Loopy Games

Theodore Hwa
hwatheod@cs.stanford.edu
Virtual Combinatorial Games Seminar
July 30, 2020

Outline

(9) Introduction
(2) Basic Definitions
(3) Examples of Comparisons

4 Formally Defining Comparison
(5) Stoppers, Onside, Offside

Definition of a Loopy Game

A loopy game is a graph where

- Each vertex represents a position;
- There is a specified starting vertex;
- Moves are indicated by directed edges labeled Left, Right

Assumptions for this Tutorial

- finite loopy games (finitely many vertices)
- normal play convention (last move wins)
- Any infinite play is a draw

References

[WW]

Berlekamp, Conway, and Guy. Winning Ways for your Mathematical Plays, 2nd ed., Vol 2, Chapter 11 "Games Infinite and Indefinite".

[CGT]

Siegel, Aaron. Combinatorial Game Theory, Chapter VI "Loopy Games".

References Errata

[WW]

- Bottom of p. 353 (boxed claim) only applies to stoppers.
- p. 361-363, all games should be assumed to be stoppers.
- Extras, p. 369-370, contrary to the claim, the dominated options cannot be omitted (cf. [CGT] Exercise VI.4.8).
[CGT]
- Exercise VI.1.4(c) is wrong (part (d) is suspect as well). OK if G is a stopper.
- In sections VI. 2 and VI.5, all games should be assumed to be stoppers.

Comparison of Approaches

The definitions in these slides are equivalent to those in [WW], but incorporate ideas from [CGT].
$G \geq w w H \Rightarrow G \geq c G T H$ (and similarly for other operators). I do not know if the converse holds. To establish equivalence, we would need to prove the converses of both parts of [CGT] Theorem VI.4.4.

Plays

Let G be a loopy game.

Play

A play, or run, of G is any sequence of moves starting at G. It may be finite or infinite, and is not necessarily alternating.

Enders and stoppers

Let G be a loopy game.

Ender

G is an ender if there is no infinite play starting at any vertex in G.

Finite enders are the traditional finite loopfree games.

Stopper

G is a stopper if there is no infinite alternating play starting at any vertex in G.

Sums, Negatives, Zero

Let G and H be loopy games.
$G+H=\left\{G^{L}+H, G+H^{L} \mid G^{R}+H, G+H^{R}\right\}$.
Choose one of the components G or H, then make a move in that component.
$-G=\left\{-G^{R} \mid-G^{L}\right\}$.
The two sides are reversed.
$0=\{\mid\}$.
Warning: $G-G$ is not necessarily equal to 0 (equality to be defined later).

Survival

Survival

A player survives a game if they win or draw.

Comparison of on, off, and dud

Recall that

$$
\begin{gathered}
\text { on }=\{\text { on } \mid\} \\
\text { off }=\{\mid \text { off }\} \\
\text { dud }=\{\text { dud } \mid \text { dud }\}
\end{gathered}
$$

We have, for any loopy game G :

- off $\leq G \leq$ on.
- on + off $=$ dud.
- dud $+G=$ dud.

Sidling

Define tis $=\{$ tisn $\mid\}$, tisn $=\{\mid$ tis $\}$.

Sidling

Define tis $=\{$ tisn $\mid\}$, tisn $=\{\mid$ tis $\}$.

- tis \leq on, tisn \leq on.

Sidling

Define tis $=\{$ tisn $\mid\}$, tisn $=\{\mid$ tis $\}$.

- tis \leq on, tisn \leq on.
- tis $\leq\{$ on $\mid\}=$ on, tisn $\leq\{\mid \mathrm{on}\}=0$.

Sidling

Define tis $=\{$ tisn $\mid\}$, tisn $=\{\mid$ tis $\}$.

- tis \leq on, tisn \leq on.
- tis $\leq\{$ on $\mid\}=$ on, tisn $\leq\{\mid \mathrm{on}\}=0$.
- tis $\leq\{0 \mid\}=1$, tisn $\leq\{\mid$ on $\}=0$.

Define tis $=\{$ tisn $\mid\}$, tisn $=\{\mid$ tis $\}$.

- tis \leq on, tisn \leq on.
- tis $\leq\{$ on $\mid\}=$ on, tisn $\leq\{\mid \mathrm{on}\}=0$.
- tis $\leq\{0 \mid\}=1$, tisn $\leq\{\mid$ on $\}=0$.
- tis $\leq\{0 \mid\}=1$, tisn $\leq\{\mid 1\}=0$.

