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Definition of a Loopy Game

A loopy game is a graph where
Each vertex represents a position;
There is a specified starting vertex;
Moves are indicated by directed edges labeled Left, Right
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Assumptions for this Tutorial

finite loopy games (finitely many vertices)
normal play convention (last move wins)
Any infinite play is a draw
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References Errata

[WW]
Bottom of p. 353 (boxed claim) only applies to stoppers.
p. 361–363, all games should be assumed to be stoppers.
Extras, p. 369–370, contrary to the claim, the dominated
options cannot be omitted (cf. [CGT] Exercise VI.4.8).

[CGT]
Exercise VI.1.4(c) is wrong (part (d) is suspect as well).
OK if G is a stopper.
In sections VI.2 and VI.5, all games should be assumed to
be stoppers.

Theodore Hwa hwatheod@cs.stanford.edu Loopy Games



Comparison of Approaches

The definitions in these slides are equivalent to those in [WW],
but incorporate ideas from [CGT].

G ≥WW H ⇒ G ≥CGT H (and similarly for other operators). I do
not know if the converse holds. To establish equivalence, we
would need to prove the converses of both parts of [CGT]
Theorem VI.4.4.
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Plays

Let G be a loopy game.

Play
A play, or run, of G is any sequence of moves starting at G. It
may be finite or infinite, and is not necessarily alternating.
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Enders and stoppers

Let G be a loopy game.

Ender
G is an ender if there is no infinite play starting at any vertex in
G.

Finite enders are the traditional finite loopfree games.

Stopper
G is a stopper if there is no infinite alternating play starting at
any vertex in G.
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Sums, Negatives, Zero

Let G and H be loopy games.

G + H = {GL + H,G + HL|GR + H,G + HR}.

Choose one of the components G or H, then make a move in
that component.

−G = {−GR| −GL}.

The two sides are reversed.

0 = {|}.

Warning: G −G is not necessarily equal to 0 (equality to be
defined later).
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Survival

Survival
A player survives a game if they win or draw.
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Comparison of on, off, and dud

Recall that
on = {on|}

off = {|off}

dud = {dud|dud}

We have, for any loopy game G:
off ≤ G ≤ on.
on + off = dud.
dud + G = dud.
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Sidling

tis tisn

Define tis = {tisn|}, tisn = {|tis}.

tis ≤ on, tisn ≤ on.
tis ≤ {on|} = on, tisn ≤ {|on} = 0.
tis ≤ {0|} = 1, tisn ≤ {|on} = 0.
tis ≤ {0|} = 1, tisn ≤ {|1} = 0.

Conclusion:
tis ≤ 1, tisn ≤ 0.

Similarly:
tis ≥ 0, tisn ≥ −1.
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Sidling gives stopper-sides

Bounds for tis and tisn

1 ≥ tis ≥ 0

0 ≥ tisn ≥ −1

These are the best stopper bounds
Let S be any stopper.
S ≥ tis iff S ≥ 1.
S ≤ tis iff S ≤ 0.

Onside and offside notation

tis = 1&0

tisn = 0&−1
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Comparison of Enders and Stoppers

Comparison of Enders
If G and H are enders, G ≥ H iff Left wins G−H going second.

Comparison of Stoppers
If G and H are stoppers, G ≥ H iff Left survives G − H going
second.
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Naive Generalization Fails

Left survives going second in both

G − dud

and
dud− H,

but not necessarily in
G − H.

Play can get "stuck" on dud.
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Stuck

In the game G − H, a play gets stuck on G if the play is infinite
and all but finitely many moves are on G.

[CGT] "concentrates on −H" = "does not get stuck on G"
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Comparison Operators

Let G and H be loopy games.

Left and Right Biased Comparison

G ≥̂H (resp., G ≥̌H) iff Left can survive G − H going second
without getting stuck on −H (resp., G).

Unbiased Comparison

G ≥ H iff G ≥̂H and G ≥̌H.
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Comparison Operators 2

[WW] notations:
G+ ≥ H+ ⇔ G ≥̂H

G− ≥ H− ⇔ G ≥̌H
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Comparison with Zero

Let G be a loopy game.
G ≥̂0 iff Left can survive G going second.
G ≥̌0 iff Left can win G going second.
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Equality Operators

Let G and H be loopy games.

Biased Equality

G =̂H iff G ≥̂H and H ≥̂G. (Similarly for =̌.)

Unbiased Equality
G = H iff G =̂ H and G =̌ H.
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Properties of Comparison Operators

Let G, H, K be loopy games.
G ≥̂G.
If G ≥̂H and H ≥̂K , then G ≥̂K .
If G ≥̂H, then G + K ≥̂H + K .

