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Two New Measures for Permutations:
Ambiguity and Deficiency
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Abstract—We introduce the concepts of weighted ambiguity  Differential cryptanalysis, which was initiated in [193, one
and deficiency for a mapping between two finite Abelian groupsf  of the methods that can be used to attack S-boxes. Functions
the same size. Then, we study the optimum lower bounds of thes that have the best resistance to this type of cryptanalysis a

measures for permutations of an Abelian group. A constructbn . i
of permutations, by modifying some permutation functions wer calledAlmost Perfect Non-linear (APN).et f : Gi — G be

finite fields, is given. Their ambiguity and deficiency is inveti- &Ny map, or partial map, between two Abelian groups of the
gated; most of these functions are APN permutations. We show same sizes. Fot € G1, a # 0, we can define a difference
that, when they are not optimal, the Mobius function in the ma

multiplicative group of Fy is closer to beingoptimal in ambiguity

than the inverse function in the additive group of Fq. We note Afalz) = f(z +a) = f(2)

that the inverse function over Fys is used in AES. Finally, we . o .
conclude that a twisted permutation polynomial of a finite fidd is  Which measures the degree of “linearity” 6f The functionf
again closer to being optimal in ambiguity than the APN functon is called perfect non-linear (PN) i, is injective and almost

employed in the SAFER cryptosystem. perfect non-linear (APN) ifA;, is at worst2-to-1. These
Index Terms—Almost perfect non-linear (APN), permutation functions have received significant attention because @f th
Abelian group. resistance to linear cryptanalysis and differential capplysis.

In particular, we note that the APN functiods” andlog,; =

in Zose were used in the SAFER cryptosystem [15]. In addi-
|. INTRODUCTION tion, AES uses the inverse function which is a differengiall
4 uniform function (it means that\; ,(z) is at worst4-to-1)

permutation polynomial over a finite ringg induces | _ v )
in Fys [5]; however, the inverse function is an APN function

a bijective map fromR to R. In recent years, there :
has been considerable interest in studying permutatiop- po?ver some other fields. , . .
nomials, partly due to their applications in coding theory, ON€ of the known measures for this resistancenas-
combinatorics and cryptography. We are interested in tlie finIn€arity (see for example [1]). The non-linearity of a function
field F, or the integer ringZ,. For more background on is defined by the Fourier transform of that function. In this

permutation polynomials over finite fields we refer to Chapt&2S€, non-linearity is closely related to the selection of a

7 of [14]. For detailed surveys of open questions and resul@haracter” in its definition. For more precise informatjove

up to 1993 see [12], [13], [17]. For permutation ponnomiaIEeferthe reader to [9] and references therein. At the enHisf t
overZ, andF,, we refer the readers to [18], [21], [22] [23]'article we calculate this measure for several of our fumstio
Polynomials over finite rings can be viewed as maps betwe@fd find correlations between these and our measures.
finite rings, or between finite groups. This motivated us to [N this paper, we attempt to understand the injectivity and
study mappings between two finite Abelian groups of the sarfgfiectivity of Ay, when [ is a bijection. This helps us to
cardinality, in particular, bijective mappings. understand how close a bijectighis to being an APN function
Currently, substitution components called S-boxes aff'd how much better thamto-1 is Ay,.. In Section Il we
among the most popular tools for making a cryptosysteﬂ?ﬁne two _generahzed measures of |nject|V|ty_a_nd SuKigti
secure. The critical task of an S-box is to offer more comfusi ©f 2.« Which we call theambiguityand thedeficiencyof f,
This situation results in security. These S-boxes are bagedreSPectively; this definition does not requjréo be a bijection.
Boolean functions [9]. For example, the SAFER cryptosystel{nen f is a bijection, we show these measures are invari-
introduced by Massey [15], uses S-boxes in its structurso Ajant under certain affine transformations. Moreover, strong
the Advanced Encryption System (AES), proposed by DaemEpnnections between permutations, Costas arrays and talmos

and Rijmen in [5], employs an instance of an S-box to increaE@rfeCt _non—llnear functions are also explained in Sectlon_
the amount of confusion. In Section Il we prove bounds on these measures which

then allow us to define notions of optimality with respect to
D. Panario, B. Stevens and Q. Wang are with School of Mathesmand them. This generalizes the results to arbitrary finite Adoeli
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fixing 0 and discrete logarithms to construct two families abur references tort —

1” will seem odd. The ambiguity and

permutations of,, which achieve the optimum lower boundsdeficiency of a function and its compositional inverse aee th
For the latter case, we show that optimal ambiguity and APdme since rows-deficiency becomes colummdeficiency,
property are the same notion for permutations of finite fields and reciprocally.

even characteristic. Moreover, we use SAGE [24], a free open It is clear that the ambiguity and deficiency are strongly
source mathematics software system, to computationalifyve correlated although they are not exactly related. In thigext,
ambiguity and deficiency of several known APN permutationshen we have: € G, we can explicitly give the relationship
of finite fields when the characteristic is odd. In Section V wketween ambiguity and deficiency. For exampleg iE G7,
study how close an APN function is to being optimal in termthen we getD,—.(f) =n — 1 — #{A.(z) | z € G1}.

of ambiguity. The conclusion and further research topies A emma 1

commented in Section VI.

