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Two-Way Contingency Tables

Joint, Marginal and Conditional Distributions
SupposeX andY are two categorical response variables, withX havingI levels andY havingJ levels and that
we classify each item in a population using both variables 9i.e. the data is said to be cross-classified.).

Now consider a randomly chosen item from this population. The responses (X,Y) corresponding to this item
have a joint probability distribution. We lLet� ij denote the probability thatX assumes itsith level andY
assumes itsjth level.

Consider the followingI x J table:
Y

X

1 2 � j ... J Total

1 �11 �12 ... �1j ... �1J �1�

2 �21 �22 ... �2j ... �2J �2�

� � � ... � � � �

i � i1 � i2 ... � ij ... � iJ � i�

� � � ... � ... � �

I �I1 �I2 ... �Ij ... �IJ �I�

Total ��1 ��2 ... ��j ... ��J ��� � 1

The probability distribution�� ij� is thejoint distribution of X and Y and defines the (bivariate)
relationship between these two variables.

Themarginal distributions of X and Y are respectively the row and column totals, obtained by summing
the appropriate joint probabilities. These are denoted by�� i�� for X and ���j� for Y. The marginal

distributions representsingle-variable information anddo not refer to association links between the two
variables.

Generally�� ij�, �� i��,and���j� are unknown but they can be estimated by sampling.

Example: Consider a sample of 1783 U.S.military veterans cross-classified by sleep problems. This yields a2
x 2 contingency table.

Sleep Problems

Yes No Total

Service Yes n11 � 173 n12 � 599 n1� � 772

in military No n21 � 160 n22 � 851 n2� � 1011

Total n�1 � 333 n�2 � 1450 n�� � 1783

Note: Here theoverall sample size is fixed but row and column totals are not fixed. Thus this study
corresponds to a multinomial sample with 4 outcomes.
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The maximum likelihood estimates (M.L.E.s) of�� ij�, �� i��and ���j� are�p ij�, �p i��and �p�j� respectively
and are given below:

Sleep Problems

Yes No Total

Service Yes p11 � 0.097 p12 � 0.336 p1� � 0.433

in military No p21 � 0.090 p22 � 0.447 p2� � 0.567

Total p�1 � 0.187 p�2 � 0.813 p�� � 1.000

In some cases one variable can be thought of as aresponse variable and the other as anexplanatory variable.
(In this study, we might treat sleep problems as a response variable and service in the military as an
explanatory variable.) For such cases, it is useful to construct a separate probability distribution forY at each
level of X. Given that an item is classified in rowi of X, we use� j�i to denote the probability of classification
in columnj of Y. This yields the following table:

Y

X

1 2 ... j ... J Total

1 �1�1 �2�1 ... � j�1 ... �J�1 1

2 �1�2 �2�2 ... � j�2 ... �J�2 1

� � � � � ... � �

i �1�i �2�i ... � j�i ... �J�i 1

� � � ... � ... � �

I �1�I �2�I ... � j�I ... �J�I 1

The probabilities �1�i ,�2�i , ...,�J�i represent theconditional distribution of Y at the ith level of X. The
conditional distribution ofY givenX � i is related to the joint distribution of�X,Y� by

� j�i �
� ij
� i�

for all i andj.

Usually these conditional probability distributions are also unknown and can be estimated by sampling.

For our example, we estimate the conditional probability distribution for sleep problems �1�i ,�2�i at the
ith level of military service using p1�i ,p2�i . These conditional probabilities are shown below:

Sleep Problems

Yes No Total

Service Yes p1�1 � 0.224 p2�1 � 0.776 1

in military No p1�2 � 0.158 p2�2 � 0.842 1
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Independence
When both variables areresponse variables, we can describe their association using:

- their joint distribution,
- theconditional distribution of Y given X
- theconditional distribution of X given Y.

The variablesX andY are said to bestatistically independent if

� ij � � i���j for i � 1, ...,I and j � 1, ...,J

Thus, whenX andY are independent, we have that for eachj � 1, ...,J

� j�i � P�Y � j � X � i� �
P�Y � j,X � i�

P�X � i�

�
� ij
� i�

�
� i���j
� i�

� ��j

for i � 1, ...,I.

However whenY is aresponse andX is anexplanatory variable, the condition

� j�1 � � j�2 � ... � � j�I

for all j is a more natural definition of independence.

