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Two New Measures for Permutations:
Ambiguity and Deficiency
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Abstract—We introduce the concepts of weighted ambiguity
and deficiency for a mapping between two finite Abelian groupsof
the same size. Then, we study the optimum lower bounds of these
measures for permutations of an Abelian group. A construction
of permutations, by modifying some permutation functions over
finite fields, is given. Their ambiguity and deficiency is investi-
gated; most of these functions are APN permutations. We show
that, when they are not optimal, the Möbius function in the
multiplicative group of Fq is closer to beingoptimal in ambiguity
than the inverse function in the additive group of Fq. We note
that the inverse function over F28 is used in AES. Finally, we
conclude that a twisted permutation polynomial of a finite field is
again closer to being optimal in ambiguity than the APN function
employed in the SAFER cryptosystem.

Index Terms—Almost perfect non-linear (APN), permutation,
Abelian group.

I. I NTRODUCTION

A permutation polynomial over a finite ringR induces
a bijective map fromR to R. In recent years, there

has been considerable interest in studying permutation poly-
nomials, partly due to their applications in coding theory,
combinatorics and cryptography. We are interested in the finite
field Fq or the integer ringZn. For more background on
permutation polynomials over finite fields we refer to Chapter
7 of [14]. For detailed surveys of open questions and results
up to 1993 see [12], [13], [17]. For permutation polynomials
overZn andFq, we refer the readers to [18], [21], [22], [23].
Polynomials over finite rings can be viewed as maps between
finite rings, or between finite groups. This motivated us to
study mappings between two finite Abelian groups of the same
cardinality, in particular, bijective mappings.

Currently, substitution components called S-boxes are
among the most popular tools for making a cryptosystem
secure. The critical task of an S-box is to offer more confusion.
This situation results in security. These S-boxes are basedon
Boolean functions [9]. For example, the SAFER cryptosystem
introduced by Massey [15], uses S-boxes in its structure. Also
the Advanced Encryption System (AES), proposed by Daemen
and Rijmen in [5], employs an instance of an S-box to increase
the amount of confusion.
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Differential cryptanalysis, which was initiated in [19], is one
of the methods that can be used to attack S-boxes. Functions
that have the best resistance to this type of cryptanalysis are
calledAlmost Perfect Non-linear (APN). Let f : G1 → G2 be
any map, or partial map, between two Abelian groups of the
same sizes. Fora ∈ G1, a 6= 0, we can define a difference
map

∆f,a(x) = f(x+ a)− f(x)

which measures the degree of “linearity” off . The functionf
is called perfect non-linear (PN) if∆f,a is injective and almost
perfect non-linear (APN) if∆f,a is at worst2-to-1. These
functions have received significant attention because of their
resistance to linear cryptanalysis and differential cryptanalysis.
In particular, we note that the APN functions45x andlog45 x
in Z256 were used in the SAFER cryptosystem [15]. In addi-
tion, AES uses the inverse function which is a differentially
4 uniform function (it means that∆f,a(x) is at worst4-to-1)
in F28 [5]; however, the inverse function is an APN function
over some other fields.

One of the known measures for this resistance isnon-
linearity (see for example [1]). The non-linearity of a function
is defined by the Fourier transform of that function. In this
case, non-linearity is closely related to the selection of a
“character” in its definition. For more precise information, we
refer the reader to [9] and references therein. At the end of this
article we calculate this measure for several of our functions
and find correlations between these and our measures.

In this paper, we attempt to understand the injectivity and
surjectivity of ∆f,a when f is a bijection. This helps us to
understand how close a bijectionf is to being an APN function
and how much better than2-to-1 is ∆f,a. In Section II we
define two generalized measures of injectivity and surjectivity
of ∆f,a which we call theambiguityand thedeficiencyof f ,
respectively; this definition does not requiref to be a bijection.
When f is a bijection, we show these measures are invari-
ant under certain affine transformations. Moreover, strong
connections between permutations, Costas arrays and almost
perfect non-linear functions are also explained in SectionII.
In Section III we prove bounds on these measures which
then allow us to define notions of optimality with respect to
them. This generalizes the results to arbitrary finite Abelian
groups, where in [20] onlyG1 = G2 = Zn is considered. In
Section IV we study the ambiguity and deficiency of some
permutations of the cyclic groupZn, wheren = pm − 1,
or of the groupZp × Zp × · · · × Zp, through exploiting
several known permutation functions over finite fields. In the
former case, we use permutation functions over finite fields
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fixing 0 and discrete logarithms to construct two families of
permutations ofZn which achieve the optimum lower bounds.
For the latter case, we show that optimal ambiguity and APN
property are the same notion for permutations of finite fieldsof
even characteristic. Moreover, we use SAGE [24], a free open-
source mathematics software system, to computationally verify
ambiguity and deficiency of several known APN permutations
of finite fields when the characteristic is odd. In Section V we
study how close an APN function is to being optimal in terms
of ambiguity. The conclusion and further research topics are
commented in Section VI.

II. D EFINITIONS AND CONNECTIONS

A. Definitions

Let G1 and G2 be finite Abelian groups of the same
cardinality n and f : G1 → G2. Let G∗

1 = G1 \ {0} and
G∗

2 = G2 \ {0}. For anya ∈ G∗
1 and b ∈ G2, we denote

∆f,a(x) = f(x + a) − f(x) and λa,b(f) = #∆−1
f,a(b). Let

αi(f) = #{(a, b) ∈ G∗
1 × G2 | λa,b(f) = i} for 0 ≤ i ≤ n.

We call α0(f) the deficiencyof f , denoted byD(f). Hence
D(f) = α0(f) measures the number of pairs(a, b) such
that ∆f,a(x) = b has no solutions. This is a measure of the
surjectivity of ∆f,a; the lower the deficiency the closer the
∆f,a are to surjective.

Moreover, we define the(weighted) ambiguityof f as

A(f) =
∑

0≤i≤n

αi(f)

(

i

2

)

.

From this definition, we can see that the weighted ambiguity of
f measures the total replication of pairs ofx andx′ such that
∆f,a(x) = ∆f,a(x

′) for somea ∈ G∗
1. This is a measure of

the injectivity of the functions∆f,a; the lower the ambiguity
of f the closer the∆f,a are to injective.

For a fixeda the values of∆f,a(x) are the entries in theath
row of what is often referred to as thedifference triangleof
f (when the domain off is Z [2], [7]) or what we might call
the difference array(when the domain off is a finite group
G). Thus for a fixeda, we define therow-a-ambiguity off as

Ar=a(f) =
∑

b

(

λa,b(f)

2

)

.