II. DEFINITIONS AND CONNECTIONS
A. Definitions

Let G; and G2 be finite Abelian groups of the same

cardinalityn and f : G; — G2. Let G} = G \ {0} and

G; = G3 \ {0}. For anya € G} andb € G2, we denote

Apa(r) = fz+a) — f(z) and A, (f) = #A7,(b). Let
a;(f) = #{(a,b) € Gf x G2 | Aap(f) =i} for 0 < i < n.
We call ag(f) the deficiencyof f, denoted byD(f). Hence
D(f) = ao(f) measures the number of paifs,b) such

Let f : G1 — G2 be a bijection. If a row-
a-deficiency off is equal tod, then rowa-ambiguity of f
satisfies

d+1< Arma(f) < (dgz).
Proof: BecauseD,—,(f) = n— 1 — #{Ajq(x) | z €
Gh1}, the size of the value setA;,(z) | x € G1} isn —
1 — d for a given rowea-deficiencyd. The maximum row-
a-ambiguity, A,—.(f) = (*3?), occurs when the: images,
Ay q(z), are distributed withn — 2 — d values ofz giving
distinct images and the remainidg-2 values all agreeing. The
minimum value,4,—,(f) = d + 1, occurs when the images

thaF Aj.»_,a.(x) = b has no solutions. Th.is. is @ measure of thgre distributed withd + 1 pairs of {z, 2’} having A, (z) =
surjectivity of Ay ,; the lower the deficiency the closer theAm(x/) and the remaining — 2(d + 1) images are distinct.

Ay o are to surjective.
Moreover, we define théwveighted) ambiguityf f as

A0 =3 winy)

0<i<n

It is simple to check that < n/2 — 1 and that it is necessary
for the setsA;;(b) to have cardinality zero, one or two when
A,—q(f) achieves its minimum. [ |

If we can view bothGG; andG4 as vector spacelg; and Vs
over the same scalar fieltf, then ambiguity and deficiency

From this definition, we can see that the weighted ambigdity measures are invariant under bijective affine transfoimati

f measures the total replication of pairsaofindz’ such that

Ay q(x) = Ay (") for somea € G, This is a measure of
the injectivity of the functions\¢ ,; the lower the ambiguity

of f the closer theA; , are to injective.

For a fixeda the values of\ ,(x) are the entries in theth
row of what is often referred to as thiifference triangleof
f (when the domain of is Z [2], [7]) or what we might call
the difference array(when the domain off is a finite group
(). Thus for a fixedz, we define theow-a-ambiguity off as

et =5 (00

These measure the injectivity of the individualy ,. Simi-
larly, we define therow-a-deficiencyas D,—.(f) = #{b |
Aap(f) =0,b € G2}, which measures the number#$ such
that Ay ,(x) = b has no solutions for a fixed. Likewise, we
define thecolumné-ambiguityas A.—(f) = 3, (**2) and
thecolumnéb-deficiencyasD.—,(f) = #{a | Aap(f) =0,a €
G5}, which measures the number®$ such thatA; ,(z) = b
has no solutions for a fixel

In this paper we restrict our attention Jo: G; — G2 that
are bijections. This has the implication that ,(z) = b can

never have solutions fdr= 0, thus we use the corresponding

form in all our definitions that restricb € G3; this also

includes summations and universal quantifiers. Anotherceff

of this to note is that the domain and co-domain &f

from V7 and V5.

Lemma 2. Let f,f : G; — G- be bijections such that
f = Ay o fo Ay + A where A}, A, are bijective affine
transformations andA is an affine transformation. Then for
each pair (a,b) there exists a unique paifa,b) such that
Aap(f) = Xap(f). In particular, f and f have the same
ambiguity, deficiency, and corresponding row ambiguitied a

row deficiencies.

Proof: Clearly, f(x + a) — f(x) = b is equivalent to
Ajo(foAy(x+a)— foAy(x)) =b— A(a) becaused,
and A are affine transformations. Using the bijectivity 4f
and Az, we obtain,,(f) = A; ;5(f), wherea = Ay(a) and
b= A7 (b — Ala)). [ |

Even when the groups are not vector spaces, the ambigu-
ity and deficiency are invariant under some transformations
namely adding a fixed element or applying an automorphism
of G before applying the mapf, and similarly adding
an element or applying an automorphism Gf after the
application off.

B. Connections

Costas arrays [4] are x n permutation matrices with
ambiguity functions taking only the values 0 and (possilily)
These arrays have applications to radar and sonar systés [1

are now sizesw andn — 1, respectively; this is particularly Definition 3. A Costas arrays a permutation matrix (that is,
important to remember when reading the proofs otherwisesquare matrix with precisely one 1 in each row and column
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and all other entries 0) for which all the vectors joining theof finite fields. Frequently our permutations are optimum in
pairs of 1's are distinct. both ambiguity and deficiency.

It is clear that a permutatiori, from the columns to the
rows (i.e. to each columm we assign one and only one row
f(x)), gives a Costas array if and only if far# y andk # 0, In this section we determine a lower bound on the ambi-
flz+k)—f(z) # f(y+k)—f(y). We note that in the standardguity and the deficiency of a bijection between two Abelian
definition of Costas array, the arithmetic takes place m%d groups. Then in the next section we construct permutations
and the vectors are il x Z. The Costas array definition isachieving these bounds for an infinite number of values,of
precisely the property ofi(f) = 0 when f : [1,n] C Z — the size of our group.

[1,n] C Z. WhenG; andGs, are arbitrary Abelian groups we can derive

A special class of Costas arrays is the so called singipunds on the ambiguity and deficiency. Firstletc G be
periodic Costas array, which is am x co matrix built by the elements of order 2 6y,
infinitely and repeatedly horizontally concatenatingran n
Costas array with the property that anyx n window is a n= Z 9,

Costas array. This is equivalent to considering the irmpecti
f :+Z, — [1,n] C Z and asking again thaf have zero and let,; = |I;|. Similarly let I, C G5 be the elements of

