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Abstract. We introduce the notions of unsigned and signed generalized Lucas
sequences and prove certain polynomial recurrence relations on their character-
istic polynomials. We also characterize when these characteristic polynomials
are irreducible polynomials over a finite field. Moreover, we obtain the ex-
plicit expressions of the remainders of Dickson polynomials of the first kind
divided by the characteristic polynomial of generalized Lucas sequences. Using
these remainders, we show an application of generalized Lucas sequences in the
characterization of a class of permutation polynomials and their compositional
inverses.

1. Introduction

Fibonacci numbers form an integer sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

which was well known in ancient India. To the western world, it became popular
through the Italian Mathematician, Leonardo of Pisa known as Fibonacci (1170-
1250), who considered the growth of an idealized (biologically unrealistic) rabbit
population by using this sequence in his famous book Liber Abaci (1202). In the
language of recurrence relation, Fibonacci numbers {Fn}∞n=0 satisfy a second order
homogeneous recurrence relation given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

The so-called Lucas numbers {Ln}∞n=0 have the same recurrence relation but dif-
ferent initial values, that is,

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

1991 Mathematics Subject Classification. Primary 11B39; Secondary 11T06.
Key words and phrases. Lucas sequences, finite fields, Dickson polynomials, irreducible poly-

nomials, permutation polynomials.
Research of the author was partially supported by NSERC of Canada. The author wants

to thank Hadi Kharaghani for kind and continuous support, and generous hospitality during the
visit to IPM. The author also wants to thank IPM, Behruz Tayfeh-Rezaie, and Saieed Akbari for
their warm hospitality. Finally the author thanks the referee for helpful suggestions.

c©0000 (copyright holder)

1



2 QIANG WANG

Nowadays, Lucas sequences are referred as a family of sequences with the similar
structure. For a given pair of integers P,Q such that 4 = P 2 − 4Q is a non-
square, there are two types of Lucas sequences. The first type is usually denoted
by {Vn(P,Q)}∞n=0 where

V0(P,Q) = 2, V1(P,Q) = P, Vn(P,Q) = PVn−1(P,Q)−QVn−2(P,Q) for n ≥ 2.

The second type of sequences {Un(P,Q)}∞n=0 is defined via

U0(P,Q) = 0, U1(P,Q) = 1, Un(P,Q) = PUn−1(P,Q)−QUn−2(P,Q) for n ≥ 2.

We call {Vn(P,Q)}∞n=0 the first type because we will see that they can be obtained
from Dickson polynomials of the first kind. Similarly, the sequence {Un(P,Q)}∞n=0

can be obtained from Dickson polynomials of the second kind. Hence Fibonacci
numbers and Lucas numbers are {Un(1,−1)}∞n=0 and {Vn(1,−1)}∞n=0 respectively.
When P = 2 and Q = −1, sequences {Un(2,−1)}∞n=0 and {Vn(2,−1)}∞n=0 are called
Pell numbers and Pell-Lucas numbers respectively.

It is well-known that Ln = Vn(1,−1) = an +bn where a = 1+
√

5
2 and b = 1−

√
5

2 .
Let η be a primitive 10-th root of unity, then we can rewrite a = η + η−1, b =
η3 + η−3, and thus Ln = (η + η−1)n + (η3 + η−3)n. Hence this motivated us to
introduce the following generalized notion of Lucas numbers in our previous work.

Definition 1.1. ([4]) For any integer k ≥ 1 and η a fixed primitive (4k + 2)-
th root of unity, the generalized Lucas sequence (or unsigned generalized Lucas
sequence) of order k is defined as {an}∞n=0 such that

an =
2k∑
t=1

t odd

(ηt + η−t)n =
k∑

t=1

((−1)t+1(ηt + η−t))n.

We note that the Lucas numbers are simply generalized Lucas sequences of
order k = 2. Similarly, we can define

Definition 1.2. For any integer k ≥ 1 and η a fixed primitive (4k +2)-th root
of unity, the signed (or alternating) generalized Lucas sequence of order k is defined
as {bn}∞n=0 such that

bn =
2k∑
t=1

t even

(ηt + η−t)n =
k∑

t=1

((−1)t(ηt + η−t))n.

In fact, we will see that all the coefficients of both characteristic polynomials of
signed and unsigned generalized Lucas sequences of order k are integers and then
using Waring’s formula we can conclude that both sequences are integer sequences.
Several examples of these families of integer sequences can be found in Sloan’s On-
Line Encyclopedia of Integer Sequences. For example, generalized Lucas sequence
of order 4 is called an accelerator sequence for Catalan’s constant (A094649). Sim-
ilarly, the signed generalized sequences of order 3 and 5 are numbered as A094648
and A094650 respectively.

The following tables (Table 1, Table 2) contain initial values and recurrence
relations of unsigned and signed generalized Lucas sequence of order k for small
k’s.
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Table 1. Generalized Lucas sequences

k initial values recurrence relations

k = 1 1 an+1 = an

k = 2 2, 1 an+2 = an+1 + an

k = 3 3, 1, 5 an+3 = an+2 + 2an+1 − an

k = 4 4, 1, 7, 4 an+4 = an+3 + 3an+2 − 2an+1 − an

k = 5 5, 1, 9, 4, 25 an+5 = an+4 + 4an+3 − 3an+2 − 3an+1 + an

Table 2. Signed generalized Lucas sequences

k initial values recurrence relations

k = 1 1 bn+1 = −bn

k = 2 2,−1 bn+2 = −bn+1 + bn

k = 3 3,−1, 5 bn+3 = −bn+2 + 2bn+1 + bn

k = 4 4,−1, 7,−4 bn+4 = −bn+3 + 3bn+2 + 2bn+1 − bn

k = 5 5,−1, 9,−4, 25 bn+5 = bn+4 + 4bn+3 + 3bn+2 − 3bn+1 − bn

It is easy to see from the definition that the characteristic polynomial of gen-
eralized Lucas sequence of order k ≥ 1 is

gk(x) =
2k∏
t=1

t odd

(x− (ηt + η−t)).