These measure the injectivity of the individual∆f,a. Simi-
larly, we define therow-a-deficiencyas Dr=a(f) = #{b |
λa,b(f) = 0, b ∈ G2}, which measures the number ofb’s such
that∆f,a(x) = b has no solutions for a fixeda. Likewise, we
define thecolumn-b-ambiguityasAc=b(f) =

∑

a

(

λa,b(f)
2

)

and
thecolumn-b-deficiencyasDc=b(f) = #{a | λa,b(f) = 0, a ∈
G∗

1}, which measures the number ofa’s such that∆f,a(x) = b
has no solutions for a fixedb.

In this paper we restrict our attention tof : G1 → G2 that
are bijections. This has the implication that∆f,a(x) = b can
never have solutions forb = 0, thus we use the corresponding
form in all our definitions that restrictb ∈ G∗

2; this also
includes summations and universal quantifiers. Another effect
of this to note is that the domain and co-domain of∆f,a

are now sizesn and n − 1, respectively; this is particularly
important to remember when reading the proofs otherwise

our references to “n− 1” will seem odd. The ambiguity and
deficiency of a function and its compositional inverse are the
same since row-a-deficiency becomes column-a-deficiency,
and reciprocally.

It is clear that the ambiguity and deficiency are strongly
correlated although they are not exactly related. In this context,
when we havea ∈ G∗

1, we can explicitly give the relationship
between ambiguity and deficiency. For example, ifa ∈ G∗

1,
then we getDr=a(f) = n− 1−#{∆f,a(x) | x ∈ G1}.

Lemma 1. Let f : G1 → G2 be a bijection. If a row-
a-deficiency off is equal tod, then row-a-ambiguity off
satisfies

d+ 1 ≤ Ar=a(f) ≤

(

d+ 2

2

)

.

Proof: BecauseDr=a(f) = n − 1 − #{∆f,a(x) | x ∈
G1}, the size of the value set{∆f,a(x) | x ∈ G1} is n −
1 − d for a given row-a-deficiencyd. The maximum row-
a-ambiguity,Ar=a(f) =

(

d+2
2

)

, occurs when then images,
∆f,a(x), are distributed withn − 2 − d values ofx giving
distinct images and the remainingd+2 values all agreeing. The
minimum value,Ar=a(f) = d+ 1, occurs when then images
are distributed withd + 1 pairs of{x, x′} having∆f,a(x) =
∆f,a(x

′) and the remainingn− 2(d+ 1) images are distinct.
It is simple to check thatd ≤ n/2− 1 and that it is necessary
for the sets∆−1

f,a(b) to have cardinality zero, one or two when
Ar=a(f) achieves its minimum.

If we can view bothG1 andG2 as vector spacesV1 andV2

over the same scalar fieldF , then ambiguity and deficiency
measures are invariant under bijective affine transformations
from V1 andV2.

Lemma 2. Let f, f̄ : G1 → G2 be bijections such that
f̄ = A1 ◦ f ◦ A2 + A where A1, A2 are bijective affine
transformations andA is an affine transformation. Then for
each pair (a, b) there exists a unique pair(ā, b̄) such that
λa,b(f) = λā,b̄(f̄). In particular, f and f̄ have the same
ambiguity, deficiency, and corresponding row ambiguities and
row deficiencies.

Proof: Clearly, f̄(x + a) − f̄(x) = b is equivalent to
A1 ◦ (f ◦ A2(x + a) − f ◦ A2(x)) = b − A(a) becauseA1

andA are affine transformations. Using the bijectivity ofA1

andA2, we obtainλa,b(f) = λā,b̄(f̄), whereā = A2(a) and
b̄ = A−1

1 (b−A(a)).
Even when the groups are not vector spaces, the ambigu-

ity and deficiency are invariant under some transformations,
namely adding a fixed element or applying an automorphism
of G1 before applying the mapf , and similarly adding
an element or applying an automorphism ofG2 after the
application off .

B. Connections

Costas arrays [4] aren × n permutation matrices with
ambiguity functions taking only the values 0 and (possibly)1.
These arrays have applications to radar and sonar systems [10].

Definition 3. A Costas arrayis a permutation matrix (that is,
a square matrix with precisely one 1 in each row and column
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and all other entries 0) for which all the vectors joining the
pairs of 1’s are distinct.

It is clear that a permutationf , from the columns to the
rows (i.e. to each columnx we assign one and only one row
f(x)), gives a Costas array if and only if forx 6= y andk 6= 0,
f(x+k)−f(x) 6= f(y+k)−f(y). We note that in the standard
definition of Costas array, the arithmetic takes place inside Z

and the vectors are inZ × Z. The Costas array definition is
precisely the property ofA(f) = 0 when f : [1, n] ⊂ Z →
[1, n] ⊂ Z.

A special class of Costas arrays is the so called singly
periodic Costas array, which is ann × ∞ matrix built by
infinitely and repeatedly horizontally concatenating ann× n
Costas array with the property that anyn × n window is a
Costas array. This is equivalent to considering the injection
f : Zn → [1, n] ⊂ Z and asking again thatf have zero
ambiguity.

If we consider f : Zn → Zn, the bounds from our
Theorem 6 below show that zero ambiguity is impossible and
thus “doubly periodic Costas arrays” cannot exist. Howeverthe
bounds from Theorem 6 also tell us precisely what it means
to be as close as possible to a “doubly periodic Costas array”:
we require the ambiguity, and correspondingly the deficiency,
to be as small as possible. In Theorems 14 and 15 we build
families of permutationsf for an infinite number of orders,
n, which are optimum with respect to both the ambiguity and
deficiency.

Perfect and almost perfect non-linear functions can also be
defined within the terminology of ambiguity and deficiency.

Definition 4. [8] Let G1 andG2 be finite Abelian groups of
the same cardinality andf : G1 → G2. We say thatf is a
perfect non-linear functionif

f(x+ a)− f(x) = b

has exactly one solution for alla 6= 0 ∈ G1 and all b ∈ G2.

This corresponds again to zero ambiguity. This property
is often too strong to require and particularly in the case of
bijectionsf , it can never be satisfied. Thus a relaxed definition
is frequently useful.