Note: In some tables whereY is a response variable andX is an explanatory variable,X is fixed rather than
random. In such cases the idea of a joint distribution forX andY is no longer meaningful. However, for a
fixed level ofX, Y still has a probability distribution. We would therefore consider the conditional
distribution ofY and different fixed levels ofX.

Test for Homogeneity: Prospective Study

Example:

The Physicians’ Health Study was a 5 year study testing whether regular intake of aspirin reduces mortality
from cardiovascular disease. In this study, 22,071 physicians were randomly assigned either to a group that
was to take one aspirin tablet every other day or to a group that was to take a placebo every other day. Of the
22,071 physicians, 11,034 were assigned to receive the placebo and 11,037 were assigned toreceive aspirin.
The study was blind - i..e. the physicians did not know which type of pill they were assigned to take.
(NOTE: This study is aclinical trial, since the researchers assign the physicians to the placebo and aspirin
groups. Another type of prospective study is acohort study, where the researchers donot assign individuals
to groups. e.g. to study the effect of smoking on MI, a researcher might select a sample of smokers
independently of a sample of nonsmokers, but the researcher does notassign individuals to the smoking and
nonsmoking groups.)
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Of the 11,034 physicians taking the placebo, 189 suffered myocardial infarcation (MI) over the course of the
study while of the 11,037 taking aspirin, 104 suffered MI. The results are summarized in the following 2 x 2
contingency table:

MI

Yes No Total

Placebo n11 � 189 n12 � 10845 n1� � 11034

Group Aspirin n21 � 104 n22 � 10933 n2� � 11037

Total n�1 � 293 n�2 � 21778 n�� � 22071

Note that the row (group) totals are fixed by the study.

Research Question:
Is the proporton of physicians taking a placebo who suffer MI the same as the proportion ofphysicians taking
aspirin who suffer MI?
This is an example of aprospective study. (Note: In a prospective study, therow totals are fixed.)

Let �1�1 � probability of suffering MI (i.e.Y � 1� given that the physician takes the placebo (i.e.X � 1)
�2�1 � probability of not suffering MI (i.e.Y � 2� given that the physician takes the placebo (i.e.X � 1)
�1�2 � probabiility of suffering MI (i.e.Y � 1� given that the physician takes aspirin (i.e.X � 2)
�2�2 � probability of not suffering MI (i.e.Y � 2� given that the pysician takes aspirin (i.e.X � 2)

MI. Y

Yes No Total

Group,X Placebo �1�1 �2�1 1

Aspirin �1�2 �2�2 1

The research question translates to wanting to test

H0 : �1�1 � �1�2 � �

First we find MLEs for the� j�i . This will allow us to determine estimated expected frequenciesm ij and
compare them with what we have observed. Pearson’s Chi-square test statistic can then be used here.

Thelikelihood of the data is the probability of observing the sample result we have obtained and canbe
written as

n1�
n11

�1�1
n11 �1 � �1�1�n1��n11 n2�

n21
�1�2

n21 �1 � �1�2�
n2��n21

so thekernel of the likelihood is .

�1�1
n11 �1 � �1�1�n1��n11�1�2

n21 �1 � �1�2�
n2��n21
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Under H0 the kernel can be rewritten and becomes

�n11�1 � ��n1��n11�n21�1 � ��n2��n21 � �n11�n21�1 � ���n1��n2����n11�n21�

� �n�1�1 � ��n�n�1

Thelog likelihood of the kernel is

L � n1� log��� � �n � n�1� log�1 � ��

and maximizing this we obtain

�L
��

�
n�1
� � �n � n�1�

1 � �
� 0

�
�� �

n�1
n � p�1

Thus,under H0, �1�1 and�1�2 are estimated by
�� �

n�1
n � p�1.

Hence�2�1(� 1 � �1�1) and�2�2 (� 1 � �1�1) are estimated by

1 � �� �
n�2
n � p�2

Using these results, the estimated frequencies under the assumption ofH0 are

m ij � n i�p�j � n i��
n�j
n � � n i�n�j/n

Thus for our data we obtain:

m11 � 11034�293�/22071� 146.48

m12 � 11034�21778�/22071� 10887.52

m21 � 11037�293�/22071� 146.52

m22 � 11037�21778�/22071� 10890.48

Pearson’s X2 can be used to test the null hypothesis here. Recall that for large samples,X2 � �2 .