Similarly, the characteristic polynomial of signed generalized Lucas sequence of
order k ≥ 1 is

fk(x) =
2k∏
t=1

t even

(x− (ηt + η−t)).

It is easy to see that f1(x) = x + 1, f2(x) = x2 + x − 1, g1(x) = x − 1, and
g2(x) = x2 − x− 1. By convention, we let f0(x) = g0(x) = 1.

In Section 2, we show that both characteristic polynomials of degree k satisfy
interesting recurrence relations with characteristic polynomials of degree k− 1 and
k − 2 (Theorem 2.1, Theorem 2.2). Namely,

(1.1) f0(x) = 1, f1(x) = x + 1, fk(x) = xfk−1(x)− fk−2(x) for k ≥ 2

and

(1.2) g0(x) = 1, g1(x) = x− 1, gk(x) = xgk−1(x)− gk−2(x) for k ≥ 2.

These polynomial recurrence relations provide us an easy way to compute character-
istic polynomials of the generalized Lucas sequences and signed generalized Lucas
sequences even for large k. Hence it is quite fast to generate unsigned and signed
generalized Lucas sequences. Moreover, we characterize when degree k polynomials
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fk(x) and gk(x) are irreducible polynomials over a finite field Fq. It turns out that
2k + 1 must be prime (Theorem 2.5). In Section 3, we use some divisibility prop-
erties of characteristic polynomials gk(x) to obtain the explicit expressions for the
remainders Rn,k(x) of Dickson polynomials Dn(x) of the first kind divided by gk(x)
(Theorem 3.2). As an application, we explain the connection between generalized
Lucas sequences over a prime field, Rn,k(x), and a class of permutation polyno-
mials and their inverses over an extension field (Theorem 3.3 and Theorem 3.8,
respectively).

2. Characteristic polynomials

For any integer n ≥ 1 and a parameter a in a field F, we recall that the Dickson
polynomial of the first kind Dn(x, a) ∈ F[x] of degree n is defined by

Dn(x, a) =
bn/2c∑
i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i.

Similarly, the Dickson polynomial of the second kind En(x, a) ∈ F[x] of degree n is
defined by

En(x, a) =
bn/2c∑
i=0

(
n− i

i

)
(−a)ixn−2i.

For a 6= 0, we write x = y+a/y with y 6= 0 an indeterminate. Then the Dickson
polynomials can often be rewritten (also referred as functional expression) as

Dn(x, a) = Dn

(
y +

a

y
, a

)
= yn +

an

yn
,

and

En(x, a) = En

(
y +

a

y
, a

)
=

yn+1 − an+1/yn+1

y − a/y
,

for y 6= ±
√

a; For y = ±
√

a, we have En(2
√

a, a) = (n+1)(
√

a)n and En(−2
√

a, a) =
(n + 1)(−

√
a)n. It is well known that Dn(x, a) = xDn−1(x, a) − aDn−2(x, a) and

En(x, a) = xEn−1(x, a) − aEn−2(x, a) for any n ≥ 2. Here we also note that
Vn(P,Q) = Dn(P,Q) and Un+1(P,Q) = En(P,Q).

In the case a = 1, we denote Dickson polynomials of degree n of the first and the
second kind by Dn(x) and En(x) respectively. It is well known that these Dickson
polynomials are closely related to the Chebyshev polynomials by the connections
Dn(2x) = 2Tn(x) and En(2x) = Un(x), where Tn(x) and Un(x) are Chebyshev
polynomials of degree n of the first and the second kind, respectively. More infor-
mation on Dickson polynomials can be found in [11].

For any k ≥ 1, let η be a primitive (4k + 2)-th root of unity. It is well known
that ηt + η−t with 1 ≤ t ≤ 2k are all the roots of E2k(x). Hence the characteristic
polynomials fk(x) and gk(x) of signed and unsigned generalized Lucas sequences are
both factors of E2k(x). In fact, E2k(x) = fk(x)gk(x) because all three polynomials
are monic.

Next we prove the following results on the polynomial recurrence relations on
the characteristic polynomials fk(x) and gk(x).
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Theorem 2.1. Let gk(x) =
2k∏
t=1

t odd

(x− (ηt + η−t)) be the characteristic polyno-

mial of generalized Lucas sequence of order k ≥ 1 and g0(x) = 1. Then

(i) gk(x) = Ek(x)− Ek−1(x) for k ≥ 1.
(ii) gk(x) satisfies the following recurrence relation:

g0(x) = 1, g1(x) = x− 1, gk(x) = xgk−1(x)− gk−2(x) for k ≥ 2.

(iii) The generating function of the above recurrence is G(x; t) = 1−t
1−xt+t2 .

(iv) gk(x) =
k∑

i=0

(−1)d
i
2 e

(
k − d i

2e
b i

2c

)
xk−i.

