hou characterized the class of permutation trinomials of the form P (x) = x(a +
bxq−1+cx2(q−1)) over Fq2 (see [46] and references therein). Here we can view P (x) =
xf(xq−1) where f(x) = a+ bx+ cx2.

Theorem 5.15 (Hou 2013-2014 [46]). Let q be an odd prime power, let f(x) = ax+
bxq + cx2q−1 ∈ Fq2 [x]. Then f is a PP of Fq2 if and only if one of the following is
satisfied:
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• a = b = 0, q ≡ 1, 3 (mod 6).
• (−a)(q+1)/2 = −1 or 3, b = 0.
• ab 6= 0, a = b1−q, 1− 4a

b2 is a square of F∗q .
• ab(a− b1−q) 6= 0, 1− 4a

b2 is a square of F∗q , b2 − a2bq−1 − 3a = 0.

Theorem 5.16 (Hou 2013-2014 [46]). Let q be an even prime power, let P (x) =
ax+ bxq + cx2q−1 ∈ Fq2 [x]. Then f is a PP of Fq2 if and only if one of the following
is satisfied:

• a = b = 0, q = 22k.
• ab 6= 0, a = b1−q, Trq/2(b

−1−q) = 0.

• ab(a− b1−q) 6= 0, a
b2 ∈ Fq, Trq/2(

a
b2 ) = 0, b2 + a2bq−1 + a = 0.

Recently, in Li-Helleseth [58], Li-Qu-Li-Fu [55], Gupta-Sharma [38], Zha-Hu-Fan
[100], various researchers constructed permutation trinomials in the form of xrh

(
xq−1

)
,

where h(x) = 1 + xs + xt has low degree over Fq2 and q is even. In general,

xrh(x)q−1 = xr
h(x)q

h(x)

= xr
(1 + xs + xt)q

1 + xs + xt

= xr
1 + x−s + x−t

1 + xs + xt

=
xr + xr−s + xr−t

1 + xs + xt

The idea of the fractional method is to show that x
r+xr−s+xr−t

1+xs+xt 6= yr+yr−s+yr−t

1+ys+yt if
x 6= y ∈ µq+1. This is equivalent to solving multivariate equations (see [29, 27, 53, 91]
for q even) or ensuring that an algebraic curves C(x, y) = 0 has no rational points
(x, y) over µ2

` with x 6= y ([11, 14]). There are several results dealing with higher
degree polynomials h(x) = 1 + xs + xt of special type. For example,

Theorem 5.17 (Li-Qu-Chen 2017 [53]). Let q = 2h and h be a positive integer. Then
P (x) = x+ xq−1 + x(q−1)q/2 is a PP of Fq2 if and only if h 6≡ 0 (mod 3).

Theorem 5.18 (Li-Qu-Chen-Li 2017 [54]). Let q = 2h , where h is odd, and f(x) =

x+ x
q2−3q+5

3 + x
2q2−3q+4

3 . Then f(x) is a permutation trinomial over Fq2 .

Theorem 5.19 (Li-Qu-Chen-Li 2017 [54]). Let q = 2h, h ≥ 1, i be integers and
f(x) = xiq+i+3 + x(i+6)q+i−3 + x(i−2)q+i+5 . Then f(x) is a permutation trinomial
over Fq2 if gcd(3 + 2i, q − 1) = 1 and k 6≡ 0 (mod 4).
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Li, Qu, and Wang [56] have developed another systematic way to characterize
permutation polynomials of the form f(x) = xrh

(
xq−1

)
∈ Fq2 [x] over Fq2 where

h(x) ∈ Fq[x] is an arbitrary polynomial. The main tools consist of the reduction of the
degree of the q-th power of h(x) by using the structure of µq+1, and the application of
the AGW criterion twice so that we can reduce the permutation of Fq2 to a subset of
the subfield Fq.

Theorem 5.20 (Li-Qu-Wang 2018 [56]). Let f(x) = xrh
(
xq−1

)
∈ Fq2 [x] be such

that all coefficients of h(x) belong to Fq and S be the set defined as follows:

S :=

{
{a ∈ F∗q : Tr

( 1
a

)
= 1} if q is even,

{a ∈ Fq : η
(
a2 − 4

)
= −1} if q is odd.