Define tis $=\{$ tisn $\mid\}$, tisn $=\{\mid$ tis $\}$.

- tis \leq on, tisn \leq on.
- tis $\leq\{$ on $\mid\}=$ on, tisn $\leq\{\mid o n\}=0$.
- tis $\leq\{0 \mid\}=1$, tisn $\leq\{\mid$ on $\}=0$.
- tis $\leq\{0 \mid\}=1$, $\operatorname{tisn} \leq\{\mid 1\}=0$.

Conclusion:

$$
\operatorname{tis} \leq 1, \operatorname{tisn} \leq 0
$$

Similarly:

$$
\operatorname{tis} \geq 0, \operatorname{tisn} \geq-1
$$

Sidling gives stopper-sides

Bounds for tis and tisn

$$
\begin{gathered}
1 \geq \text { tis } \geq 0 \\
0 \geq \text { tisn } \geq-1
\end{gathered}
$$

These are the best stopper bounds
Let S be any stopper.
$S \geq$ tis iff $S \geq 1$.
$S \leq$ tis iff $S \leq 0$.

Onside and offside notation

$$
\begin{gathered}
\text { tis }=1 \& 0 \\
\text { tisn }=0 \&-1
\end{gathered}
$$

Comparison of Enders and Stoppers

Comparison of Enders

If G and H are enders, $G \geq H$ iff Left wins $G-H$ going second.

Comparison of Stoppers

If G and H are stoppers, $G \geq H$ iff Left survives $G-H$ going second.

Naive Generalization Fails

Left survives going second in both

$$
G-\text { dud }
$$

and

$$
\operatorname{dud}-H
$$

but not necessarily in

$$
G-H .
$$

Play can get "stuck" on dud.

Stuck

In the game $G-H$, a play gets stuck on G if the play is infinite and all but finitely many moves are on G.
[CGT] "concentrates on $-H$ " = "does not get stuck on G "

Comparison Operators

Let G and H be loopy games.

Left and Right Biased Comparison

$G \hat{\geq} H$ (resp., $G \geq \check{\geq} H$) iff Left can survive $G-H$ going second without getting stuck on $-H$ (resp., G).

Unbiased Comparison

$G \geq H$ iff $G \hat{\geq} H$ and $G \geq H$.

Comparison Operators 2

[WW] notations:

$$
\begin{aligned}
& G^{+} \geq H^{+} \Leftrightarrow G \hat{\geq} H \\
& G^{-} \geq H^{-} \Leftrightarrow G \geq \dot{2}
\end{aligned}
$$

Comparison with Zero

Let G be a loopy game.

- $G \hat{\geq} 0$ iff Left can survive G going second.
- $G \geq 0$ iff Left can win G going second.

Equality Operators

Let G and H be loopy games.
Biased Equality
$G \hat{=} H$ iff $G \hat{\geq} H$ and $H \hat{\geq} G$. (Similarly for $\check{=}$.)
Unbiased Equality
$G=H$ iff $G \hat{=} H$ and $G \cong H$.

Properties of Comparison Operators

Let G, H, K be loopy games.

- $G \hat{\geq} G$.
- If $G \hat{\geq} H$ and $H \hat{\geq} K$, then $G \hat{\geq} K$.
- If $G \hat{\geq} H$, then $G+K \hat{\geq} H+K$.

Similarly for $\check{\geq}, \geq, \hat{=}, \check{=}$, and $=$.

Comparison of Stoppers

Let S and T be stoppers, and let G be a loopy game.
You cannot get stuck on a stopper.

Comparing a stopper with a loopy game
$S \geq G$ iff $S \geq$.
$G \geq S$ iff $G \geq S$.

Comparing two stoppers
$S \geq T$ iff $S \geq T$ iff $S \geq T$ iff Left survives $S-T$ going second.

Swivel Chair Argument

The Swivel Chair Argument is used to prove that $\hat{\geq}$ is transitive.

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
Initial setup

> Right
> $G-K$
> Left
> $-H+H$
> right

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
Assume Right moves $G \rightarrow G^{R}$

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H+H \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
If Left has a response $G^{R} \rightarrow G^{R L}$, then we're done.

$$
\begin{gathered}
\text { Right } \\
G^{R L}-K \\
\text { Left } \\
-H+H \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
Otherwise, assume Left's response is $-H \rightarrow-H^{R}$.