Proof. Let Gk(x) = Ek(x)−Ek−1(x) for k ≥ 1. Using the functional expres-
sion Ek(y + y−1) = yk+1−y−(k+1)

y−y−1 , we can easily obtain Gk(y + y−1) = y(2k+1)+1
yk(y+1)

.
In particular, let η be a primitive (4k + 2)-th root of unity. Hence η2k+1 = −1
and thus Gk(ηt + η−t) = η(2k+1)t+1

ηtk(ηt+1)
= 0 for all odd t. Hence all the roots of gk(x)

are roots of Gk(x). Moreover, deg(Gk(x)) = deg(gk(x)) = k and both Gk(x) and
gk(x) are monic, we conclude that (i) is satisfied. Using the recurrence relation
Ek(x) = xEk−1(x) − Ek−2(x), one obtains (ii) immediately. Moreover, the gener-
ating function G(x; t) of gk(x) can be derived from

(1− xt + t2)G(x; t) = (1− xt + t2)
∞∑

k=0

gk(x)tk

=
∞∑

k=0

gk(x)tk −
∞∑

k=0

xgk(x)tk+1 +
∞∑

k=0

gk(x)tk+2

= 1 + (x− 1)t− xt +
∞∑

k=0

(gk+2(x)− xgk+1(x) + gk(x))tk+2

= 1− t.

Finally, to prove (iv), we have

gk(x) = Ek(x)− Ek−1(x)

=
bk/2c∑
j=0

(−1)j

(
k − j

j

)
xk−2j −

b(k−1)/2c∑
j=0

(−1)j

(
k − 1− j

j

)
xk−1−2j

=
k∑

i=0
i even

(−1)di/2e
(

n− di/2e
bi/2c

)
xk−i −

k∑
i=0

i odd

(−1)bi/2c
(

k − di/2e
bi/2c

)
xk−i

=
k∑

i=0

(−1)di/2e
(

k − di/2e
bi/2c

)
xk−i.

�

Similarly, we have the following result for signed generalized Lucas sequences.
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Theorem 2.2. Let fk(x) =
2k∏
t=1

t even

(x− (ηt + η−t)) be the characteristic polyno-

mial of signed generalized Lucas sequence of order k ≥ 1 and f0(x) = 1. Then
(i) fk(x) = Ek(x) + Ek−1(x) for k ≥ 1.
(ii) fk(x) satisfies the following recurrence relation:

f0(x) = 1, f1(x) = x + 1, fk(x) = xfk−1(x)− fk−2(x) for k ≥ 2.

(iii) The generating function of the above recurrence is F (x; t) = 1+t
1−xt+t2 .

(iv) fk(x) =
k∑

i=0

(−1)b
i
2 c

(
k − d i

2e
b i

2c

)
xk−i.

Proof. Let Fk(x) = Ek(x) + Ek−1(x) for k ≥ 1. Using the functional ex-
pression of En(x), we can easily obtain Fk(y + y−1) = y(2k+1)−1

yk(y−1)
. In particu-

lar, let η be a primitive (4k + 2)-th root of unity. Hence η2k+1 = −1 and thus
Fk(ηt + η−t) = η(2k+1)t−1

ηtk(ηt−1)
= 0 for all even t. Hence all the roots of fk(x) are

roots of Fk(x). Moreover, deg(Fk(x)) = deg(fk(x)) = k and both Fk(x) and fk(x)
are monic. Hence we conclude that (i) is satisfied. Using the recurrence relation
Ek(x) = xEk−1(x) − Ek−2(x), one obtains (ii) immediately. Moreover, the gener-
ating function F (x; t) of fk(x) can be derived from

(1− xt + t2)F (x; t) = (1− xt + t2)
∞∑

k=0

fk(x)tk

=
∞∑

k=0

fk(x)tk −
∞∑

k=0

xfk(x)tk+1 +
∞∑

k=0

fk(x)tk+2

= 1 + (x + 1)t− xt +
∞∑

k=0

(fk+2(x)− xfk+1(x) + fk(x))tk+2

= 1 + t.

Finally, to prove (iv), we have

fk(x) = Ek(x) + Ek−1(x)

=
bk/2c∑
j=0

(−1)j

(
k − j

j

)
xk−2j +

b(k−1)/2c∑
j=0

(−1)j

(
k − 1− j

j

)
xk−1−2j

=
k∑

i=0
i even

(−1)bi/2c
(

k − di/2e
bi/2c

)
xk−i +

k∑
i=0

i odd

(−1)bi/2c
(

k − di/2e
bi/2c

)
xk−i

=
k∑

i=0

(−1)bi/2c
(

k − di/2e
bi/2c

)
xk−i.

�

The functional expressions of fk(x) and gk(x) are quite useful in the above
proofs. We summarize them as follows:

(2.1) fk(y+y−1) =
y2k+1 − 1
yk(y − 1)

for y 6= 0,±1, fk(2) = 2k+1, and fk(−2) = (−1)k;
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and
(2.2)

gk(y + y−1) =
y2k+1 + 1
yk(y + 1)

for y 6= 0,±1, gk(2) = 1, and gk(−2) = (−1)k(2k + 1).

Using these functional expressions, one can also easily obtain the following result
(see also Exercise 2.11 in [11]).

Corollary 2.3. Let fk(x) and gk(x) be characteristic polynomials of signed
and unsigned generalized Lucas sequences of order k. Then we have

(i) fm+n(x) = fm(x)En(x)− fm−1(x)En−1(x).
(ii) gm+n(x) = gm(x)En(x)− gm−1(x)En−1(x).
(iii) If (2d + 1) | (2k + 1) then fd(x) | fk(x) and gd(x) | gk(x).