Definition 5. [8] Let G1 andG2 be finite Abelian groups of
the same cardinality andf : G1 → G2. We say thatf is an
almost perfect non-linear functionif

f(x+ a)− f(x) = b

has at most two solutions for alla 6= 0 ∈ G1 and all b ∈ G2.

The two subjects of Costas arrays and APN functions have
been connected before by Drakakis, Gow and McGuire in [8]
where they use the Welch construction of singly periodic
Costas arrays to build APN permutations,f : Zp−1 → Zp−1

for p a prime. We note that our constructions have optimum
and therefore lower ambiguity than those coming from the
Welch construction and thus are closer to being PN functions.
Additionally they are defined on the larger set ofn = q − 1
where q is a prime power. Our construction methods in
Section IV modify known families of permutation polynomials

of finite fields. Frequently our permutations are optimum in
both ambiguity and deficiency.

III. B OUNDS FOR GENERAL GROUPS

In this section we determine a lower bound on the ambi-
guity and the deficiency of a bijection between two Abelian
groups. Then in the next section we construct permutations
achieving these bounds for an infinite number of values ofn,
the size of our group.

WhenG1 andG2 are arbitrary Abelian groups we can derive
bounds on the ambiguity and deficiency. First letI1 ⊂ G1 be
the elements of order 2 inG1,

γ1 =
∑

g∈I1

g,

and let ι1 = |I1|. Similarly let I2 ⊂ G2 be the elements of
order 2 inG2,

γ2 =
∑

g∈I2

g,

and letι2 = |I2|. Furthermore, letf : G1 → G2 be a bijection
and letI01 ⊂ I1 be

I01 = {a ∈ I1 | Dr=a(f) = 0}.

Also define

N0
1 = {a ∈ G1 \ I1 | Dr=a(f) = 0}.

Similarly defineI02 andN0
2 .

Since the deficiency is simply the sum of the row deficien-
cies and for anya 6∈ I01 ∪N0

1 , Dr=a(f) ≥ 1, we have

D(f) =
∑

a∈G∗

1

Dr=a(f) ≥ (n− 1)− |I01 ∪N0
1 |.

When a ∈ I01 ∪ N0
1 thenDr=a(f) = 0 and the pigeonhole

principle gives us that there is a single repeated value,r, in
the multiset{f(x + a) − f(x) | x ∈ G1} ⊆ G∗

2. In the case
whereγ2 6= 0 we have

0 =
∑

x∈G1

f(x+ a)−
∑

x∈G1

f(x)

=
∑

x∈G1

(f(x+ a)− f(x)) = r +
∑

y∈G∗

2

y = r + γ2,

and thus the repeated valuer is γ2. That is, there existx1, x2 ∈
G∗

1 such that

f(x1 + a)− f(x1) = γ2, f(x2 + a)− f(x2) = γ2.

Letting y1 = f(x1) andy2 = f(x2), this is equivalent to

f−1(y1 + γ2)− f−1(y1) = a, f−1(y2 + γ2)− f−1(y2) = a.

The fact that for everya ∈ I01 ∪ N0
1 we get thata ∈

Range(f−1(y + γ1) − f−1(y)) gives us the left hand of
Inequality (1) below. The fact that for everya ∈ I01 ∪ N0

1

there is a pair of distinct values ofy ∈ G∗
2 which have

identical values off−1(y+ γ2)− f−1(y) gives the right hand
of Inequality (1). Thus,

n− 1− (|I01 ∪N0
1 |) ≥ Dc=γ2

(f) ≥ (|I01 ∪N0
1 |)− 1. (1)
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If f(x+a)−f(x) = b thenf(x+a+a)−f(x+a) = b since
a ∈ I1 and b ∈ I2. If |I2| ≥ 2, b1, b2 ∈ I2 and there exists
an a ∈ I01 then Dr=a(f) = 0 and in particular there exist
x1, x2 ∈ G1 such thatf(x1 + a) − f(x1) = b1 and f(x2 +
a)−f(x2) = b2. But then, by the previous comments we also
havef(x3 + a)− f(x3) = b1 andf(x4 + a)− f(x4) = b2 for
x3 = x1+a andx4 = x2+a. Again sinceDr=a(f) = 0, there
must be a solution,x ∈ G1 of f(x+ a)− f(x) = b for every
b ∈ G∗

2 but onlyn−4 elements ofG1\{x1, x2, x3, x4} remain
to provide solutions for alln− 3 elementsb ∈ G∗

2 \ {b1, b2}
which is impossible. Thus if|I2| ≥ 2 thenI01 = ∅.

If n is odd orγ2 is the identity, the corresponding versions
of Inequality (1) give that the repeated valuer is r = 0 but
this is not possible sincef(x + a) − f(x) ∈ G∗

2, thus no
Dr=a(f) = 0 andD(f) ≥ n− 1. The same applies when we
considerf−1.

Theorem 6. LetG1 andG2 be Abelian groups of ordern with
ι1 and ι2 elements of order 2, respectively. Letf : G1 → G2
be a bijection. Then the deficiency off , D(f), is bounded
below by






n− 1 n ≡ 1 (mod 2),
n− 3 n ≡ 0 (mod 2) and ι1 = ι2 = 1,

n− 1− 3min{ι1,ι2}
2

+ ι1ι2
2

n ≡ 0 (mod 2) and ι1ι2 > 1.

The ambiguity off , A(f), is bounded below by






2(n− 1) n ≡ 1 (mod 2),
2(n− 2) n ≡ 0 (mod 2) and ι1 = ι2 = 1,

2(n− 1)− 3min{ι1,ι2}
2

+ ι1ι2
2

n ≡ 0 (mod 2) and ι1ι2 > 1.

Proof: The lower bound on deficiency whenn is odd
is straightforward. Indeed, there are noa ∈ G∗

1 for which
Dr=a(f) = 0 soDr=a(f) ≥ 1 for all a. Summing these over
all non-zeroa gives the required lower boundD(f) ≥ n− 1.
By Lemma 1,Ar=a(f) ≥ 2. Summing these over all non-zero
a gives the required lower bound for ambiguity off , that is,
A(f) ≥ 2(n− 1).

When n is even andι1 = ι2 = 1, then I1 = {γ1}, I2 =
{γ2}, which are both nonzero, and ifa ∈ I01 ∪N

0
1 the repeated

value of f(x + a) − f(x) must beγ2. Recall the deficiency
can be computed from either the row or column deficiencies

∑

a 6=0

Dr=a(f) =
∑

b6=0

Dc=b(f).