IIl. BOUNDS FOR GENERAL GROUPS

g€l

ambiguity. order 2 inGa,
If we considerf : Z, — Z,, the bounds from our Yo = Zg,
Theorem 6 below show that zero ambiguity is impossible and g€l

thus “doubly periodic Costas arrays cannqt exist. Howelver and leti, — |I|. Furthermore, leff : G1 — G be a bijection

bounds from Theorem 6 also tell us precisely what it means 0
. . Y and letl] c I; be

to be as close as possible to a “doubly periodic Costas array

we require the ambiguity, and correspondingly the defigienc I)={a€ | D—.(f) =0}

to be as small as possible. In Theorems 14 and 15 we build )

families of permutationg’ for an infinite number of orders, AlS0 define

n, vyhmh are optimum with respect to both the ambiguity and N ={ae G\ I, | Dy—a(f) = O}.

deficiency. o _

Perfect and almost perfect non-linear functions can also Bénilarly definel3 and N3 N
defined within the terminology of ambiguity and deficiency. ~Since the deficiency is simply the sum of the row deficien-

. - _ cies and for any: ¢ I? U NY, D,_,(f) > 1, we have
Definition 4. [8] Let G; and G5 be finite Abelian groups of

the same cardinality ang : G; — G2. We say thatf is a D(f)= > Dy—a(f) > (n—1)— [I] UNY|.
perfect non-linear functioif a€Gy
flx+a)—f(z)=0 Whena € 19 U NY then D,_,(f) = 0 and the pigeonhole

h | lution for adi 4 all principle gives us that there is a single repeated vatuén

as exactly one solution for all 20 € Gy and allb € Gz. e multiset{ f(x + a) — f(z) | x € G1} C G%. In the case
This corresponds again to zero ambiguity. This properyherey. # 0 we have

is often too strong to require and particularly in the case of .

bijectionsf, it can never be satisfied. Thus a relaxed definition Z flz+a)- Z (=)

is frequently useful. zeGy z€G
= r+a)— X =7r+ =1r+ ,
Definition 5. [8] Let G and G be finite Abelian groups of mggjl (A )= f@) yegc:zy 72

the same cardinality and : G; — G>. We say thatf is an _ ) )
almost perfect non-linear functidh and thus the repeated valués v,. That is, there existy, x5 €

G7 such that

flz1+a) = f(x1) =72, f(z2+a)— f(x2) = 7o

Letting y1 = f(z1) andys = f(x2), this is equivalent to
The two subjects of Costas arrays and APN functions have
been connected before by Drakakis, Gow and McGuire in [#] (1 +72) = f (1) = a, [ (y2+72) — [ (y2) = a.
where they use the Welch construction of singly period
Costas arrays to build APN permutatiorfs; Z,—1 — Z,—1

f(+a)~ fz) ="

has at most two solutions for adl # 0 € G; and all b € Gs.

Phe fact that for everya € I? U N? we get thata €

\ . I Rangéf~'(y + - ft ives us the left hand of
for p a prime. We note that our constructions have optlmumeq?g;ty ((yl) bgllo)w. Tj;e (fZZ:)t tghat for every € 19 U N?

and therefore lower ambiguity than those coming from t ere is a pair of distinct values of € G which have

Welch construction and thus are closer to being PN functions, ical values off—1 1 ives the right hand
Additionally they are defined on the larger setrof= ¢ — 1 of Inequality (1) ;hué?ﬁr”m) I~ g

where ¢ is a prime power. Our construction methods in
Section IV modify known families of permutation polynomsal 1 — 1 — (|[I) U N?|) > De—r, (f) > (I2UNY|) = 1. (1)
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If f(z+a)—f(z) =bthenf(x+a+a)— f(x+a) =bsince Again, by Lemma 1, a row-deficiency value ofl contributes
a €l andb € I. If |I5] > 2, by,bs € I, and there exists atleasti+1 to the ambiguity, so we get that the total ambiguity
ana € I then D,_,(f) = 0 and in particular there existfor f is at leasth — 1 +n — 3 = 2(n — 2).
z1,x2 € G7 such thatf(z; + a) — f(xz1) = by and f(z2 + Now let 102 > 1. Without loss of generality, suppose >
a) — f(xz2) = ba. But then, by the previous comments we alsg, and thus., > 1. If D,—.(f) = 0, then there can only be a
have f(z3 +a) — f(z3) = b1 and f(z4 4+ a) — f(z4) = be for  single repeated value, in the multiset{ f (z+a)— f(z) | z €
x3 = x1+a andzy = x2+a. Again sinceD,—,(f) = 0, there G;} C G%. By the fundamental theorem of Abelian groups,
must be a solutiony € G; of f(z+a) — f(z) = b for every we have
b € G% but onlyn—4 elements of7; \ {x1, 22, x3, x4} remain

to provide solutions for alh — 3 elementsh € G \ {b1,b2} 0 = > flata)= 3 fl@)
which is impossible. Thus ifl;| > 2 thenI? = 0. rEG reCh

If nis odd orys is the identity, the corresponding versions = Y (flata)—f@)=r+ Y y=r
of Inequality (1) give that the repeated valugs r» = 0 but z€G y€G}

this is not possible sincg(x + a) — f(z) € G3, thus N0 \\nicn is a contradiction. Thus),—.(f) > 1 for all @ € G4
D,—.(f)=0andD(f) > n— 1. The same applies when Weyhen L > 1. N

; -1
considerf™". Letn be even and let;.; > 1. For each: € I; we calculate

Theorem 6. LetG; andG+ be Abelian groups of order with  a lower bound onD,—,(f). The difference map is\¢, :

t1 and ., elements of order 2, respectively. Let G1 — G2 G, — G%. Defineq; to be the cardinality of the sdb € G5 |
be a bijection. Then the deficiency ¢f D(f), is bounded #Aﬁi(b) =i} If Ajo(z) =be L, thenAs (2 +a) = b

below by as well, and we have that; < n — 1 — 5. Simple counting
n—1 n=1 (mod 2), over the domain and co-domain sizes gives
n—3 n=0 (mod2)andi; =12 =1, n n
n—1-3molneel L ouk =0 (mod 2) and tiie > 1. Zaizn—l, Zmi:n.
The ambiguity off, A(f), is bounded below by =0 =0
Using
2(n—1) n=1 (mod 2),
2(n —2) n=0 (mod2)ande =12 =1, " o no
2(n—1)—73min{2”’bz} +42 n=0 (mod?2)andiits > 1. 220‘1' Szlo‘i: Zw‘i oL =N o,
i=2 i=2 i=1