Next we will see some applications of E2k(x) = fk(x)gk(x). First, using
E2k(x) = fk(x)gk(x), Theorem 2.1 and Theorem 2.2, it is obvious to obtain the
following interesting combinatorial identity for any 0 ≤ m ≤ 2k.

k∑
i,j=0

i+j=m

(−1)d
i
2 e

(
k − d i

2e
b i

2c

)
(−1)b

j
2 c

(
k − d j

2e
b j

2c

)
=

{
0 if m is odd;
(−1)

m
2
(2k−m

2
m
2

)
if m is even.

Now we can characterize when fk(x) and gk(x) are irreducible polynomials over
a finite field. Let Fq be a finite field with char(Fq) = p. Since the factorization of
E2k(x) over a finite field Fq is well known (see for example, [6] or [8]), we can obtain
the factorization of fk(x) and gk(x) over Fq as well. Of course, it is enough to give
the result for the case that gcd(2k+1, p) = 1. Indeed, if (2k+1) = pr(2t+1) where
gcd(2t + 1, p) = 1, then it is straightforward to obtain fk(x) = ft(x)pr

(x − 2)
pr−1

2

and gk(x) = gt(x)pr

(x + 2)
pr−1

2 by using the functional expressions of fk(x) and
gk(x).

Theorem 2.4. Let Fq be a finite field with char(Fq) = p, gcd(2k + 1, p) = 1,
and φ be Euler’s totient function.

(i) If q is even, then fk(x) = gk(x) is a product of irreducible polynomials in
Fq[x] which occur in cliques corresponding to the divisors d of 2k + 1 with d > 1.
To each such d there correspond φ(d)/2kd irreducible factors, each of which has the
form

kd−1∏
i=0

(x− (ζqi

d + ζ−qi

d )).

where ζd is a primitive d-th root of unity and kd is the least positive integer such
that qkd ≡ ±1 (mod d).

(ii) If q is odd, then fk(x) is a product of irreducible polynomials in Fq[x] which
occur in cliques corresponding to the odd divisors d of 4k + 2 with d > 2. To each
such d there correspond φ(d)/2kd irreducible factors, each of which has the form

kd−1∏
i=0

(x− (ζqi

d + ζ−qi

d )).

where ζd is a primitive d-th root of unity and kd is the least positive integer such
that qkd ≡ ±1 (mod d).
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(iii) If q is odd, then gk(x) is a product of irreducible polynomials in Fq[x] which
occur in cliques corresponding to the even divisors d of 4k + 2 with d > 2. To each
such d there correspond φ(d)/2kd irreducible factors, each of which has the form

kd−1∏
i=0

(x− (ζqi

d + ζ−qi

d )).

where ζd is a primitive d-th root of unity and kd is the least positive integer such
that qkd ≡ ±1 (mod d).

Proof. It is easy to see that fk(x) = gk(x) for even q. Moreover, if q is odd
and d is odd, then ζd is a even power of a primitive (4k + 2)-th root of unity.
Similarly, if q is odd and d is even then ζd is an odd power of a primitive (4k+2)-th
root of unity. The rest of proof follows from [6] or [8]. �

If kd is the least positive integer such that qkd ≡ 1 (mod d), then we say the
order of q modulo d is kd which is denoted by ordd(q) = kd. Similarly, if kd is
the least positive integer such that qkd ≡ −1 (mod d), then we say the order of q
modulo d is 2kd which is denoted by ordd(q) = 2kd. Conversely, if ordd(q) = 2k
then, by the definition of kd, we can obtain that kd = k. However, if ordd(q) = k,
then kd is not always equal to k. Indeed, if k is even, then kd = k

2 ; otherwise,
kd = k. Now we have the following result which tells us when fk(x) and gk(x) are
irreducible polynomials in Fq[x].

Theorem 2.5. Let Fq be a finite field with q = pm. If either fk(x) or gk(x)
is irreducible in Fq[x], then 2k + 1 must be prime. Furthermore, the following are
equivalent

(i) fk(x) is an irreducible polynomial in Fq[x];
(ii) gk(x) is an irreducible polynomial in Fq[x];
(iii) k = 1, or ord2k+1(q) = 2k, or ord2k+1(q) = k and k is odd.

Proof. First we consider gcd(2k + 1, p) 6= 1. In this case, 2k + 1 = pr(2t + 1)
where r ≥ 1 and gcd(2t + 1, p) = 1. If fk(x) or gk(x) is irreducible, then t = 0
and pr−1

2 = 1 by using the comments before Theorem 2.4. Hence k = 1 and
2k + 1 = 3 is prime. In fact, f1(x) and g1(x) are linear polynomials and they are
always irreducible in Fq[x].

Now we assume that gcd(2k + 1, p) = 1 and k ≥ 2. If 2k + 1 is not prime, then
there are more than one divisors d of 2k+1 such that d > 1. Hence by Theorem 2.4,
neither fk(x) nor gk(x) is irreducible in Fq[x]. When 2k + 1 is a prime number, by
Theorem 2.4, there is only one possible choice for d = 2k + 1 when q is even, and
only two possible choices for d (i.e., d = 2k + 1 for fk(x) and d = 4k + 2 for gk(x))
if q is odd. Hence φ(d) = 2k. Therefore φ(d)/2kd = 1 if and only if kd = k.

If q is even, then fk(x) = gk(x) is an irreducible polynomial in Fq[x] if and only
if ord2k+1(q) = 2k, or ord2k+1(q) = k and k is odd.