Using Inequality (1) and its row deficiency analog, we get

D(f) =
1

2





∑

a∈G∗

1

Dr=a(f) +
∑

b∈G∗

2

Dc=b(f)





=
1

2





∑

a 6=0,γ1

Dr=a(f) +
∑

b6=0,γ2

Dc=b(f)+

+Dc=γ2
(f) +Dr=γ1

(f)

)

≥
1

2

(

(n− 2− |I01 ∪N0
1 |) + (n− 2− |I02 ∪N0

2 |)

+ |I01 ∪N0
1 | − 1 + |I02 ∪N0

2 | − 1
)

= n− 3.

Again, by Lemma 1, a row-a-deficiency value ofd contributes
at leastd+1 to the ambiguity, so we get that the total ambiguity
for f is at leastn− 1 + n− 3 = 2(n− 2).

Now let ι1ι2 > 1. Without loss of generality, supposeι2 ≥
ι1 and thusι2 > 1. If Dr=a(f) = 0, then there can only be a
single repeated value,r, in the multiset{f(x+a)−f(x) | x ∈
G1} ⊆ G∗

2. By the fundamental theorem of Abelian groups,
we have

0 =
∑

x∈G1

f(x+ a)−
∑

x∈G1

f(x)

=
∑

x∈G1

(f(x+ a)− f(x)) = r +
∑

y∈G∗

2

y = r,

which is a contradiction. Thus,Dr=a(f) ≥ 1 for all a ∈ G1

when ι2 > 1.
Let n be even and letι1ι2 > 1. For eacha ∈ I1 we calculate

a lower bound onDr=a(f). The difference map is∆f,a :
G1 → G∗

2. Defineαi to be the cardinality of the set{b ∈ G∗
2 |

#∆−1
f,a(b) = i}. If ∆f,a(x) = b ∈ I2, then∆f,a(x + a) = b

as well, and we have thatα1 ≤ n − 1 − ι2. Simple counting
over the domain and co-domain sizes gives

n
∑

i=0

αi = n− 1,

n
∑

i=0

iαi = n.

Using

2

n
∑

i=2

αi ≤
n
∑

i=2

iαi =

(

n
∑

i=1

iαi

)

− α1 = n− α1,

we get

Dr=a(f) = α0 = n− 1−
n
∑

i=1

αi = n− 1− α1 −
n
∑

i=2

αi

≥ n− 1− α1 −
n− α1

2
=

n

2
− 1−

α1

2

≥
n

2
− 1 +

ι2
2
+

1

2
−

n

2
=

ι2 − 1

2
.

Let N1 = G∗
1 \ I1. We now have

D(f) =
∑

a∈I1

Dr=a(f) +
∑

a∈N1

Dr=a(f)

≥ ι1
ι2 − 1

2
+ n− 1− ι1 = n− 1−

3ι1
2

+
ι1ι2
2

.

The same calculation can be done for the column deficiencies
and thus

D(f) ≥ n− 1−
3min{ι1, ι2}

2
+

ι1ι2
2

.

The ambiguity lower bounds are derived directly from the
bounds on deficiency using Lemma 1.

In the particular caseG1 = G2 = Zn, we have the following
Corollary [20].

Corollary 7. Let n ∈ N and f : Zn → Zn be a bijection.
The ambiguity off is at least2(n − 1) whenn is odd and
2(n− 2) whenn is even. The deficiency off is at leastn− 1
if n is odd and at leastn− 3 whenn is even.

Functions that meet these bounds are of particular interest.
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Definition 8. If a permutation f : G1 → G2 has an
ambiguity equal to the lower bound from Theorem 6 we say
it has optimum ambiguityand similarly we defineoptimum
deficiency for a permutation if it achieves the lower bound
for the deficiency.

Next we show that optimum ambiguity implies the APN
property for bijections fromG1 and G2. For the optimum
ambiguity, all the sets∆−1

f,a(b) have cardinality at most two.
These observations allow us to connect our notion of ambigu-
ity to APN functions.

Corollary 9. LetG be a finite Abelian group. If a permutation
f : G → G achieves the minimal ambiguity, thenf is Almost
Perfect Non-linear.

Proof: Consideration of the forced equalities throughout
the proof of Theorem 6 gives that the number of pairs of(a, b)
such that|∆−1

f,a(b)| ≥ 2 is exactly the ambiguity and each
inverse image has size zero, one or two. Thusf is APN [8].

This is not true for the deficiency. Ifn is odd, it is possible
that theDr=a(f) be at its minimum, whileAr=a(f) = 3 > 2.
In this case there is one missed valuegm ∈ G∗

2 and a valuegt
which is hit three times by∆f,a. In that casef is not APN.
Whenn is even,ι1 = ι2 = 1 and the minimum deficiency is
achieved, then any row whereDr=a(f) = 0 cannot contain
values of b that are hit more than twice. Considering the
equalities that are forced inDr=γ1

(f) (as discussed at the
start of Section III) when the deficiency is optimal shows that
the only repeatedb values in this row must come from columns
that have zero deficiency and thus these values are repeated
only twice. But just as in the odd case any other row with
Dr=a(f) > 0 could have a value hit three times by∆f,a.
In the caseι1ι2 > 1 we can be more precise. Ifa ∈ I1 the
consideration of the inequalities in the proof of Theorem 6
shows that ifDr=a(f) = (ι2 − 1)/2 then#∆−1

f,a(b) = 0, 1, 2
for this a. It is only whena 6∈ I1 that f can fail to be APN.
Thus if G1 = Z

e
2 with n = 2e, ι1 = n − 1 and f attains

deficiencyD(f) = n−1−(3ι1)/2+ι1ι2/2 = (n−1)(ι2−1)/2,
then f must be APN. In this case however, ifι2 < ι1
this bound is never attained so all we can say is that if
G1 = G2 = Z

e
2, then attaining the minimum deficiency does

guaranteef to be APN.
However a permutation which is APN could have ambiguity

as large as(n − 1)⌊n/2⌋ and correspondingly deficiency as
large as(n− 1)(⌊n/2⌋ − 1).

Proposition 10. LetG1, G2 be finite Abelian groups of order
n. If f : G1 → G2 is any APN permutation such that
∆f,a(x) = f(x+ a)− f(x) is 2-to-1 mapping for allx ∈ G1

with at most one exception and for anya ∈ G∗
1, then the

deficiency off is (n− 1)(⌊n/2⌋ − 1) and the ambiguity off
is (n− 1)⌊n/2⌋.