Here we have

X2 � �� �n ij � m ij�2

m ij

�
�189� 146.48�2

146.48
�

�10845� 10887.52�2

10887.52

�
�104� 146.52�2

146.52
�

�10933� 10890.48�2

10890.48
� 25.01

with df � 2 � 1 � 1. Thep-value is approximately 0, so there is strong evidence againstH0.
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A likelihood ratio Chi-square test couldalso be used here.

First we maximize the likelihood underH0; then we maximize the likelihood underH0 � HA .

The likelihood ratio test is based on� which is the ratio of the max. likeliood underH0 to the max.
likelihood.underH0 � HA .
For the test for homogeneity, recall that the kernel of the likelihood is

�1�1
n11 �1 � �1�1�n1��n11�1�2

n21 �1 � �1�2�
n2��n21

WhenH0 is assumed to be true, the kernel simplifies to

�n�1�1 � ��n�n�1

and the log likelihood of this kernel is maximized at
�� �

n�1
n � p�1.

v
Consider now the kernelin the general context (i.e. underH0 � HA). The log likelihood of this kernel is

L � n11 log��1�1� � �n1� � n11� log�1 � �1�1� � n21 log��1�2� � �n2� � n21� log�1 � �1�2�.

We require estimates for�1�1 and�1�2 . Now maximizing, we get

�L
��1�1

�
n11
�1�1

� �n1� � n11�
1 � �1�1

� 0

� �1�1 �
n11
n1�

� p1�1

and similarly,
�L

��1�2
� 0

� �1�2 �
n21
n2�

� p1�2

and this gives the likelihood ratio test statistic as

� �
� n�1

n �n�1�1 � n�1
n �n�n�1

� n11
n1�

�n11�1 � n11
n1�

�n1��n11� n21
n2�

�n21�1 � n21
n2�

�n2��n21

�

I

i�1
�

J

j�1
� �n i� n�j�nij

nn
I

i�1
�

J

j�1
� n ij

nij

�
I

i�1
�

J

j�1
�

m ij
n ij

nij

. sincem ij �
n i�n�j

n
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Wilks’ statistics isG2 � �2 log�..

For this example,

G2 � �2 log�

� 2

i�1

I

�
j�1

J

� n ij log�n ij/m ij� where m ij �
n i�n�j

n

and thedf � 2 � 1 � 1 (which is the same as for Pearson’s Chi-square test).

For our example,

G2 � 2�189 log� 189
146.48

� � 10845 log� 10845
10877.52

� � 104 log� 104
146.52

� � 10933 log� 10933
10890.48

��

� 25.37

with p �value of approximately 0. We again would conclude that there is strong evidence against H0

Now let’s try to understand the nature of this differen ce in proportions of physicians taking aspirin who suffer
MI and those physicians taking a placebo who suffer MI. To do this, we examine

� confidence intervals,
� relative risk, and

� odds ratios.
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Large Sample Confidence Interval for �1�1 � �1�2 :

Recall that the MLEs of�1�1 and�1�2 were

�1�1 �
n11
n1�

� p1�1

and �1�2 � p1�2

wheren1� andn2� are fixed.

Also, n11 andn21 areindependent binomial random variables with means and variances

E�n11� � n1�� 1�1

and

E�n21� � n2�� 1�2

Var�n11� � n1�� 1�1�1 � � 1�1�

and

Var�n21� � n2�� 1�2�1 � � 1�2�

Thereforep1�1 andp1�2 are also independent with means and variances

E�p1�1� � E� n11
n1�

� � � 1�1

and

E�p1�2� � � 1�2

Var�p1�1� � � 1�1�1 � � 1�1�/n1�

and

Var�p1�2� � � 1�2�1 � � 1�2�/n2�

To estimate�1�1 � �1�2 we can usep1�1 � p1�2 as the point estimator, where

E�p1�1 � p1�2� � � 1�1 � � 1�2

Var�p1�1 � p1�2� � �� 1�1�1 � � 1�1�/n1� � � �� 1�2�1 � � 1�2�/n2� �

For large samples, we may use the fact thatp1�1 andp1�2 will be approximately normally distributed.