If q is odd, then fk(x) is an irreducible polynomial in Fq[x] if and only if
ord2k+1(q) = 2k, or ord2k+1(q) = k and k is odd; Similarly, gk(x) is an irreducible
polynomial in Fq[x] if and only if ord4k+2(q) = 2k, or ord4k+2(q) = k and k is odd.
However, since q is odd, we have (2k + 1) | (qi ± 1) if and only if (4k + 2) | (qi ± 1)
for any positive integer i. Hence gk(x) is an irreducible polynomial in Fq[x] if and
only if ord2k+1(q) = 2k, or ord2k+1(q) = k and k is odd. �
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3. Permutation polynomials

Let Fq be a finite field of q = pm elements. In this section, we will explain an
application of generalized Lucas sequence over the prime field Fp in the characteri-
zation of a class of permutation polynomials of Fq and their compositional inverses.
We recall that a polynomial is a permutation polynomial (PP) of Fq if it induces a
bijective map from Fq onto itself. The study of permutation polynomials of a finite
field goes back to 19-th century when Hermite and later Dickson pioneered this area
of research. In recent years, interests in permutation polynomials have significantly
increased because of their potential applications in cryptography, coding theory,
and combinatorics. For more background material on permutation polynomials we
refer the reader to Chapter 7 of [12]. In [10], Lidl and Mullen proposed several
open problems and conjectures involving permutation polynomials of finite fields.
The following is one of the open problems.

Problem 3.1 (Lidl-Mullen). Determine conditions on k, r, and q so that
P (x) = xk + axr permutes Fq with a ∈ Fq

∗.

Note that we may assume each polynomial defined over Fq has degree at most
(q − 1) because xq = x for each x ∈ Fq. There are many papers on permutation
binomials published in the past twenty years. In particular, different types of
characterizations were given. We refer the reader to [3], [4], [5], [7], [13], [14], [15],
[18], [19], [20], [21], [22], [23], [24] [25], [26], [28], [29], among others.

In this section, we follow the approach from [3], [4], and [26] in terms of
generalized Lucas sequences. We will refine a result of the characterization of PPs
in [26] by studying the remainders of Dickson polynomials of the first kind divided
by the characteristic polynomial of the associated generalized Lucas sequences.
First, let us rewrite P (x) = xk + axr = xr(xk−r + a) and let s = gcd(k − r, q − 1)
and ` = q−1

s (here ` is called the index of P (x), see [2]). Then P (x) = xr(xes + a)
for some e such that (e, `) = 1. If a = bs for some b ∈ Fq, then xr(xes + a) is
a PP of Fq if and only if xr(xes + 1) is a PP of Fq. Hence we only concentrate
on polynomials of the form P (x) = xr(xes + 1) such that gcd(e, `) = 1 from now
on. Obviously, q must be odd. Otherwise, P (0) = P (1) = 0, a contradiction. It
is quite easy to see it is necessary that gcd(r, s) = 1, gcd(2e, `) = 1 and 2s = 1
for P (x) = xr(xes + 1) to be a PP of Fq ([26]). Moreover, gcd(2r + es, `) = 1.
Otherwise, if gcd(2r + es, `) = d > 1, then, for a primitive `-th root of unity ζ,

(ζ`− `
d )r(ζ(`− `

d )e + 1)s = ζ−
`
d rζ−

`
d es(ζ

`
d e + 1)s

= ζ−
`
d (2r+es)ζ

`
d r(ζ

`
d e + 1)s

= ζ
`
d r(ζ

`
d e + 1)s.

By Theorem 1 (f) [26] (or Lemma 2.1 in [28]), P (x) = xr(xes + 1) is not a
permutation polynomial of Fq. Therefore gcd(2r + es, `) = 1.

Now we collect all these necessary conditions for P (x) = xr(xes + 1) to be a
PP as follows:

(3.1) gcd(r, s) = 1, gcd(2e, `) = 1, gcd(2r + es, `) = 1, and 2s = 1.

For ` = 3, the conditions in (3.1) are sufficient to determine P (x) is a PP of Fq.
However, for ` ≥ 3, it turns out not to be the case (for example, see [3], [4]). For
general `, a characterization of PPs of the form xr(xes + 1) in terms of generalized
Lucas sequence of order k := `−1

2 is given in [26]. In the following we study
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the remainders of Dickson polynomials of the first kind divided by characteristic
polynomials of generalized Lucas sequences and then improve the result in [26].

Let k ≥ 1 and Rn,k(x) be the remainder of degree n Dickson polynomial Dn(x)
of the first kind divided by gk(x). Because all roots of gk(x) are of form ηt + η−t

where 1 ≤ t ≤ 2k is odd and η is a fixed primitive (4k + 2)-th root of unity, it is
clear that R4k+2+n,k(x) = Rn,k(x). We now give an explicit description of Rn,k(x)
for any 0 ≤ n ≤ 4k + 1 by using certain divisibility properties of gk(x).

Theorem 3.2. Let k ≥ 1 and Rn,k(x) be the remainder of degree n Dickson
polynomial Dn(x) of the first kind divided by gk(x). Then we have

Rn,k(x) =


Dn(x), if 0 ≤ n ≤ k − 1;
gk−1(x), if n = k;
−R2k+1−n,k(x), if k + 1 ≤ n ≤ 2k + 1;
R4k+2−n,k(x), if 2k + 2 ≤ n ≤ 4k + 1;

Proof. If k = 1, then g1(x) = x − 1 and it is easy to compute directly
that R0,1(x) = 2, R1,1(x) = 1, R2,1(x) = −1, R3,1(x) = −2, R4,1(x) = −1, and
R5,1(x) = 1. Hence the results hold for k = 1. So we assume that k ≥ 2. Because
deg(Dn(x)) = n and deg(gk(x)) = k, we have Rn,k(x) = Dn(x) for 1 ≤ n ≤ k − 1.