Proof: Suppose∆f,a is 2-to-1 mapping for eacha ∈ G∗
1,

thenn is even and the deficiency off is (n − 1)(n/2 − 1)
and the ambiguity off is (n − 1)n/2. However, if ∆f,a is
2-to-1 mapping for allx ∈ G1 with at most one exception and
for eacha ∈ G∗

1, thenn is odd. In this case, the deficiency

of f is (n − 1)((n − 1)/2 − 1) and the ambiguity off is
(n− 1)(n− 1)/2. Hence the proof is complete.

Obviously this case is the worst possible scenario that
can happen in terms of ambiguity and deficiency for APN
functions.

When f is a bijection we only considerb ∈ G∗
2 and

APN functions are clearly functions with small ambiguity and
therefore small deficiency. Since a function can be APN and
still have an ambiguity anywhere between the lower bound
presented in Theorem 6 and the upper bound of(n− 1)⌊n/2⌋
in Proposition 10, our definition of ambiguity has a higher
resolution power than just the definition of APN and thus can
usefully be regarded as a refinement of the concept.

Example 11. One APN permutation constructed inZ10 from
the Welch Costas array constructions isf(x) = (2x mod
11) − 1 or f = (0)(1)(23768)(4)(59) and has ambiguity
19 > 2(10 − 2) = 16 and deficiency12 > (10 − 3) = 7
although this construction does not attain the worst possible
values for APN permutations.

In general, the converse of Corollary 9 is not true. But it is
true for finite fields of characteristic2.

Corollary 12. Let f : F2m → F2m be a bijective APN, then
it has optimum ambiguity and deficiency.

Proof: Since we are working in finite fields of charac-
teristic 2, the solutions of every equation come in pairs. It
means that every equation such as∆f,a(x) = b has either
exactly two solutions or no solution becausef is an APN
function. Based on the proof of Lemma 1, the minimum value,
Ar=a(f) = d+ 1, happens only when then images are dis-
tributed withd+1 pairs of{x, x′} having∆f,a(x) = ∆f,a(x

′)
and the remainingn − 2(d + 1) images are distinct. Hence,
in this case we getd = 2m−1 − 1 and the sets∆−1

f,a(b)
having cardinality zero and two are necessary whenAr=a(f)
achieves its minimum. Therefore,f has optimum ambiguity
because every row has optimum row-a-ambiguity. Finally,
since optimum ambiguity is stronger than optimum deficiency,
f has optimum deficiency as well.

IV. A MBIGUITY AND DEFICIENCY OF SOME KNOWN

FUNCTIONS

Next we provide our main constructions which produce
permutations that achieve the minimum ambiguity and defi-
ciency.

A. Functions in the multiplicative group ofFq

Before we give our first construction, that applies to values
of n = q − 1 for q a prime power, we introduce a way to
obtain a permutation polynomial of fixed point0 over a finite
field Fq from another permutation polynomial ofFq which
does not fix0. Namely, leth be a permutation polynomial of
Fq such thath(0) = a 6= 0 andh(b) = 0. Then we defineg
as

g(x) =







h(b) = 0, x = 0;
h(0) = a, x = b;
h(x), x 6= 0, b.
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It is obvious thatg is again a permutation polynomial ofFq

which fixes0.

Example 13. For any positive integere such thatgcd(e, n) =
1 and m, a 6= 0 ∈ Fq, the polynomialh(x) = mxe + a is a
permutation polynomial ofFq which does not fix0. Let b be
the unique (non-zero) field element such thath(b) = 0. Using
the above construction, we let

g(x) =







h(b) = 0, x = 0;
h(0) = a, x = b;
h(x) = mxe + a, x 6= 0, b.

Theng is a permutation polynomial ofFq which fixes0.

It turns out that this twist of permutation polynomials can be
very useful in constructing permutations ofZn with optimum
deficiency and optimum ambiguity.

1) Functions derived from permutation monomials:

Theorem 14. Let q be a prime power,n = q − 1 and α a
primitive element inFq. For gcd(e, n) = 1 andm, a 6= 0 ∈ Fq,
let h : Fq → Fq be defined byh(x) = mxe + a and let b be
the unique (non-zero) field element such thath(b) = 0. Let

g(x) =







h(b) = 0, x = 0;
h(0) = a, x = b;
h(x) = mxe + a, x 6= 0, b.

If q 6≡ 0 (mod 3) then f : Zn → Zn defined byf(i) =
logα(g(α

i)) has optimum deficiency. If, additionally,q ≡ 2
(mod 3) (i.e., q is an odd power of a primep wherep ≡ 2
(mod 3)), thenf has optimum ambiguity as well.

Proof: We havef(i + a) − f(i) = logα(g(α
i+a)) −

logα(g(α
i)) = logα

(

g(αi+a)
g(αi)

)

. Let d = αa. We need to study

the sizevd of the value set ofg(dx)/g(x) for x 6= 0. From
the definition ofg, we have

g(dx)

g(x)
=



























m(db)e+a
a , x = b;

a
m(b/d)e+a , x = b/d;

m(dx)e+a
mxe+a , x 6= b, b/d.

First we show thatvd ≥ q − 3 for any d 6= 0, 1. Let x, y be
both different fromb, b/d. Assume that

m(dx)e + a

mxe + a
=

m(dy)e + a

mye + a
.

Then

m2dexeye + amye + amdexe + a2

= m2dexeye + amdeye + amxe + a2.

Sincem, a 6= 0, we obtain(de − 1)ye = (de − 1)xe. Because
gcd(e, q − 1) = 1, we havede 6= 1 if d 6= 1. Hencexe = ye.
Again, by gcd(e, q − 1) = 1, we obtainx = y. Hencevd ≥
q − 3 for any d 6= 0, 1.

Moreover, if

m(db)e + a

a
=

m(dx)e + a

mxe + a
,

then

m2debexe + amxe + amdebe + a2 = amdexe + a2.

Hence

(m2debe + am− amde)xe = −amdebe.

Sincembe = −a, we obtain

(am− 2amde)xe = −amdebe.

Again,m, a 6= 0. This implies that(2de − 1)xe = debe.
If q is odd, we can find a solution forx as long as2de −

1 6= 0. On the other hand, there exists a uniqued such that
de = 1/2 and

m(db)e + a

a
6=

m(dx)e + a

mxe + a
.

Similarly, there exists a uniqued such thatde = 2 and

a

m(b/d)e + a
6=

m(dx)e + a

mxe + a
.