Let a = x+ x−1 and h(x) = h1(a)x+ h2(a). Assume that

R(a) =
h2

1(a)Dr−2(a) + h2
2(a)Dr(a) + 2h1(a)h2(a)Dr−1(a)

h2
1(a) + h1(a)h2(a)a+ h2

2(a)
,

where Dr(a) is the Dickson polynomial of the first kind. Then f(x) permutes Fq2 if
and only if the following conditions hold simultaneously:
• gcd(r, q − 1) = 1;

• for the corresponding fractional polynomial g(x) = xrh(x)q−1, g(x) = 1 has a
unique solution x = 1 in µq+1 and g(x) = −1 has a unique solution x = −1 in
µq+1;

• h(x) 6= 0 for any x ∈ µq+1;

• R(a) permutes {2,−2} ∪ S.

Many explicit classes of PPs of the form xrh
(
xq−1

)
over Fq2 can be explained

by using this result. We refer the reader to [56] and references therein. When the
coefficients of h(x) are in Fq2 \ Fq, the characterization is even more complicated, so
we need to restrict our polynomial h(x) to some special polynomials. We propose the
following problem.

Problem 6. Classify sparse permutation polynomials of Fq2 of index q + 1. Namely,
PPs of the form xrf(xq−1) when f is sparse.

For example, there are many recent works on characterization of PPs of trinomials
when the coefficients are in Fq2 . In [53], Li, Qu and Chen proved

Theorem 5.21 (Li-Qu-Chen 2017 [53]). Let q = 2k and k be a positive integer. Let
P (x) = x(1+ax2(q−1)+aq/2xq(q−1)) be such that a ∈ Fq2 and the order of a is q+1.
Then P (x) is a PP of Fq2 .
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Tu, Zeng, Li and Helleseth in [81] proved the sufficiency of the conditions in the
following theorem and conjectured their necessity. Then Bartoli [10] proved the neces-
sity using low degree algebraic curves and computational packages such as MAGMA.
Hou [47] found a way to prove both directions at the same time.

Theorem 5.22 ([81], [10], [47]). Let q = 2h, h ≥ 3. Let P (x) = x + βx2(q−1)+1 +
αxq(q−1)+1 ∈ Fq2 [x] be such that α, β ∈ F∗

q2 . Then P (x) is a PP of Fq2 if and only if

• β = αq−1 and Trq/2(1 + 1
αq+1 ) = 0; or

• β(1 + αq+1 + βq+1) + α2q = 0, βq+1 6= 1, and Trq/2(
βq+1

αq+1 ) = 0.

Exponents of many of these permutation polynomials are so called Niho exponents.
See Li and Zeng [60] for an extensive survey of permutation polynomials from Niho
exponents. Many open problems are proposed in [60] as well. Sometimes P (x) may
not be explicitly expressed as P (x) = xrf(xq−1). Indeed, Kyureghyan and Zieve [51]
studied polynomials of the form x+ γTr(xk) and proved the following result.

Theorem 5.23 (Kyureghyan-Zieve 2016 [51]). Let q ≡ 1 (mod 4) and let γ ∈ Fq2

satisfy (2γ)(q+1)/2 = 1. Then P (x) = x+ γTrq2/q(x
(q+1)2/4) permutes Fq2 .

Let N = q+3
4 . Then P (x) = x + γTrq2/q(x

(q+1)2/4) = x(1 + γxN(q−1) +

γx(qN+1)(q−1)) is a PP of Fq2 if and only if g(x) = x(1 + γxN + γxqN+1)q−1 is
a bijection on µq+1. In fact, g(x) behaves as c2

1x on the non-squares in µq+1 and c2
2x
N

on the squares, for certain elements c1, c2 ∈ µq+1.

Theorem 5.24 (Li-Qu-Chen-Li 2017 [54]). Let q = 2h. Then f(x) = cx+Trq2/q

(
xk
)

is a PP over Fq2 for each of the following cases:
• k = 2q − 1, c = 1 if h is even or c3 = 1 if h is odd.