Proof: The lower bound on deficiency whem is odd e get
is straightforward. Indeed, there are noc G7 for which

D,—o(f) =05s0D,—,(f) > 1 for all a. Summing these over Docolf) =g = n—l—iai :n—l—al—iai
all non-zeroa gives the required lower bounB(f) > n — 1. h p p
By Lemma 1,A4,—,(f) > 2. Summing these over all non-zero n—a; n o
a gives the required lower bound for ambiguity 6f that is, 2 n-l-a-———=5-1-=
A(f)22(n_1) > n 1 Lo 1 n_LQ—l
Whenn is even and; = 13 = 1, thenl; = {11}, Ir = = 9 +§+§_§_ 2

{2}, which are both nonzero, anddfe I{UNY the repeated

Let Ny = G \ I;. We now have
value of f(z + a) — f(z) must bey,. Recall the deficiency ! i\h whav

can be computed from either the row or column deficienciesD(f) = Z D—o(f) + Z D,—o(f)
acly a€N,
ZDr:a(f) = ZDc:b(f)' o —1 31 Li1l2
a0 b£0 > 5 —i—n—l—Ll:n—l—T 5
Using Inequality (1) and its row deficiency analog, we get The same calculation can be done for the column deficiencies
and thus
1 .
D(f) = 5| D Dealf)+ Y Desalf) D(f) 2 n—1 - 2mide) e
e beGs 2 2
The ambiguity lower bounds are derived directly from the
1 bounds on deficiency using Lemma 1 [ ]
- = Dr:a + Dc: + . ) .
2 (a;;n (/) bgz (/) In the particular cas€'y = G2 = Z,,, we have the following

Corollary [20].

D=, (f) + Dr=y, (f) > Corollary 7. Letn € N and f : Z, — Z, be a bijection.
1 0 0 0 0 The ambiguity off is at least2(n — 1) whenn is odd and
B (n=2— | UNY) + (n =2 - |I; UNy|) 2(n— 2) whenn is even. The deficiency ¢fis at leastn — 1
+IOUN? =1+ |0 UNY| - 1) if n is odd and at least — 3 whenn is even.

Y

= n-—3. Functions that meet these bounds are of particular interest
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Definition 8. If a permutationf : G; — G» has an of fis (n —1)((n — 1)/2 — 1) and the ambiguity off is
ambiguity equal to the lower bound from Theorem 6 we sdy — 1)(n — 1)/2. Hence the proof is complete. ]

it has optimum ambiguityand similarly we defin@ptimum Obviously this case is the worst possible scenario that
deficiencyfor a permutation if it achieves the lower boundctan happen in terms of ambiguity and deficiency for APN
for the deficiency. functions.

. S When f is a bijection we only consideb € G% and
Next we show that optimum ambiguity implies the APN . . . Pl
L . APN funct learly funct th Il ambiguityda
property for bijections fromG,; and Gs. For the optimum unctions are clearly functions with small ambiguibaan

ambiguity, all the setsd " () have cardinality at most two th_erefore small deficigncy. Since a function can be APN and
These ob,servations allojv"\(/l us to connect our notion of ambi' Stl" have an ambiguity anywhere between the Jower bound
. . gHresented in Theorem 6 and the upper boun¢hof 1)|n/2]

ity to APN functions. in Proposition 10, our definition of ambiguity has a higher
Corollary 9. LetG be a finite Abelian group. If a permutationresolution power than just the definition of APN and thus can
f : G — G achieves the minimal ambiguity, thgnis Almost usefully be regarded as a refinement of the concept.

Perfect Non-linear. Example 11. One APN permutation constructed #o from

Proof: Consideration of the forced equalities throughodfe Welch Costas array constructions fgz) = (2 mod
the proof of Theorem 6 gives that the number of pairggh) 11) — 1 or f = (0)(1)(23768)(4)(59) and has ambiguity
such that|/A; ] (b)] > 2 is exactly the ambiguity and eachl9 > 2(10 —2) = 16 and deficiencyl2 > (10 —3) = 7

inverse image has size zero, one or two. THtis APN [8]. although this construction does not attain the worst pdesib
m Values for APN permutations.

This is not true for the deficiency. #f is odd, it is possible |y general, the converse of Corollary 9 is not true. But it is
that theD,—,(f) be at its minimum, whiled,—.(f) =3 > 2. trye for finite fields of characteristi.
In this case there is one missed valyge € G5 and a valugy,

which is hit three times by\;,. In that casef is not APN. Corollary 12. Let f : Fam — Fam be a bijective APN, then
Whenn is even,;; = 1, = 1 and the minimum deficiency is it has optimum ambiguity and deficiency.