Hencevd = q−3 = n−2 if de 6= 2 or 1/2, andvd = q−2 =

n − 1 if de = 2 or 1/2. Moreover m(db)e+a
a = a

m(b/d)e+a is
equivalent tod2e − de + 1 = 0.

We observe that if char(Fq) = 3, then 2 = 1/2 and
a

m(b/d)e+a = m(db)e+a
a . Hence there is one row with row

deficiency zero and the remaining rows have deficiency one.
Thus D(f) = n − 2 wheren = q − 1. It is obvious that
A(f) = 2(n− 2) + 1 = 2n− 3 in this case.

If char(Fq) > 3 then we consider two cases:q ≡ 1 (mod 3)
andq ≡ 2 (mod 3). In the former case,d2e − de +1 = 0 has
two distinct rootsr1, r2 for de which are not equal to2 or
1/2. Again de = 2, 1/2 give us two rows with row deficiency
zero and row ambiguity one. Whende = r1, r2 then we get
two rows with row deficiency one and row ambiguity three.
The remainingn − 5 rows have row deficiency one and row
ambiguity two. Thus forq ≡ 1 (mod 3) we get D(f) =
2(0)+2(1)+(n−5)(1) = n−3 which is optimal andA(f) =
2(1) + 2(3) + (n − 5)(2) = 2(n − 1). However, whenq ≡ 2
(mod 3), there are no roots ford2e − de + 1 = 0. Hence we
have two rows with row deficiency zero and row ambiguity
one, the remainingn − 3 rows have row deficiency one and
row ambiguity two. HenceD(f) = 2(0)+ (n− 3)(1) = n− 3
andA(f) = 2(1) + (n − 3)(2) = 2(n − 2) are both optimal
in the case thatq ≡ 2 (mod 3).

If q is even, we always findx such that

m(db)e + a

a
=

m(dx)e + a

mxe + a
,

and
a

m(b/d)e + a
=

m(dx)e + a

mxe + a
.

Hencevd = q − 3, andD(f) =
∑

a∈Z∗

n
Dr=a(f) = (n −

1)(n− 1− (q − 3)) = n− 1 whenn is odd.
If q is an even power of two, thend2e + de + 1 = 0 has

two solutions forde. Hence there exist twod’s such that

m(db)e + a

a
=

a

m(b/d)e + a
=

m(dx)e + a

mxe + a
.



IEEE TRANSACTION ON INFORMATION THEORY, VOL. ?, NO. ?, ?????? ???? 7

In this case, we haveA(f) = 2 · 3 + (n− 3) · 2 = 2n which
is not optimal. However, in the case thatq is an odd power of
2, there are no solutions tod2e + de +1 = 0, so we still have
optimal ambiguityA(f) = 2(n− 1).

We remark from the proof that ifq ≡ 1 (mod 3) then the
ambiguity is2(n−1) or 2n depending on whetherq is odd or
even, respectively. In these casesf is not APN. Also, ifq ≡ 0
(mod 3) thenf has deficiencyn − 2 and ambiguity2n − 3,
both exactly one more than optimal. In this case,f is APN.
Some of these cases were overlooked in [20].

2) Möbius function:

Theorem 15. Let q = pm, n = q − 1 and α a primitive
element inFq. Let g : Fq → Fq be defined as follows

g(x) =

{

βx
γx+η x 6= −η

γ ,
β
γ x = −η

γ ,

whereβ, γ, η 6= 0. If q 6≡ 0 (mod 3) thenf(i) = logα
(

g(αi)
)

has optimum deficiency. Moreover, ifq ≡ 2 (mod 3) then f
has optimum ambiguity. Ifq ≡ 1 (mod 3) then the ambiguity
is 2(n − 1) or 2n depending on whetherq is odd or even,
respectively. Finally, ifq ≡ 0 (mod 3) thenf has deficiency
n − 2 and ambiguity2n − 3, both exactly one more than
optimal.

Proof: First of all suppose that char(Fq) 6= 2. It is easy
to see thatg is a permutation function overFq andg(0) = 0.
We have

f(i+ a)− f(i) = logα
(

g(αi+a)
)

− logα
(

g(αi)
)

= logα

(

g(αi+a)

g(αi)

)

.

Suppose thatd = αa. We have to evaluate the value setvd of
g(dx)/g(x) for x 6= 0 whered 6= 0, 1. Based on the definition
of g, we get

g(dx)

g(x)
=











d(γx+η)
γdx+η x 6= −η

γ , −η
dγ ,

d
d−1 x = −η

γ ,

1− d x = −η
dγ .

Let us first assume thatx, y are both different from−η
γ , −η

dγ .
Then

g(dx)

g(x)
=

g(dy)

g(y)
⇐⇒

d(γx+ η)

γdx+ η
=

d(γy + η)

γdy + η

⇐⇒ γηx+ γηdy = γηy + γηdx

⇐⇒ (x− y)(d− 1) = 0

⇐⇒ x = y. (2)

Hencevd ≥ q − 3 for any d 6= 0, 1. In addition, we have

d(γx+ η)

γdx+ η
=

d

d− 1
⇐⇒ x =

η(d − 2)

γ
, (3)

and also

d(γx+ η)

γdx+ η
= 1− d ⇐⇒ x =

η(1− 2d)

γd2
. (4)

Let char(Fq) 6= 2. So, the expressions (2) and (3) imply
that if d 6= 2, then we have a unique non-zero solution and
for these values ofd we have the row deficiency one. But if

d = 2, thenx = 0 and it means that for thisd and for some
a such that2 = αa, we have the row deficiency zero. Hence
vd = q− 3 = n− 2 if de 6= 2 or 1/2, andvd = q− 2 = n− 1
if de = 2 or 1/2. Moreover d

d−1 = 1 − d is equivalent to
d2−d+1 = 0. Then the rest of the proof follows in the same
way as the proof of Theorem 14.

B. Additive group of a finite field

1) APN permutations in a field of characteristic2:
Let q = 2m andf : Fq → Fq be the inverse function defined

as follows

f(x) =

{

x−1 x 6= 0,
0 x = 0.

It is easy to see thatf is permutation function overFq and
f(0) = 0.

Theorem 16. Let q = 2m, m odd. The inverse function
f(x) = x−1 over F∗

q has optimum ambiguity and deficiency.
For evenm, the ambiguity and deficiency are

A(f) = (2m − 1)
(

2m−1 + 4
)

,

and
D(f) = (2m − 1)2m−1.