Therefore a 100�1 � ��% confidence interval for�1�1 � �1�2 can be given by

�p1�1 � p1�2� � za/2 �p 1�1�1 � p 1�1�/n1� � � �p 1�2�1 � p 1�2�/n2� �
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For our example, we may wish to obtain a a 95% confidence interval for�1�1 � �1�2 .,We use the fact that

p1�1 �
n11
n1�

� 189/11034� 0.0171

and

p1�2 �
n21
n2�

� 104/11037� 0.0094

so

p1�1 � p1�2 � 0.0171� 0.0094� 0.0077

and

�p 1�1�1 � p 1�1�/n1� � � �p 1�2�1 � p 1�2�/n2� �

� 0.0171�1 � 0.0171�/11034� 0.0094�1 � 0.0094�/11037

� 0.0015

So a 95% confidence interval for�1�1 � �1�2 is given by

0.0077� 1.96�0.0015�

or

�0.0048,0.0106�

This interval does not contain 0. In fact it contains values that are� 0 , thereby indicating that aspirin appears
to diminish the risk of MI.
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Relative Risk
A difference between two proportions may have greater importance when both proportions are near 0 or 1 than
when they are near 0.5. So, instead of studying the effect of aspirin on MI by considering the difference�1�1

��1�2 , we could look at therelative risk, which is the ratio of the ”success” probabilities (i.e.Y � 1) for the
2 groups. Thus we have that

�Population�RelativeRisk �
P�Y � 1 � X � 1�
P�Y � 1 � X � 2�

�
�1�1
�1�2

If our H0 is true, then this would translate as�1�1 � �1�2 (i.e. the response is not affected by the group) or
alternatively

�1�1

�1�2
� 1.

We would use thesample relative risk
p1�1

p1�2
to estimate the population relative risk. For our example, the

sample relative risk
p1�1

p1�2
� 0.0171

0.0094 � 1.82. This implies that the sample proportion of MI cases was 82% higher
for the group taking the placebo than for the group taking aspirin. In other words, there issubstantial evidence
that taking aspirin is associated with a lower risk of having MI.

Obtaining a 100�1 � ��% confidence interval for the
(population)relative risk

�1�1
�1�2

We want to base this confidence interval on the best estimator of -
�1�1

�1�2
which is

p1�1

p1�2
:

The problem here is that the distribution of
p1�1

p1�2
is highly skewed unless our sample sizes are extremely large.

So instead, we obtain a confidence interval for log�
�1�1

�1�2
� based on log

p1�1

p1�2
.

To derive the confidence interval, we use thedelta method.
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The delta method for a function of a random variable:

Let Tn be a statistic, depending on a sample of sizen. For large samples, supposeTn is approximately
normally distributed with mean� and variance�2/n. Then asn � �

n �Tn � ��
d
� N�0,�2�

Using aTaylor series expansion of g�Tn� around�, we can write

g�Tn� � g��� � �Tn � ��g 	��� � �Tn � ��2 g 		���
2

� ...

Thus we can get

n 	g�Tn� � g���
 � n �Tn � ��g 	��� � ...

and this implies that

n 	g�Tn� � g���


has the same limiting distribution as

n �Tn � ��g 	���

�Tn � �� converges in probability to 0 asn � � so we can write

n 	g�Tn� � g���

d
� N 0,�2	g 	���
2

In our casewe want a confidence interval for log
�1�1

�1�2
for large samples.

We begin with the point estimator oflog
�1�1

�1�2
which is

log
p1�1
p1�2

� logp1�1 � logp1�2.

Recall

n1� �p1�1 � �1�1�
d
� N�0,� 1�1�1 � � 1�1 ��

so

n1� 	log�p1�1� � log��1�1�

d
� N 0,

�1 � � 1�1 �
� 1�1

because
� log��1�1�

��1�1

2
� 1

�1�1

2
.
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Similarly

n2� 	log�p1�2� � log��1�2�

d
� N�0,� 1�2�1 � � 1�2 �/� 1�2 �

so

	log�p1�1� � log�p1�2�
 � 	log��1�1� � log��1�2�

d
� N 0,

�1 � � 1�1 �/� 1�1

n1�
�

�1 � � 1�2 �/� 1�2

n2�

So we have a 100�1 � ��% confidence interval forlog�
�1�1

�1�2
� is given by

log
p1�1
p1�2

� za/2
�1 � p 1�1�/p 1�1

n1�
�

�1 � p 1�2�/p 1�2

n2�

For our example, the 95%C.I. for log�
�1�1

�1�2
� is

log 0.0171
0.0094

� za/2
�1 � 0.0171�/0.0171

11034
�

�1 � 0.0094�/�0.0094�
11037

i.e.

0.598� 1.96�0.121� or �0.360,0.836�.