achieved, then any row whe®,—,(f) = 0 cannot contain Proof: Since we are working in finite fields of charac-
values of b that are hit more than twice. Considering thgeristic 2, the solutions of every equation come in pairs. It
equalities that are forced im,—,,(f) (as discussed at themeans that every equation such As ,(z) = b has either
start of Section Ill) when the deficiency is optimal ShOWSth%Xacﬂy two solutions or no solution becaugeis an APN
the only repeatedl values in this row must come from columnsynction. Based on the proof of Lemma 1, the minimum value,
that have zero deficiency and thus these values are repeagg(:ja(f) = d + 1, happens only when the images are dis-
only twice. But just as in the odd case any .other row Withihuted withd+ 1 pairs of {z, z'} havingA ;o (z) = Ay 4(z)
Dy—a(f) > 0 could have a value hit three times Y. and the remaining: — 2(d + 1) images are distinct. Hence,
In the case, .o > 1 we can be more precise. if € I; the jn this case we getl = 21 — 1 and the setsA;l(b)
consideration of the inequalities in the proof of Theorem ﬁaving cardinality zero and two are necessary Wklegf(f)
shows that ifD,—4(f) = (12 — 1)/2 then#A7 () = 0,1,2  achieves its minimum. Thereforg, has optimum ambiguity
for this a. It is only whena ¢ I, that f can fail to be APN. pecause every row has optimum ravambiguity. Finally,
Thus if Gy = Z5 with n = 2¢, 1, = n — 1 and f attains gjnce optimum ambiguity is stronger than optimum deficiency
deficiencyD(f) = n—1—(3t1)/2+u102/2 = (n=1)(:2=1)/2,  f has optimum deficiency as well. [ |
then f must be APN. In this case however, if <
this bound is never attained so all we can say is that if
G, = G2 = Z§, then attaining the minimum deficiency does
guaranteef to be APN. _ . . _

However a permutation which is APN could have ambiguity N€xt we provide our main constructions which produce
as large agn — 1)|n/2] and correspondingly deficiency ag’érmutations that achieve the minimum ambiguity and defi-
large as(n — 1)(|n/2] — 1). ciency.

IV. AMBIGUITY AND DEFICIENCY OF SOME KNOWN
FUNCTIONS

Proposition 10. LetG,, G2 be finite Abelian groups of order . . S

n. If f : Gy — G5 is any APN permutation such thatA' Functions in the multiplicative group &,

At o(z) = f(x4a) — f(z) is 2-to-1 mapping for alk: € G, Before we give our first construction, that applies to values

with at most one exception and for amyc G%, then the Of n = ¢ — 1 for ¢ a prime power, we introduce a way to

deficiency off is (n — 1)(|n/2] — 1) and the ambiguity of Obtain a permutation polynomial of fixed poiditover a finite

is (n —1)|n/2]. field F, from another permutation polynomial @, which
does not fix0. Namely, leth be a permutation polynomial of

Proof: Supposed,, is 2-to-1 mapping for each € Gi, f_ such thath(0) = a # 0 and h(b) = 0. Then we defing
thenn is even and the deficiency ¢f is (n — 1)(n/2 — 1) g

and the ambiguity off is (n — 1)n/2. However, if Ay, is h(b) =0, x =0
2-to-1 mapping for alk: € G; with at most one exception and g(z) = ¢ h(0) =a, x =b;
for eacha € G7, thenn is odd. In this case, the deficiency h(x), x#0,b.
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It is obvious thatg is again a permutation polynomial &f,
which fixesO0.

Example 13. For any positive integee such thatged(e,n) =
1 andm,a # 0 € Fy, the polynomiali(z) = mz© + a is a
permutation polynomial of, which does not fiX. Let b be
the unique (non-zero) field element such théf) = 0. Using
the above construction, we let

h(b) =0, x =0
g(z) =< h(0) =aq, x=1b;
h(z) = mz® + a, x #0,b.

Theng is a permutation polynomial df, which fixes0.

then
m2debex’ + ama® + amd®b® + a? = amd®z® + o>
Hence
(m2d°b° + am — amd®)z® = —amd®b°.
Sincemb® = —a, we obtain

(am — 2amd®)xz® = —amd®b°.

Again, m,a # 0. This implies that(2d® — 1)z® = d°b®.
If ¢ is odd, we can find a solution far as long a2d® —
1 # 0. On the other hand, there exists a uniglisuch that

e __
It turns out that this twist of permutation polynomials can bd =1/2 and

very useful in constructing permutations 8§ with optimum
deficiency and optimum ambiguity.
1) Functions derived from permutation monomials:

Theorem 14. Let ¢ be a prime powern = ¢ — 1 anda a
primitive element iff,. For gcd(e,n) = 1 andm,a # 0 € F,
let h : F, — F, be defined byi(z) = mz® + a and letd be
the unique (non-zero) field element such thét) = 0. Let

h(b) =0, z=0;
g(z) =<¢ h(0) =aq, x=1b
h(z) = mz® + a, x #0,b.

If ¢ # 0 (mod 3) then f : Z, — Z, defined byf(i)
log,, (g(a?)) has optimum deficiency. If, additionally,= 2
(mod 3) (i.e., ¢ is an odd power of a primg wherep = 2
(mod 3)), then f has optimum ambiguity as well.
Proof: We have f(i + a) — f(i) = log,(g(a’™®)) —
. i+a
log, (9(a")) = log,, (L ).
the sizev, of the value set ofy(dz)/g(x) for x # 0. From
the definition ofg, we have

mse
g(dw) a _ .
pres R N
misize Ly

First we show thaty; > ¢ — 3 for anyd # 0,1. Let z,y be
both different fromb, b/d. Assume that

m(dx)®+a  m(dy)®+a
my¢ + a

mx€ + a

Then

m2dez®y® + amy® + amd®z® + a®
m2dzy® + amd®y® + amax® + a>.

Sincem, a # 0, we obtain(d® — 1)y® = (d° — 1)x°. Because
ged(e, g — 1) = 1, we haved® # 1 if d # 1. Hencex® = y°.
Again, by ged(e,q — 1) = 1, we obtainz = y. Hencevy >
q— 3 foranyd #0,1.

Moreover, if
m(db)* +a  m(dr)®+a

a mx€ 4+ a

)

m(db)* +a , m(dx)¢+a
a mz€ +a
Similarly, there exists a uniqué such thatd® = 2 and
a y m(dz)® + a
m(b/d)¢ + a

Hencevy = ¢—3 =n—2if d* #2o0r1/2,andvy; = ¢—2 =
n—1if d° = 2 or 1/2. Moreover @) +a _ is
equivalent tod2® — d¢ +1 = 0.