• k =
(3q−2)(q2+q+1)

3 , h is even and c3 = 1.

• k = (3q2−2)(q+4)
5 , h is odd and c3 = 1.

• k = 22h−2 + 3 · 2h−2, c ∈ Fq and x3 + x+ c = 0 has no solution in Fq.

• k = 22h−1+3·2h−1+1
3 , h is odd and c

q+1
3 = 1.

• k = q2−2q+4
3 , h is even and c = 1.

• c = 1 and k =

{
(2q2−1)(q+6)

7 , h ≡ 1 (mod 3);

− (q2−2)(q+6)
7 , h ≡ 2 (mod 3).

The fractional polynomial xrf(x)s can behave like a rational function. For example,
in the following result, the polynomial xrf(x)s behaves like g−1◦xn◦g where g(x) =
x−βγq
γx−β is injective from µ` to µ`.
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Theorem 5.25 (Zieve 2013 [105]). Let q be a prime power, ` = q + 1 and s = q − 1.
Let n > 0 and k ≥ 0 be integers, and let β, γ ∈ Fq2 be such that β` = 1 and
γ` 6= 1. Then P (x) = xn+k`((γxs − β)n − γ(xs − γqβ)n) is a PP of Fq2 if and only
if (n+ 2k, s) = 1 and (n, `) = 1.

Similarly, we have

Theorem 5.26 (Zieve 2013 [105]). Let q be a prime power, ` = q + 1 and s = q − 1.
Let n > 0 and k ≥ 0 be integers, and let β, δ ∈ Fq2 be such that β` = 1 and
δ 6∈ Fq. Then P (x) = xn+k`((δxs − βδq)n − δ(xs − β)n) is a PP of Fq2 if and only if
(n(n+ 2k), s) = 1.

Here xrf(x)s behaves like g−1 ◦ xn ◦ g where g(x) = δx−βδq
x−β is injective from µ`

to Fq ∪ {∞}. There are also several work on rational functions of low degree, see for
example, Bartoli and Giulietti [11, 14]. A generalization of Theorems 5.25, 5.26 can
be found in [14]. Also in [51], Kyureghyan and Zieve constructed a few classes of PPs
of the form x+ Trq2/q(x

k) using rational bijections over µ` when n = 2, 3.
Now we describe a construction through rational functions of arbitrary high degree.

Let n be a positive integer and α ∈ Fq2 \ {0}. Then we define the following polyno-
mials over Fq2 .

Gn(x, α) =

bn2 c∑
i=0

(
n

2i

)
αixn−2i,

Hn(x, α) =

bn2 c∑
i=0

(
n

2i+ 1

)
αixn−2i−1.

The Rédei function is a rational function over Fq2 defined as Rn(x, α) =
Gn(x,α)
Hn(x,α)

. It is
easy to check that

(x+
√
α)n = Gn(x, α) +Hn(x, α)

√
α. (5.1)

In the following result, the fractional polynomial xrf(x)s behaves like a Rédei func-
tion that is a rational function of arbitrary degree.

Theorem 5.27 (Fu-Feng-Lin-Wang 2018 [34]). Suppose n > 0 and m are two inte-
gers. Let α ∈ Fq2 satisfy αq+1 = 1, and µq+1 be the set of all distinct (q + 1)-th roots
of unity. Then the polynomial

P (x) = xn+m(q+1)Hn(x
q−1, α)

permutes Fq2 if and only if any one of the following conditions holds:

(i)
√
α ∈ µq+1 and gcd(n(n+ 2m), q − 1) = 1.
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(ii)
√
α /∈ µq+1, gcd(n+ 2m, q − 1) = 1 and gcd(n, q + 1) = 1.

Similarly, the statement works for P (x) = xn+m(q+1)Gn(x
q−1, α).

This class of PPs of the form xrf(xq−1) has a nice property such that the degree of
f can be arbitrarily high and can be generated recursively.