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H^{R}+H \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
right copies the move $H \rightarrow H^{R}$.

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H^{R}+H^{R} \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
If Left has a response $-K \rightarrow-K^{R}$, we're done.

$$
\begin{gathered}
\text { Right } \\
G^{R}-K^{R} \\
\text { Left } \\
-H^{R}+H^{R} \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
If Left's response is $H^{R} \rightarrow H^{R L}$, then right copies it onto $-H^{R}$.

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H^{R L}+H^{R L} \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
If Left's response is $G^{R} \rightarrow G^{R L}$, we're done.

$$
\begin{gathered}
\text { Right } \\
G^{R L}-K \\
\text { Left } \\
-H^{R L}+H^{R L} \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
If Left's response is $-H^{R L} \rightarrow-H^{R L R}$, then right copies it again.

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H^{R L R}+H^{R L R} \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
Is it possible that we will get stuck playing on H forever?

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H^{R L R}+H^{R L R} \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
No, because Left's strategy on $G-H$ doesn't get stuck on $-H$.

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H^{R L R}+H^{R L R} \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
Therefore, Left will eventually find a response on $G^{R}-K$.

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H^{R L R}+H^{R L R} \\
\text { right }
\end{gathered}
$$

Swivel Chair Argument

Assumptions

Left survives $G-H$ going second without getting stuck on $-H$. Left survives $H-K$ going second without getting stuck on $-K$.

Goal

Left survives $G-K$ going second without getting stuck on $-K$.
The proof that Left will not get stuck on -K uses the "stuck" part of both assumptions.

$$
\begin{gathered}
\text { Right } \\
G^{R}-K \\
\text { Left } \\
-H^{R L R}+H^{R L R} \\
\text { right }
\end{gathered}
$$

Onside and Offside

Let G be a loopy game.

Onside

If $G \wedge S$ for some stopper S, then S is the onside of G.

Offside

If $G \cong T$ for some stopper T, then T is the offside of G.

Stopper-Sided

G is stopper-sided if it has an onside and an offside. We write

$$
G=S \& T
$$

Bounds for Stopper-Sided Games

Assume $G=S \& T$. Let S^{\prime} and T^{\prime} be any stoppers.
Onside and offside are the best stopper bounds
$S \geq G \geq T$.
$S^{\prime} \geq G$ iff $S^{\prime} \geq S$.
$G \geq T^{\prime}$ iff $T \geq T^{\prime}$.

Comparing and Adding Stopper-Sided Games

Assume $G=S_{G} \& T_{G}$ and $H=S_{H} \& T_{H}$.
Comparing Stopper-Sided Games
$G \geq H$ iff $S_{G} \geq S_{H}$ and $T_{G} \geq T_{H}$.

Adding Stopper-Sided Games

$G+H=\left(S_{G}+S_{H}\right) \&\left(T_{G}+T_{H}\right)$ if these sums are stoppers.
(The sum of two stoppers is not necessarily a stopper.)

Sidling Theorem

Let G be a loopy game.

Sidling Theorem

If the sidling process applied to G converges, then the bounds obtained are the onside and offside of G.

See [WW] Ch 11 for many examples of sidling.
When sidling doesn't converge, see Aaron Siegel's paper in GONC3 "New results in loopy games" Section 5.

Also see his thesis for a general technique called unraveling.

Canonical Form for Finite Stoppers

Canonical Form for Finite Stoppers

Let S be a finite stopper.
There exists a unique simplest form stopper S^{\prime} such that
$S=S^{\prime}$. The stopper S^{\prime} has:

- no dominated options
- no reversible options
- no two distinct equal vertices.
S^{\prime} is unique up to graph isomorphism.
(Not true in a general loopy game!)

Bach's Carousel

Discovered by Clive Bach, Bach's Carousel is an example of a non-stopper-sided game. See [WW] Ch 11 Extras.

For a proof that it is not stopper-sided, see [CGT] VI. 4 p. 315-316.

Open Questions

From [CGT], p. 317
Is the sum of two finite stoppers always stopper-sided? (In [WW] p. 370, there is a counterexample due to Bach for infinite stoppers.)

If stoppers S and T satisfy $S \geq T$, does there exist a G such that $G=S \& T$? (Known for plumtrees, see [WW] p. 354, or [CGT] Exercise VI.4.7.)

Is there a canonical form for finite non-stopper-sided games?