We observe that if ch@F,) = 3, then2 = 1/2 and
it b/‘;)mra = m(dl;) e Hence there is one row with row
deficiency zero and the remaining rows have deficiency one.
Thus D(f) = n — 2 wheren = ¢ — 1. It is obvious that
A(f) =2(n—2)+1=2n—3 in this case.

If char(FF,) > 3 then we consider two cases=1 (mod 3)
andg =2 (mod 3). In the former casef*® — d° + 1 = 0 has
two distinct rootsry, o for d¢ which are not equal t@ or

mx€ + a

m(b/(;)e-i—a

Letd = . We need to study 1 /9. Againde = 2,1/2 give us two rows with row deficiency

zero and row amblgwty one. Whetf = r1,ry then we get
two rows with row deficiency one and row ambiguity three.
The remainingn — 5 rows have row deficiency one and row
ambiguity two. Thus forg = 1 (mod 3) we get D(f) =
2(0)+2(1)+(n—5)(1) = n—3 which is optimal and4(f) =
2(1) +2(3) + (n — 5)(2) = 2(n — 1). However, whery = 2
(mod 3), there are no roots fai*® — d° + 1 = 0. Hence we
have two rows with row deficiency zero and row ambiguity
one, the remaining. — 3 rows have row deficiency one and
row ambiguity two. HenceD(f) =2(0)+(n—3)(1)=n—3
and A(f) = 2(1) + (n — 3)(2) = 2(n — 2) are both optimal
in the case thag =2 (mod 3).

If ¢ is even, we always find such that

m(db)* +a  m(dr)®+a
a mz€ +a
and
a _ m(dr)* +a
m(b/d)¢+a  mac+a

Hencevy; = ¢ — 3, and D(f) = Zaezg D,—.(f)
1)(n—1-(¢—3)) =n—1whenn is odd.
If ¢ is an even power of two, thed*® + d* + 1 = 0 has
two solutions ford®. Hence there exist twd’'s such that
m(db)® +a a _ m(dr)° +a
a -~ m(b/d)¢ +a ma® +a

(n -
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In this case, we havel(f) =2-3+4 (n—3)-2=2n which d =2, thenz = 0 and it means that for thig and for some
is not optimal. However, in the case thats an odd power of a such that2 = o“, we have the row deficiency zero. Hence
2, there are no solutions ¢ + d° +1 = 0, so we still have vy =q¢—3=n—-2if d®* #2o0r1/2, andvy=q—2=n—1

optimal ambiguityA(f) = 2(n — 1). m if d° = 2 or 1/2. Moreover % = 1 — d is equivalent to
We remark from the proof that i§ = 1 (mod 3) then the d? —d+1 = 0. Then the rest of the proof follows in the same
ambiguity is2(n — 1) or 2n depending on whetheris odd or way as the proof of Theorem 14. |

even, respectively. In these cagés not APN. Also, ifg =0
(mod 3) then f has deficiency: — 2 and ambiguity2n — 3,
both exactly one more than optimal. In this cageis APN.
Some of these cases were overlooked in [20].

B. Additive group of a finite field

2) Mbbius function: 1) APN permutations in a field of characteristic
Theorem 15. Let ¢ = p™, n = q — 1 and o a primitive Letg =2™ andf : F, — F, be the inverse function defined
) ' as follows
element inF,. Letg : F, — F, be defined as follows 21 40
~ flz) = Za
Bz -n 0 x=0.
o@=1 7 T
5 x = ’7’7, It is easy to see thaf is permutation function oveF, and

| 0) = 0.
wheref,~v,n # 0. If ¢ # 0 (mod 3) thenf(i) = log, (g(a?)) 1) _ _
has optimum deficiency. Moreover,gif= 2 (mod 3) then f Theorem 16. Let ¢ = 2, m odd. The inverse function
has optimum ambiguity. if = 1 (mod 3) then the ambiguity f(z) = «~" overF; has optimum ambiguity and deficiency.
is 2(n — 1) or 2n depending on whethey is odd or even, For evenm, the ambiguity and deficiency are
respectively. Finally, iff = 0 (mod 3) then f has deficiency eom me1
n — 2 and ambiguity2n — 3, both exactly one more than A =@"-1 (2 * 4) ’

optimal. and
Proof: First of all suppose that ch@,) # 2. It is easy D(f) = (2™ —1)2m .
to see thay is a permutation function ovéf, andg(0) = 0. Proof: Based on the definition of, we get
We have
. . i+a i s 07 -4,
flita)=f@i) = log, (9(a'™)) —log, (9(a")) fla+a) = f(2) = { et i’fo -
g(a't®) @ o
log, < 9(ad) ) : Let us assume first, y are both different fron), —a. Then
Suppose that = «®. We have to evaluate the value sgtof fx+a)—f(z)=fly+a)— f(y)
g(dx)/g(zx) for x # 0 whered # 0, 1. Based on the definition —a —a
of g, we get T iera) ylyta)
d(ya+n) —n =1 = - =0.
o(de) o “’é_vn’dw (z —y)a+z+y)
9(z) =y 41 T=50 Hence for every: there is exactly ong such thatf(x+a) —
1-d T f(x) = f(y+a) — f(y). In addition, we have
i i -1 =1 _
Let us first assume that, y are both different fromT, T a 1 o tartd =0 )
Then z(r+a) a
gldz) _ g(dy) — d(yz +n) _ dlyy +m) This equation has solutions iy~ if and only if m is even.
9(x) 9(y) ydr 41 ydy +1n Indeed, fora # 0, 2% + ax +a? = 0 is equivalent taz/a)? +
= anr+yndy = yny +yndx (x/a) + 1 = 0, which is equivalent tqz/a)® = 1 provided
— (z—y)(d—1)=0 x ;é a. Hence this happens if and only3f| 2™ — 1, namely,
— z=uy. (2) m IS even. o .
N Now, we distinguish between two cases.
Henceva > ¢ — 3 for anyd # 0, 1. In addition, we have 1) For evenn, we have two distinct solutions te? + ax +
dyz+n) d ey n(d—2) 3) a? = 0 for everya # 0. Therefore, all the elements in

vydx + 1 d—1 v Fom are 2 to 1 except one of them which is 4 to 1
and that is happening when we have Equation (5). We

and also X
d(vz +1) 1 — 24) note that four solutions are = 0, —a and the other two
dvetn) g, 77(72 (4) solutions come from equatiat? + az + a2 = 0. In this
vdx +1 vd case, the number df # 0’s such that we do not have