Next we prove that Dk(x) = gk(x) + gk−1(x). We first show that all roots of
gk−1(x) are roots of Dk(x)− gk(x). Indeed, let θ be a primitive (4k− 2)-th root of
unity. Then for any odd t, Dk(θt + θ−t)− gk(θt + θ−t) = θkt + θ−kt − θ2kt+1+1

θkt(θt+1)
=

θ2kt+θt

θkt(θt+1)
= 0. Since deg(Dk(x)−gk(x)) = deg(gk−1(x)) and both Dk(x)−gk(x) and

gk−1(x) are monic, we have Dk(x) = gk(x) + gk−1(x) and thus Rk,k(x) = gk−1(x).
Now we prove that Rn,k(x) = −R2k+1−n,k(x) for all k + 1 ≤ n ≤ 2k + 1.

Equivalently, we prove that Rk+i,k(x) = −Rk−i+1,k(x) for all 1 ≤ i ≤ k+1, namely,
gk(x) | (Dk+i(x) + Dk−i+1(x)). Indeed, for any odd t such that 1 ≤ t ≤ 2k− 1 and
a fixed primitive (4k +2)-th root of unity η, we have Dk+i(ηt + η−t)+Dk−i+1(ηt +
η−t) = η(k+i)t + η−(k+i)t + η(k−i+1)t + η−(k−i+1)t = η−(k−i+1)t(η(2k+1)t + 1) +
η(k−i+1)t(η−(2k+1)t + 1) = 0. Hence all roots of gk(x) are roots of Dk+i(x) +
Dk−i+1(x).

Similarly we can show that gk(x) | (D2k+1+i(x)−D2k+1−i(x)) for all 1 ≤ i ≤ 2k
and thus Rn,k(x) = R4k+2−n,k(x) for all 2k + 2 ≤ n ≤ 4k + 1. �

Table 3 gives a list of Rn,k(x)’s for small k ≥ 2’s. We note that the degree of
Rn,k(x) is at most k − 1. Any remainder is either a Dickson polynomial of degree
≤ k− 1 or gk−1(x) or a negation of the above. Therefore, for the last two columns,
we only list the partial information. The rest entries can be found by following the
same symmetry pattern as in the first two columns.

Let L be left shift operator on the generalized Lucas sequence a = (a0, a1, . . .)
(see [9] for more information on LFSR sequences and shift operators). Namely,
La = (a1, a2, . . .). For any f(x) = xn − cn−1x

n−1 − . . . − c0, we write f(L) =
Ln − cn−1L

n−1 − . . . − c0I where I = L0 such that Ia = a. Because gk(x) is a
characteristic polynomial of generalized Lucas sequence a, we obtain gk(L)a = 0.
This means that gk(L)(ai) = 0 for each i = 0, 1, . . .. Since Rn,k(x) is the remainder
of degree n Dickson polynomial Dn(x) of the first kind divided by gk(x), we also
obtain that Rn,k(L)a = Dn(L)a and thus Rn,k(L)(ai) = Dn(L)(ai) for each i =
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Table 3. Rn,k(x) for small k’s

Rn,k(x) k = 2 k = 3 k = 4 k = 5

n = 0 2 2 2 2

n = 1 x x x x

n = 2 x− 1 x2 − 2 x2 − 2 x2 − 2

n = 3 −x + 1 x2 − x− 1 x3 − 3x x3 − 3x

n = 4 −x −(x2 − x− 1) x3 − x2 − 2x + 1 x4 − 4x2 + 2

n = 5 −2 −(x2 − 2) −(x3 − x2 − 2x + 1) x4 − x3 − 3x2 + 2x + 1

n = 6 −x −x −(x3 − 3x) −(x4 − x3 − 3x2 + 2x + 1)

n = 7 −x + 1 −2 −(x2 − 2) −(x4 − 4x2 + 2)

n = 8 x− 1 −x −x −(x3 − 3x)

n = 9 x −(x2 − 2) −2 −(x2 − 2)

n = 10 −(x2 − x− 1) −x

n = 11 x2 − x− 1 −2

n = 12 x2 − 2

n = 13 x

0, 1, . . .. Hence we have the following characterization of permutation polynomials
of the form xr(xes + 1) over Fq.

Theorem 3.3. Let q = pm be an odd prime power and q − 1 = `s with ` ≥ 3
and gcd(e, `) = 1. Let k := `−1

2 . Then P (x) = xr(xes + 1) is a PP of Fq if and
only if gcd(r, s) = 1, gcd(2r + es, `) = 1, 2s = 1, and

(3.2) Rjc,k(L)(acs) = −1 for all c = 1, . . . , `− 1,

where acs is the cs-th term of the generalized Lucas sequence {ai}∞i=0 of order k over
Fp, jc = c(2eφ(`)−1r + s) mod 2`, Rjc,k(x) is the remainder of Dickson polynomial
Djc(x) of the first kind divided by gk(x). In particular, all jc are distinct even
numbers between 1 and 2`.