Proof: Based on the definition off , we get

f(x+ a)− f(x) =

{

−a
x(x+a) x 6= 0,−a,
1
a x = 0,−a.

Let us assume firstx, y are both different from0,−a. Then

f(x+ a)− f(x) = f(y + a)− f(y)

⇐⇒
−a

x(x + a)
=

−a

y(y + a)

⇐⇒ (x − y)(a+ x+ y) = 0.

Hence for everyx there is exactly oney such thatf(x+a)−
f(x) = f(y + a)− f(y). In addition, we have

−a

x(x + a)
=

1

a
⇔ x2 + ax+ a2 = 0. (5)

This equation has solutions inF2m if and only if m is even.
Indeed, fora 6= 0, x2+ax+a2 = 0 is equivalent to(x/a)2+
(x/a) + 1 = 0, which is equivalent to(x/a)3 = 1 provided
x 6= a. Hence this happens if and only if3 | 2m − 1, namely,
m is even.

Now, we distinguish between two cases.

1) For evenm, we have two distinct solutions tox2+ax+
a2 = 0 for everya 6= 0. Therefore, all the elements in
F2m are 2 to 1 except one of them which is 4 to 1
and that is happening when we have Equation (5). We
note that four solutions arex = 0,−a and the other two
solutions come from equationx2 + ax+ a2 = 0. In this
case, the number ofb 6= 0’s such that we do not have
a solution for∆f,a(x) = b is q−2

2 + 1 = q
2 . Also we

haveq−1 choices fora ∈ F
∗
q . HenceD(f) = (q−1) q2 .

Moreover, there existq2 − 2, b 6= 0’s for which we do
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have two solutions for∆f,a(x) = b. Therefore,A(f) =
(

2
2

)

α2(f) +
(

4
2

)

α4(f) equals

(q − 1)
(q

2
− 2
)

+

(

4

2

)

(q − 1) = (q − 1)
(q

2
+ 4
)

.

2) For odd m this function is APN and Corollary 12
applies.

In both cases we have to use lower bounds from general
groups. Since in the additive group ofFq, q = 2m, all the
elements have order2, we getι1 = ι2 = q − 1. Hence, based
on the lower bounds of Theorem 6, the lower bounds on de-
ficiency and ambiguity of the inverse function on the additive
group ofFq are(q − 1)− 3(q−1)

2 + (q−1)2

2 = (q − 1)
(

q
2 − 1

)

and2(q − 1)− 3(q−1)2

2 + (q−1)2

2 = (q − 1) q2 , respectively.
We note that for oddm, the inverse function is APN and

thus has optimum ambiguity and deficiency. For evenm, the
inverse function is not optimal in terms of ambiguity, nor APN.
We observe that the inverse function in the evenm caseF28

is used in the S-box of AES.
2) APN permutations over finite fields of odd characteristic:

There is a sharp contrast with the above situation when
we consider APN permutations over a finite fieldFpe of
characteristicp > 2. More precisely, Corollary 12 is not true
if we change the characteristic of our finite field to odd prime
numbersp. In the following we determine the ambiguity and

d Condition

3 p 6= 3
pe − 2 p > 2 andpe ≡ 2 (mod 3)
2pe−1

3
pe ≡ 2 (mod 3)

pk+1

2
p = 5 and (2e, k) = 1

TABLE I
FOUR APN FUNCTIONSxd OVER FINITE FIELDSFpe OF ODD

CHARACTERISTIC[11].

deficiency of some well-known APN permutations onFpe and
p > 2. In Table I, we report on some APN permutations of the
form xd for some special values ofd, and for finite fields with
characteristicp > 2. We found the deficiency and ambiguity
of them in the following theorem.

Theorem 17. Letf be one of the APN permutations in Table I
overFq whereq = pe. Then the deficiency off is (q−1)

(

q−3
2

)

and the ambiguity off is (q − 1)
(

q−1
2

)

.

Proof: If f(x) = x3 or f(x) = xpe−2, thenf(x + a) −
f(x) = b is a quadratic equation. Now we show that for the
third and fourth functions we have the same situation. Letf
be the third function. The equation(x + a)d − xd = b where
d = 2pe−1

3 implies that(x+ a)d = b+ xd. Raising both sides
of the last equation to the power3, we get

(x+ a)3d = (b+ xd)3 = x3d + 3x2db+ 3b2xd + b3.

Since3d ≡ 1 (mod (pe − 1)), we obtain

x+ a = x+ 3x2db+ 3b2xd + b3.

By a simple rearrangement, we have

3b
(

xd
)2

+ 3b2xd + b3 − a = 0 (6)

which is a quadratic equation inxd. Therefore, it has at most
two solutions inxd. Each of these solutions gives a maximum
of (d, pe−1) solutions inx. Sincef is a permutation,(d, pe−
1) = 1 and we conclude that finding the solutions of (6) is
equivalent to providing the set of solutions of3bx2 + 3b2x+
b3 − a = 0. The former equation is a quadratic equation.

Now suppose thatf is the last APN permutation in Table I.
We closely follow the proof of Theorem 11 in [11]. Anyx ∈
Fq can be represented asx = α + α−1, whereα and α−1

are the two roots inF∗
q2 of z2 − xz + 1 = 0. A solution

of ∆f,a = (x + a)d − xd = b is equivalent to a solution
of ad((x/a) + 1)d − ad(x/a)d = b. Let y = x/a and this
corresponds to solutions of(y + 1)d − yd = ba−d. Hence, it
is sufficient to find the number of solutions of

(x+ 1)d − xd = b. (7)

Replacingx by x + 2, we obtain(x + 3)d − (x + 2)d = b.
Substitutingx = α+ α−1, we conclude

(α− 1)2d − (α+ 1)2d

αd
= b,

which is equivalent to

α
5k−1

2 + α− 5k−1

2 = 2b. (8)

The above equation has in general four solutions inFq2 for
anyb (b can be inFq or Fq2 but of course we are interested in
the former). If one solution isα, then the remaining solutions
(for p = 5) are−α, α−1 and−α−1

Theseα’s map ontox’s; in general, this is a 2-to-1 mapping.
In particularα andα−1 both map to the samex and so do the
pair−α and−α−1. Thus we get, generally, two solutions ofx
for everyb corresponding toα and−α. Whenα = α−1 (α =
1 or 4) then Equation (8) has two solutions forα, butα and−α
still map to distinctx’s so Equation (7) still has two solutions.
Whenα = −α−1 (α = 2, or 3), then Equation (8) has two
solutions and in this caseα and−α map to the samex so
Equation (7) has one solution. Other than these two situations
Equation (8) always has four solutions and thus Equation (7)
has two solutions.