Large intermediate indices

For a finite field of size qn, we can study permutation polynomials of index ` = qn−1+
· · · + q + 1. However, P (x) may not be explicitly expressed as P (x) = xrf(xq−1).
Indeed, in the study of polynomials of the form x + γTr(xk), Kyureghyan and Zieve
considered n = 3 and ` = q2 + q + 1 and they proved the following

Theorem 5.28 (Kyureghyan-Zieve 2016 [51]). If q is odd, thenP (x) = x+Trq3/q(x
q2+1

2 )
permutes Fq3 .

The index approach requires us to prove that g(x) = x(1+x(q+1)/2 +x(q
2+q+2)/2 +

x(q
2+2)(q+1)/2))q−1 permutes the set µq2+q+1.

Theorem 5.29 (Li-Qu-Chen-Li 2017 [54]). Let q = 2h and f(x) = cx+Trq4/q2

(
xk
)
∈

Fq4 [x]. Then f(x) is a permutation polynomial over Fq4 if one of the following condi-
tions occurs:
• k = 24h−1 − 23h−1 + 22h−1 + 2h−1 and c ∈ F∗q .

• k = q3 − q + 1 and c = 1.

• k = q4 − q3 + q and c = 1.

We note that ` = q3 + q2 + q + 1 in the above theorem. Also in the paper, two
other permutation trinomials with index ` = q2 + q + 1 over Fq3 are constructed by
multivariate method. Similar results were given by Wang, Zhang and Zha [91] for
` = q2 + q + 1 over Fq3 .

Theorem 5.30 (Wang-Zhang-Zha 2018 [91]). Let q = 2h and h 6≡ 1 (mod 3). If
f(x) = 1 + xq+1 + x−q or f(x) = 1 + xq+2 + x−q, then P (x) = xf(xq−1) is a
permutation polynomial over Fq3 .

The following result follows directly from Corollary 5.1.

Theorem 5.31 (Bartoli-Masuda-Quoos 2018 [14]). Let n ≥ 2, s ≥ 0 be integers,
β ∈ µqn−1+···+q+1, and L ∈ Fqn [x] be such that Lq = βx−tL for some fixed integer t.
Then xs+k(q

n−1+qn−2+···+q+1)L(xq−1) permutes Fqn if and only if (s− t, qn−1 + · · ·+
q + 1) = 1, (s+ k(q + 1), q − 1) = 1, and L has no roots in µqn−1+···+q+1.
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A concrete class of permutation polynomials over Fq3 using Theorem 5.31 and
MAGMA is also provided in [14]. Earlier, for ` = q2 + q + 1, Ding et al. [28]
and Yuan [97] gave several explict classes permutation polynomials over Fq3 where
q = 3k and q ≡ 3(mod 4) respectively. Wang et al. [92] presented six classes of
permutation trinomials over Fq3 with q = 3k. Bartoli [9] characterized four classes of
permutation trinomials over Fq3 in terms of their coefficients in Fq, q = pk and p > 3.
Finally we propose the following problem.

Problem 7. Construct and classify permutation polynomials of Fqn with intermediate
indices such as ` = qn−1 + · · · + q + 1, c(qn−1 + · · · + q + 1), or qn−1+···+q+1

d ,
where c is a positive factor of q − 1 and d is a positive factor of qn−1 + · · · + q + 1.
For even n, construct and classify permutation polynomials of Fqn with index ` =
qn−1 − qn−2 + qn−3 + · · ·+ q − 1 or a constant scale of `.

5.4 The maximum index

Obviously, most PPs over the finite field Fqn have index qn − 1, the largest possible
index. In particular, Corollary 5.1 or Corollary 5.2 is trivial when the index is the
largest possible. Therefore the index viewpoint is not so useful when the index of a
polynomial is the largest index. Nevertheless, we could still construct polynomials
piece-wisely and use cyclotomy of the small index ` to generate PPs with maximum
index. Here is an example of such constructions where we use simple monomials for
branch functions that are used to define polynomials piece-wisely.

Theorem 5.32 (Wang 2013 [88]). Let q − 1 = `s and A0, . . . , A`−1 ∈ F∗q . Then

P (x) =

{
0, if x = 0;
Aix

ri , if x ∈ Ci, 0 ≤ i ≤ `− 1.
(5.2)

is a PP of Fq if and only if (ri, s) = 1 for any i = 0, 1, . . . , `−1 and {indγ(Ai)+rii |
i = 0, . . . , `− 1} is a complete set of residues modulo `.