Let chafF,) # 2. So, the expressions (2) and (3) imply a solution forAy ,(z) = b is % +1 = 1. Also we
that if d # 2, then we have a unique non-zero solution and  haveq— 1 choices fora € ;. HenceD(f) = (¢—1)4.
for these values off we have the row deficiency one. But if Moreover, there exis§ — 2, b # 0's for which we do
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have two solutions folA¢ ,(z) = b. Therefore, A(f) = By a simple rearrangement, we have
2 4
+ equals
(2)042(f) (2)a4(f) q 3h (Id)Q 430220 43— g =0 (6)

(¢—1) (g - 2) + (;l) (g—1)=(q—1) (g + 4) - which is a quadratic equation irf. Therefore, it has at most
. T two solutions inz?. Each of these solutions gives a maximum
2) For .odd m this function is APN and Corollary 12 4 (d, p° —1) solutions inz. Sincef is a permutation(d, p° —
applies. 1) = 1 and we conclude that finding the solutions of (6) is
In both cases we have to use lower bounds from geneggjuivalent to providing the set of solutions 3#fx? + 3b%x +
groups. Since in the additive group &%, ¢ = 2™, all the »* —a = 0. The former equation is a quadratic equation.
elements have ordeX, we get,; = 12 = ¢ — 1. Hence, based  Now suppose thaf is the last APN permutation in Table I.
on the lower bounds of Theorem 6, the lower bounds on d@f closely follow the proof of Theorem 11 in [11]. Any <
ficiency and ambiguity of the inverse flzmction on the additivF, can be represented as= a + a~!, wherea and o *
group of F, are(q — 1) — @ + @ =(¢—-1)(§-1) are the two roots irf}; of 2> — zz + 1 = 0. A solution
and2(q — 1) — w + @ = (q—1)4, respectively.m Of Ay, = (z +a) —a? = b is equivalent to a solution
We note that for oddn, the inverse function is APN andof a?((z/a) + 1) — a%(z/a)? = b. Lety = x/a and this
thus has optimum ambiguity and deficiency. For ewenthe corresponds to solutions @f + 1)¢ — y% = ba~?. Hence, it
inverse function is not optimal in terms of ambiguity, nordpP is sufficient to find the number of solutions of
We observe that the inverse function in the evercaselFys d d_
is used in the S-box of AES. (z+1)7—a" = )
2) APN permutations over finite fields of odd characteristi®keplacingz by = + 2, we obtain(z + 3)¢ — (z + 2)? = b.
Substitutingz = a + a~*, we conclude
There is a sharp contrast with the above situation when (0 —1)20— (a4 1)

we consider APN permutations over a finite fiedlRj. of v =D,
characteristipp > 2. More precisely, Corollary 12 is not true @
if we change the characteristic of our finite field to odd primhich is equivalent to
numbersp. In the following we determine the ambiguity and sk 1 _ sk
az 4+a "z =2b (8)
4 T Condition [ The above equation has in general four solution& ja for
3 p#3 anyb (b can be inF, or IF - but of course we are interested in

p¢—2 || p>2andp® =2 (mod 3)

the former). If one solution is;, then the remaining solutions

2p°—1 e —
= p® =2 (mod 3
7 ( ) (for p=5) are—a, o~ ! and—a ™!
ptl p=>5and(2e,k) =1 4 L . .
2 Thesex’s map ontar’s; in general, this is a 2-to-1 mapping.
TABLE | In particulara anda ! both map to the same and so do the
; T .
FOUR APN FUNCTIONSz? OVER FINITE FIELDSF e OF ODD pair —a and—a ™. Thgs we get, generally, two solutions:of
CHARACTERISTIC[11]. for everyb corresponding tev and —a.. Whena = o~ ! (o =

1 or4) then Equation (8) has two solutions foy buta and—a

still map to distinctz’s so Equation (7) still has two solutions.
Whena = —a~! (o = 2, or 3), then Equation (8) has two
solutions and in this case and —a map to the same: so
Equation (7) has one solution. Other than these two sitngtio
Equation (8) always has four solutions and thus Equation (7)
Yhas two solutions.

For all of the APN functions of Table IAf, = b has
Theorem 17. Let f be one of the APN permutations in Table kither zero or two solutions for alls except one where it has
overF, whereq = p°. Then the deficiency g¢fis (¢—1) (%3) a single solution. It means that, for eaghthere is only one
and the ambiguity off is (¢ — 1) (‘1;21) b such that these two solutions are the same. Hence, based
on Proposition 10 the deficiency ¢fis (¢ — 1) (451 — 1) =
-1 (452) and the ambiguity off is (¢ — 1) (5+). =

deficiency of some well-known APN permutationslBp and

p > 2. In Table I, we report on some APN permutations of th
form 2? for some special values @f and for finite fields with
characteristipp > 2. We found the deficiency and ambiguit
of them in the following theorem.