For all of the APN functions of Table I,∆f,a = b has
either zero or two solutions for allb’s except one where it has
a single solution. It means that, for eacha, there is only one
b such that these two solutions are the same. Hence, based
on Proposition 10 the deficiency off is (q − 1)

(

q−1
2 − 1

)

=
(q − 1)

(

q−3
2

)

and the ambiguity off is (q − 1)
(

q−1
2

)

.

V. A MEASURE FOR BEING CLOSER TO OPTIMAL

AMBIGUITY

Let OptG1,G2
(f) denote the optimum ambiguity of the

function f : G1 → G2 for Abelian groupsG1 andG2. Then,
we can define thenormalized ambiguityof a functionf as the
ratio

Opt∗G1,G2
(f) =

A(f)

OptG1,G2
(f)

.
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It is obvious that Opt∗G1,G2
(f) ≥ 1. Furthermore, it can be

easily seen that the functions with optimum ambiguity that we
constructed in Section IV have normalized ambiguity equal to
one.

Proposition 18. All the functions with optimum ambiguity in-
cluding the twisted monomialg introduced in Subsection IV-A
for finite fieldsFq such thatq ≡ 2 (mod 3), the Möbius
function in the multiplicative group of a fieldFq with q ≡ 2
(mod 3), the inverse function in the additive group of a field of
characteristicp = 2 with odd exponent, and the cubic function
in a field of characteristicp = 2 have normalized ambiguity
equal to 1.

Therefore, this parameter can be imagined as a measure
for functions to be close to optimal ambiguity. The closer
Opt∗G1,G2

(f) is to one, the closerf is to being optimal in
ambiguity. For example, let us recall the Möbius function.
According to Lemma 2, ambiguity and deficiency of Möbius
function on the additive group of a finite fieldFq are equal
to the ambiguity and deficiency of all of its linear transforma-
tions. Hence the ambiguity and deficiency ofg in Theorem 15
are equal to the ambiguity and deficiency of the inverse
function.

Proposition 19. Let q = 2m where m is even. Then the
Möbius function over the multiplicative group ofFq is closer to
being optimal in ambiguity than the M̈obius function (inverse
function) over the additive group ofFq in terms of ambiguity.

Proof: According to the above paragraph, the ambiguity
of the Möbius function in the additive group ofFq is (q −
1)
(

q
2 + 4

)

while the optimum ambiguity is(q − 1) q2 . So,

Opt∗
Fq,Fq

(g) =
(q − 1)

(

q
2 + 4

)

(q − 1) q2
= 1 +

8

q
.

In addition the worst case (m even) ambiguity of the Möbius
function in the multiplicative group ofFq is 2n wheren =
q − 1. Also the optimum ambiguity in this case is2(n − 1).
Hence

Opt∗
Zn,Zn

(f) =
2n

2n− 2
= 1 +

2

2n− 2
= 1 +

1

q − 2
.

It is clear that 1
q−2 < 8

q for q > 2, and this implies that the
Möbius function over the multiplicative group ofFq is closer
to be APN than the inverse function (Möbius function) over
additive group ofFq.

Massey [15] usesf(x) = (45x mod 257) mod 256 and
its inverse in the SAFER cryptosystem. Drakakis, Gow and
McGuire [8] show that the shiftg(x) = (45x mod 257)−1 of
the above permutation and its inverse are APN permutations
in Z256. Thus both functions and their inverses have the
same deficiency and ambiguity. For the S-box of the SAFER
cryptosystem, as a map ofZ256 to itself, our SAGE program
calculates its deficiency and ambiguity as10865 and 11120
respectively. We have shown in Theorems 14 and 15 that
our twisted permutation polynomials inZ256 have optimum
deficiency and ambiguity,253 and508, respectively. SAFER’s
S-box’s deficiency and ambiguity are both more than20 times
larger than optimal. We also use SAGE program to calculate

another important measure, linearity, of cryptographic func-
tions [9]. We verify that the linearity off(x) used in SAFER
cryptosystem is42.484 (see [9]) and obtain the linearity
of our twisted permutation polynomials, both those from
Theorems 14 and 15, is17.0312, which is very close to the
lower bound16.

VI. CONCLUSIONS

In this paper, we have studied a lower bound for the
ambiguity and deficiency of permutations of finite Abelian
groups. In particular, we obtained several constructions of
permutations in the cyclic groupZn wheren = pm−1 which
meet the optimum lower bound. In [20], we have given an
example of permutation ofZ5, which does not come from our
construction but it does come from Table I. A natural question
is to find more constructions achieving the optimum bound.
Optimum ambiguity and deficiency of permutations of group
Zp × Zp × · · · × Zp are interesting as they are related to the
concept of APN permutation of finite fields. We have shown
optimum ambiguity implies APN and the converse also holds
if the finite field has even characteristic. Some preliminary
calculations have suggested that ambiguity and deficiency
measures are related to thelinearity of a function and we are
currently investigating this. It is desirable to understand the
distribution of ambiguity and deficiency of APN permutations
of finite fields. We have checked that no functions fromZ3

andZ15 to itself can achieve the optimum ambiguity which is
2n− 2; only 2n is possible and all these functions have two
instances of3-to-1 behaviour.

We have treated the case when the function between the
two Abelian groups is a bijection. If the groups are the same
size and the function is not bijective then the existence of
Perfectly Non-linear (PN) functions shows that the ambiguity
and deficiency are not bounded away from0 in general. In
fact the following are all equivalent

• a map,f , being a PN function,
• A(f) = 0,
• D(f) = 0.

We would like to know if there are certain groups where
ambiguity and deficiency of non-bijections are bounded away
from zero? Second, even if non bijections with zero ambiguity
and deficiency could exist for maps between two groups,
G1 → G2, what is the spectrum of deficiencies and am-
biguities that can be realized? This question is relevant for
bijections as well. Finally we note that maps of deficiency
zero between groups, not necessarily of the same size, have
been used in efficient constructions for covering arrays [3],
[6], [16] although the term “deficiency” was not defined nor
used. Further studies of ambiguity and deficiency in these more
general settings would be interesting and is open for further
research.
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