In particular, these PPs have the following form with at most `2 terms.

P (x) =
1
`

`−1∑
j=0

`−1∑
i=0

Aiζ
−jixri+js

Their inverses can be easily obtained as well, see [89]. For more results on other types
of piecewise construction, we refer the readers to [35, 24].

Problem 8. Classify more classes of permutation polynomials using other types of
branch functions.
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There is vast literature on constructing permutation polynomials of special forms
over finite fields; many of these also have maximum indices. For more information
on permutation polynomials prior to the year 2015, we refer the interested readers to
[44, 72] and reference therein. Recently there is a focused study on sparse permutation
polynomials such as binomials, trinomials, few-nomials. Most of them have special
exponents and are defined over finite fields of even characteristic. One main technique
to prove these results is to generate the polynomial equation into a system of equations
by raising powers of the equation, and then covert the system into a lower-degree
multivariate systems of equations. See [29, 27, 53, 91] and the references therein.

There is also an extensive study of permutation polynomials of the form
∑

(xp
m −

x + δi)
si + L(x); we refer the readers to recent papers [39, 65, 101] and references

therein. Other than solving special equations over finite fields using the multivariate
method, many of these results were obtained via an application of the general AGW
criterion; see [98, 99, 102, 56]. Because our purpose in this paper is to demonstrate the
index approach, we therefore decide not to list all the articles dealing with maximum
indices.

6 Conclusion: other results and problems

As mentioned above, the notion of the index of a polynomial over finite fields is quite
useful in the study of permutation polynomials, value set bounds, as well as character
sums of polynomials over finite fields. We can also study the inverses of permutation
polynomials by index approach [89, 57]. We would like to explore this index approach
further to some related problems. For example, it would be interesting to explicitly
evaluate character sums of polynomials using their indices. For the value sets of poly-
nomials, we would like to characterize polynomials with small value sets in terms of
their indices. Furthermore, it seems very interesting to classify PPs of small indices up
to intermediate indices in terms of their coefficients. Another interesting problem is
the distribution of PPs in terms of their indices. In [68], Masuda and Zieve showed that
permutation binomials over prime field Fp must have their indices less than

√
p + 1.

We would like to know whether this kind of behavior works for permutation trinomials
or few-nomials.

Problem 9. Study the distribution of indices for “sparse" permutation polynomials
over finite prime field.

It is also interesting to extend the index approach to other new types of problems.
Recently, Işik and Winterhof [48] studied the relationship between Carlitz rank and
the index of permutation polynomials. The Carlitz rank was introduced in [7] for
permutation polynomials to measure the smallest number of inversions used to rep-
resent this permutation as a composition of linear polynomials and inversions in al-
ternating order. We refer to [79] for a survey of results on Carlitz rank. Işik and
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Winterhof [48] proved that, if the permutation polynomial g is neither close to a poly-
nomial of the form ax nor a rational function of the form ax−1, then the Carlitz rank
Crk(g) > q − max{3Ind(g), (3q)1/2}, where Ind(g) denotes the index of g. More-
over, they showed that the permutation polynomial which represents the discrete log-
arithm guarantees both a large index and a large Carlitz rank. This results has crypto-
graphic applications.

Problem 10. Find more applications of indices of polynomials over finite fields.

Another interesting new problem is to study the distribution or characterization of
irreducible polynomials g(x) = xrf(x(q−1)/`) + b (b 6= 0) according to their indices.
For example, the characterization of irreducible polynomials of the form xr + b (cor-
responding to ` = 1) was done earlier. It would be natural to characterize/enumerate
those irreducible polynomials with prescribed indices. Similarly, it would be inter-
esting to study primitive polynomials, primitive normal polynomials with prescribed
indices. See related work in [31, 32, 42, 77, 71] and references therein.

We remark that the index for multivariate polynomials and polynomial vector maps
is also introduced in [74]. Results for value set bounds in terms of indices for such
polynomials are also obtained similarly. It would be interesting to extend our study
for other problems involving multivariate polynomials and polynomial vector maps as
well.
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