Proof. As we discussed earlier, it is necessary to have gcd(r, s) = 1, gcd(2r +
es, `) = 1, and 2s = 1 for P (x) to be a PP of Fq. Under these conditions, by
Corollary 3 of [26], we have P (x) = xr(xes + 1) is a PP of Fq if and only if

(3.3)
jc∑

j=0

t
(jc)
j acs+j = −1,

for all c = 1, . . . , ` − 1, where t
(jc)
j is the coefficient of xj in Djc(x). Moreover,

Equation (3.3) is equivalent to Djc(L)(acs) = −1 for all c = 1, . . . , `− 1. However,
Djc(L)(acs) = Rjc,k(L)(acs), hence we are done. �

Remark 3.4. We emphasize that jc’ s are all distinct even numbers from 2 and
4k. Since we obtained explicit and simple expressions for Rjc,k(x) in Theorem 3.2,
the coefficients of Rjc,k(x) can be obtained easily. Moreover, the above result has
significant advantage over Corollary 3 in [26] since jc can be as large as 4k while all
the degrees of Rjc,k(x) are less than k. Abusing the notation t

(jc)
j , we can rewrite

the condition (3.2) as

(3.4)
∑

j

t
(jc)
j acs+j = −1 for all c = 1, . . . , `− 1
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where t
(jc)
j represents the coefficient of xj in Rjc,k(x).

Remark 3.5. In [4], we proved that if p ≡ −1 (mod `) or p ≡ 1 (mod `)
and ` | m then P (x) = xr(xes + 1) is a PP of Fq where q = pm if and only if
gcd(2e, `) = 1, gcd(r, s) = 1, 2s = 1, gcd(2r + es, `) = 1. In particular, in the
case that p ≡ 1 (mod `) and ` | m, the condition gcd(2r + es, `) = 1 is redundant
([1]). Furthermore, the period of the generalized Lucas sequence a over Fp divides
s. Hence in this case, we always have R2c,k(L)(k) = −1 for all c = 1, 2, . . . , `− 1.

Finally we consider a related question which is to find the compositional inverse
polynomial Q(x) =

∑q−2
i=0 bix

i of a given permutation polynomial P (x). In 1991,
Mullen propose the following problem ([16]).

Problem 3.6 (Mullen). Compute the coefficients of the inverse polynomial of
a permutation polynomial efficiently.

It is well-known that∑
s∈Fq

sq−1−nQ(s) =
∑
s∈Fq

sq−1−n

q−2∑
i=0

bis
i =

q−2∑
i=0

bi

∑
s∈Fq

sq−1+i−n = −bn,

for each 0 ≤ n ≤ q − 2. Since P (x) is a permutation polynomial of Fq,

bn = −
∑

P (s)∈Fq

(P (s))q−1−nQ(P (s)) = −
∑
s∈Fq

sP (s)q−1−n.

Set P (x)q−1−n (mod xq − x) = c0 + c1x + . . . + cq−1x
q−1, we have

(3.5) bn = −
∑
s∈Fq

sP (s)q−1−n = −
∑
s∈Fq

s

q−1∑
i=0

cis
i = cq−2.

Using Equation (3.5), Muratović-Ribić [17] described the inverse polynomial
of P (x) = xrf(xs)

q−1
s ∈ Fq[x] recently. In [27], we generalized the result to the

inverse polynomials of permutation polynomials of the form xrf(xs). In particular,
for binomials xr(xes+1), we have given the following characterization of the inverse
in terms of generalized Lucas sequences (Theorem 3.1 and Equation (5) in [27]).

Theorem 3.7. Let p be an odd prime and q = pm, ` ≥ 3 is odd, q − 1 = `s,
and gcd(e, `) = 1. If P (x) = xr(xes + 1) is a permutation polynomial of Fq and
Q(x) = b0 + b1x + · · ·+ bq−2x

q−2 is the inverse polynomial of P (x) modulo xq − x,
then there are at most ` nonzero coefficients bn. These n’s satisfy n ≡ r−1 (mod s).
Let r̄ = r−1 mod s and nc = q − 1− cs− r̄ = (`− c)s− r̄ with c = 0, 1, · · · , `− 1.
Then

(3.6) bq−1−nc =
1
`
(2nc +

uc∑
j=0

t
(uc)
j anc+j),

where uc = 2(cr + rr̄−1
s )eφ(`)−1 + cs + r̄ mod 2`, t

(uc)
j is the coefficient of xj of

Dickson polynomial Duc(x) of the first kind, and {ai}∞i=0 is the generalized Lucas
sequence of order `−1

2 .

Here we improve this result by replacing Duc(x) with Ruc,k(x) where k := `−1
2

and ` = q−1
s .
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Theorem 3.8. Let p be an odd prime and q = pm, ` ≥ 3 is odd, q − 1 = `s,
and gcd(e, `) = 1. Let k := `−1

2 . If P (x) = xr(xes +1) is a permutation polynomial
of Fq and Q(x) = b0 + b1x + . . . + bq−2x

q−2 is the inverse polynomial of P (x)
modulo xq − x, then there are at most ` nonzero coefficients bn. These n’s satisfy
n ≡ r−1 (mod s). Let r̄ = r−1 mod s and nc = q − 1 − cs − r̄ = (` − c)s − r̄ with
c = 0, 1, . . . , `− 1. Then

(3.7) bcs+r̄ =
1
`
(2s−r̄ + Ruc,k(L)(anc)),

where anc is the nc-th term of the generalized Lucas sequence {ai}∞i=0 of order k over
Fp, uc = c(2reφ(`)−1 + s)+2( rr̄−1

s )eφ(`)−1 + r̄ mod 2`, Ruc,k(x) is the remainder of
Dickson polynomial Duc(x) of the first kind divided by gk(x).

Proof. Equation (3.6) in Theorem 3.7 can be rewritten as

(3.8) bq−1−nc =
1
`

(2nc + Duc
(L)(anc

)) .