Similarly for ≥̌, ≥, =̂, =̌, and =.
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Comparison of Stoppers

Let S and T be stoppers, and let G be a loopy game.

You cannot get stuck on a stopper.

Comparing a stopper with a loopy game

S ≥ G iff S ≥̂G.
G ≥ S iff G ≥̌S.

Comparing two stoppers

S ≥ T iff S ≥̂T iff S ≥̌T iff Left survives S − T going second.
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Swivel Chair Argument

The Swivel Chair Argument is used to prove that ≥̂ is
transitive.

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

Initial setup

Right

G − K

Left

−H + H

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

Assume Right moves G→ GR

Right

GR − K

Left

−H + H

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

If Left has a response GR → GRL, then we’re done.

Right

GRL − K

Left

−H + H

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

Otherwise, assume Left’s response is −H → −HR.

Right

GR − K

Left

−HR + H

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

right copies the move H → HR.

Right

GR − K

Left

−HR + HR

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

If Left has a response −K → −K R, we’re done.

Right

GR − K R

Left

−HR + HR

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

If Left’s response is HR → HRL, then right copies it onto −HR.

Right

GR − K

Left

−HRL + HRL

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

If Left’s response is −HRL → −HRLR, then right copies it again.

Right

GR − K

Left

−HRLR + HRLR

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

Is it possible that we will get stuck playing on H forever?

Right

GR − K

Left

−HRLR + HRLR

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

No, because Left’s strategy on G − H doesn’t get stuck on −H.

Right

GR − K

Left

−HRLR + HRLR

right
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Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

Therefore, Left will eventually find a response on GR − K .

Right

GR − K

Left

−HRLR + HRLR

right

Theodore Hwa hwatheod@cs.stanford.edu Loopy Games



Swivel Chair Argument

Assumptions
Left survives G − H going second without getting stuck on −H.
Left survives H − K going second without getting stuck on −K .

Goal
Left survives G − K going second without getting stuck on −K .

The proof that Left will not get stuck on −K uses the "stuck"
part of both assumptions.

Right

GR − K

Left

−HRLR + HRLR

right
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Onside and Offside

Let G be a loopy game.

Onside
If G=̂S for some stopper S, then S is the onside of G.

Offside
If G=̌T for some stopper T , then T is the offside of G.

Stopper-Sided
G is stopper-sided if it has an onside and an offside. We write

G = S&T .
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Bounds for Stopper-Sided Games

Assume G = S&T . Let S′ and T ′ be any stoppers.

Onside and offside are the best stopper bounds
S ≥ G ≥ T .
S′ ≥ G iff S′ ≥ S.
G ≥ T ′ iff T ≥ T ′.
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Comparing and Adding Stopper-Sided Games

Assume G = SG&TG and H = SH&TH .

Comparing Stopper-Sided Games

G ≥ H iff SG ≥ SH and TG ≥ TH .

Adding Stopper-Sided Games

G + H = (SG + SH)&(TG + TH) if these sums are stoppers.

(The sum of two stoppers is not necessarily a stopper.)
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Sidling Theorem

Let G be a loopy game.

Sidling Theorem

If the sidling process applied to G converges, then the bounds
obtained are the onside and offside of G.

See [WW] Ch 11 for many examples of sidling.

When sidling doesn’t converge, see Aaron Siegel’s paper in
GONC3 "New results in loopy games" Section 5.

Also see his thesis for a general technique called unraveling.
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Canonical Form for Finite Stoppers

Canonical Form for Finite Stoppers
Let S be a finite stopper.
There exists a unique simplest form stopper S′ such that
S = S′. The stopper S′ has:

no dominated options
no reversible options
no two distinct equal vertices.

S′ is unique up to graph isomorphism.

(Not true in a general loopy game!)
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Bach’s Carousel

Discovered by Clive Bach, Bach’s Carousel is an example of a
non-stopper-sided game. See [WW] Ch 11 Extras.

α

β γ

δ

0

1 *

1*

For a proof that it is not stopper-sided, see [CGT] VI.4
p. 315–316.
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Open Questions

From [CGT], p. 317

Is the sum of two finite stoppers always stopper-sided? (In
[WW] p. 370, there is a counterexample due to Bach for infinite
stoppers.)

If stoppers S and T satisfy S ≥ T , does there exist a G such
that G = S&T ? (Known for plumtrees, see [WW] p. 354, or
[CGT] Exercise VI.4.7.)

Is there a canonical form for finite non-stopper-sided games?
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