Proof: If f(z) = 23 or f(z) = 2P =2, then f(z + a) —
f(z) = b is a quadratic equation. Now we show that for th
third and fourth functions we have the same situation. Let

be the third function. The equatida + a)? — z¢ = b where V. A MEASURE FOR BEING CLOSER TO OPTIMAL

d = 21 implies that(z +a)? = b+ 7. Raising both sides AMBIGUITY
of the last equation to the pow8r we get Let Opt,, ,(f) denote the optimum ambiguity of the
function f : G; — G2 for Abelian groups&; and Gs. Then,
3d __ d\3 __ ,.3d 2d 2. d 3
(@ +a)™ = (b+2%)" =27+ 3¢7b + 362" + b°. we can define theormalized ambiguitpf a functionf as the
Since3d =1 (mod (p¢ — 1)), we obtain ratio NG
opts, ¢, (f)

z+a=gz+ 322 + 3p%22¢ 1+ b3, - OptGth(f)'
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It is obvious that Ogt, ,(f) > 1. Furthermore, it can be another important measure, linearity, of cryptographiectu
easily seen that the functions with optimum ambiguity that wions [9]. We verify that the linearity of () used in SAFER
constructed in Section IV have normalized ambiguity eqoal tryptosystem is42.484 (see [9]) and obtain the linearity
one. of our twisted permutation polynomials, both those from
Theorems 14 and 15, i67.0312, which is very close to the

Proposition 18. All the functions with optimum ambiguity -\ Swer bound16.

cluding the twisted monomiglintroduced in Subsection IV-A
for finite fieldsF, such that¢ = 2 (mod 3), the Mbdbius
function in the multiplicative group of a fieldl, with ¢ = 2
(mod 3), the inverse function in the additive group of a field of In this paper, we have studied a lower bound for the
characteristicp = 2 with odd exponent, and the cubic functior@mbiguity and deficiency of permutations of finite Abelian

in a field of characteristipp = 2 have normalized ambiguity groups. In particular, we obtained several constructiohs o
equal to 1. permutations in the cyclic group,, wheren = p™ — 1 which

meet the optimum lower bound. In [20], we have given an

Therefore, this parameter can be imagined as a measyfgmpie of permutation dfs, which does not come from our
for functions to be close to optimal ambiguity. The closetongsiryction but it does come from Table I. A natural questio
Opt, ¢, (f) is to one, the closerf is to being optimal in s {4 find more constructions achieving the optimum bound.
ambiguity. For example, let us recall the Mobius functionsgimm ambiguity and deficiency of permutations of group
Acco_rdmg to Lemmglz, ambiguity an.d_deﬁ.mency of Mobmz) x Z, x --- x I, are interesting as they are related to the
function on the additive group of a finite fielfl, are equal oncent of APN permutation of finite fields. We have shown
to the ambiguity and deficiency of all of its linear transf@rm ,im,m ambiguity implies APN and the converse also holds
tions. Hence the ambiguity and deficiencygoin Theorem 15 i ¢ finjte field has even characteristic. Some preliminary

are equal to the ambiguity and deficiency of the inversgcjations have suggested that ambiguity and deficiency
function. measures are related to thieearity of a function and we are

Proposition 19. Let ¢ = 2™ where m is even. Then the currently investigating this. It is desirable to understahe

M@bius function over the multiplicative groupI is closer to  distribution of ambiguity and deficiency of APN permutation
being optimal in ambiguity than the dius function (inverse Of finite fields. We have checked that no functions fré@m

function) over the additive group @, in terms of ambiguity. @ndZi; to itself can achieve the optimum ambiguity which is

) . .2n —2; only 2n is possible and all these functions have two
Proof: According to the above paragraph, the ambiguity,siances oB-to-1 behaviour.

of the Mobius function in the additive group @, is (¢ —
1) (2 4 4) while the optimum ambiguity i$g — 1)Z. So,

VI. CONCLUSIONS

We have treated the case when the function between the
two Abelian groups is a bijection. If the groups are the same
(g—1) (g +4) 8 size and the function is not bijective then the existence of
Op%q,mq (9) = (q_—f)g =1+ P Perfectly Non-linear (PN) functions shows that the ambigui
2 and deficiency are not bounded away frénin general. In
In addition the worst caser{ even) ambiguity of the Mobius fact the following are all equivalent

function in the multiplicative group oF, is 2n wheren = « a map,f, being a PN function,
g — 1. Also the optimum ambiguity in this case 2§n — 1). « A(f)=0,
Hence e D(f)=0.
opt, , (f) = 2n 14+ 2 14+ 1 _ We \_NOl_JId like to_kpow if there are _certain groups where
e 2n—2 2n—2 q—2 ambiguity and deficiency of non-bijections are bounded away

It is clear that-L < & for ¢ > 2, and this implies that the from zero? Second, even if non bijections with zero ambyguit

p) . . .
M6bius function over the multiplicative group &, is closer and deficiency could exist for maps between two groups,
1 — G2, what is the spectrum of deficiencies and am-

to be APN than the inverse function (Mobius function) oveq;_ - > ) el
additive group ofF,. biguities that can be realized? This question is relevant fo

Massey [15] usesf(z) = (45% mod 257) mod 256 and bijections as well. Finally we note that maps of deficiency

its inverse in the SAFER cryptosystem. Drakakis, Gow arifrC between groups, not necessarily of the same size, have
McGuire [8] show that the shif§(z) = (45% mod 257) — 1 of been used in efficient constructions for covering arrays [3]

the above permutation and its inverse are APN permutatidib [16] although the term “deficiency” was not defined nor
in Zyss. Thus both functions and their inverses have tHesed. Further studies of ambiguity and deficiency in theseemo

same deficiency and ambiguity. For the S-box of the SAFEgENeral settings would be interesting and is open for furthe

cryptosystem, as a map @hs; to itself, our SAGE program research.
calculates its deficiency and ambiguity #3865 and 11120
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