Since Duc(L)(ai) = Ruc,k(L)(ai) and q − 1− nc = cs + r̄, we are done. �

Remark 3.9. Again the advantage of this version over Theorem 3.1 in [27] is
that the degrees of Ruc,k(x) are less than k and thus there are much fewer terms
involved in the summation of Ruc,k(L)(anc). We also note that uc’s are all distinct
odd numbers from 1 to 2`− 1 for c = 0, . . . , `− 1.

In particular, if a is periodic with period dividing s, then the above result
reduces to

Corollary 3.10. Let p be an odd prime and q = pm, ` ≥ 3 is odd, q− 1 = `s,
and gcd(e, `) = 1. If P (x) = xr(xes + 1) is a permutation polynomial of Fq and
Q(x) = b0 + b1x + . . . + bq−2x

q−2 is the inverse polynomial of P (x) modulo xq − x.
Assume the period of the generalized Lucas sequence a = {ai}∞i=0 of order k := `−1

2
over Fp divides s. Then

(3.9) bcs+r̄ =
1
`
(2s−r̄ + Ruc,k(L)(as−r̄)), for c = 0, 1, . . . , `− 1.

where r̄ = r−1 mod s, uc = c(2reφ(`)−1 + s) + 2( rr̄−1
s )eφ(`)−1 + r̄ mod 2`, Ruc,k(x)

is the remainder of Dickson polynomial Duc(x) of the first kind divided by gk(x).

Example 3.11. Let ` = 3 and gcd(e, 3) = 1. In this case, k = 1 and g1(x) = x−
1. So {ai}∞i=0 is the constant sequence 1, 1, . . .. Moreover, by Theorem 3.2, we have
R2,1(x) = −1 and R4,1(x) = −1. Hence R2,1(L)(acs) = R4,1(L)(acs) = −acs = −1
is automatically satisfied. Therefore, by Theorem 3.3, binomial xr(xes +1) is a PP
of Fq iff gcd(r, s) = 1, gcd(2r + es, 3) = 1, and 2s = 1.

Again, by Theorem 3.2, we obtain that R1,1(x) = 1, R3,1(x) = −2, R5,1(x) = 1.
Let r̄ = r−1 mod s and uc = c(2re + s) + 2 rr̄−1

s e + r̄. Then we have

Ruc,1(L)(as−r̄) =
{

as−r̄ = 1, if uc = 1, 5;
−2as−r̄ = −2, if uc = 3.

Moreover, by Theorem 3.8, we obtain

bcs+r̄ =
{

1
3 (2s−r̄ + 1), if uc = 1, 5;
1
3 (2s−r̄ − 2), if uc = 3.
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Example 3.12. Let ` = 5 and gcd(e, 5) = 1. In this case, we have that k = 2,
g2(x) = x2 − x − 1 and {ai}∞i=0 is the ordinary Lucas sequence. It is easy to
see from Theorem 3.2 that R2,2(x) = x − 1, R4,2(x) = −x, R6,2(x) = −x, and
R8,2(x) = x− 1. Hence

Rjc,2(L)(acs) =
{

acs+1 − acs, if jc = 2, 8;
−acs+1, if jc = 4, 6.

Under the conditions gcd(r, s) = 1, gcd(e, 5) = 1, gcd(2r+es, 5) = 1, and 2s = 1, we
obtain from Theorem 3.3 that Rjc,2(L)(acs) = −1 iff either as+1−as = a4s+1−a4s =
−1 and a2s+1 = a3s+1 = 1 or a2s+1 − a2s = a3s+1 − a3s = −1 and as+1 = a4s+1 =
1. By a useful property of Lucas sequence, i.e., aman = am+n + (−1)nam−n (in
particular, a2

n = a2n + (−1)n2), we can easily deduce that Rjc,2(L)(acs) = −1 iff
as = 2. In particular, {an} is s-periodic (see Lemma 6 in [25]).

Moreover, we obtain from Theorem 3.2 that R1,2(x) = x, R3,2(x) = 1 − x,
R5,2(x) = −2, R7,2(x) = 1 − x, and R9,2(x) = x. Let r̄ = r−1 mod s and uc =
c(2re3 + s) + 2 rr̄−1

s e3 + r̄. Therefore

Ruc,2(L)(as−r̄) =

 as−r̄+1, if uc = 1, 9;
as−r̄ − as−r̄+1, if uc = 3, 7;
−2as−r̄, if uc = 5;

and we obtain from Theorem 3.8 that

bcs+r̄ =


1
5 (2s−r̄ + as−r̄+1), if uc = 1, 9;
1
5 (2s−r̄ + as−r̄ − as−r̄+1), if uc = 3, 7;
1
5 (2s−r̄ − 2as−r̄), if uc = 5.

Example 3.13. For ` = 7 and gcd(e, 7) = 1, we have that k = 3 and g3(x) =
x3−x2−2x+1. We refer the reader to [3] for a complete description of generalized
Lucas sequences when P (x) = xr(xes + 1) is a permutation polynomial of Fq. In
this case, {an}∞n=0 is not always s-periodic. By Theorem 3.8 again, the inverse Q(x)
of P (x) satisfies

bcs+r̄ =


1
7 (2nc + anc+1), if uc = 1, 13;
1
7 (2nc − anc − anc+1 + anc+2), if uc = 3, 11;
1
7 (2nc + 2anc − anc+2), if uc = 5, 9;
1
7 (2nc − 2anc), if uc = 7;

where r̄ = r−1 mod s, nc = (7− c)s− r̄ and uc = c(2re5 + s)+2 rr̄−1
s e5 + r̄ mod 14.
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