Now taking antilogs, a 95%C.I. for the relative risk
�1�1

�1�2
in our example is�1.43,2.31�. This means that we

are 95% confident in stating that, after 5 years, the proportion of MI cases for physicians taking a placebo
every second day is between 1.43 and 2.31 times the proportion of MI cases for physicians taking a single
aspirin every second day. Again it appears that taking aspirin is associated with a lower proportion of MI
cases.

Note: There are times when we might want to estimate the ratio of the ”failure” probabilities
�2�1

�2�2
rather than

the ratio of ”success” probabilities
�1�1

�1�2
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Odds Ratio
Another measure of association in contingency tables is theodds ratio �

Consider again our physician example. Within row 1, the odds that the response is in column 1 instead of
column 2 is


1 �
�1�1
�2�1

Similarly within row 2, the corresponding odds ratio is


2 �
�1�2
�2�2


 i � 1 corresponds to the sitution where response 1 is more likely than response 2 in rowi.

Within-row conditional distributions are identicaliff 
1 � 
2. (i.e., the variables are independent).

The ratio of the two odds
1and
2 is called theodds (or cross product) ratio

� �

1


2

�

�1�1

�2�1

�1�2

�2�2

�
�1�1�2�2
�2�1�1�2

� � 1 tells us that the response is not affected by the group.

We estimate thepopulation odds ratio � by thesample odds ratio
�
� where

�
� �

p1�1p2�2
p2�1p1�2

�
n11n22
n21n12

.

For our example, the sample odds ratio is
�
� � 	�189��10933�
/	�10845��104�


� 1.83

meaning the odds of MI are 83% higher for physicians in the placebo group than in the aspiringroup.
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A 100�1 � ��% C.I. for the population odds ratio� is based on the sample odds ratio
�
� but again, since the

sampling distribution of
�
� is highly skewed except for extremely large sample sizes, we first obtain a

confidence interval for log���. We base it on log
�
� and use the delta method again.

log��� � log	
�1�1�2�2
�2�1�1�2




� log	
�1�1
�2�1


� log	
�1�2
�2�2




� log	
�1�1

1 � �1�1

� log	

�1�2

1 � �1�2



and

log
�
� � log	

p1�1p2�2
p2�1p1�2




� log	
p1�1
p2�1


� log	
p1�2
p2�2




� log	
p1�1

1 � p1�1

� log	

p1�2

1 � p1�2



Now using the delta method we can write that

n1� 	log�
p1�1

1 � p1�1
� � log�

�1�1

1 � �1�1
�


d
� N�0, 1

�1�1
� 1

1 � �1�1
�

and

n2� 	log�
p 1�2

1 � p1�2
� � log�

�1�2

1 � �1�2
�


d
� N�0, 1

�1�2
� 1

1 � �1�2
�

giving

	log�
�
�� � log���


d
� N 0, 1

n1��1�1
� 1

n1��1 � �1�1�
� 1

n2��1�2
� 1

n2��1 � �1�2�
.

Now the variance
1

n1��1�1
� 1

n1��1 � �1�1�
� 1

n2��1�2
� 1

n2��1 � �1�2�

is estimated by
1

n1�p1�1
� 1

n1��1 � p1�1�
� 1

n2�p1�2
� 1

n2��1 � p1�2�

� 1
n11

� 1
n12

� 1
n21

� 1
n22

Thus a 100�1 � ��% C.I.. for log��� is given by
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log�
�
�� � z�/2

1
n11

� 1
n12

� 1
n21

� 1
n22

For our example, a 95% C.I. for log��� is given by

log�1.83� � 1.96 1
189

� 1
10845

� 1
104

� 1
10933

i.e. 0.605� 1.96�0.123� or �0.365,0.846�

Now taking antilogs, a 95% C.I. for� is �1.44,2.33�.�

We interpret this as: we are 95% confident that, after 5 years, the odds of MI for physicians taking a placebo
every second day is between 1.44 and 2.33 times the odds of MI for physicians taking aspirin.

Relationship between Odds Ratio and Relative Risk

Since

Odds Ratio�
�1�1�2�2
�2�1�1�2

�
�1�1�1 � �1�2�
�1�2�1 � �1�1�

and

Relative Risk(RR) �
�1�1
�1�2

,

we have

Odds Ratio� RR
1 � �1�2

1 � �1�1

i.e. when the probabilities of ”success” for both groups ( i.e.�1�1 and�1�2 ) are close to zero. , the odds ratio
and the relative risk are similar. (This happens for our physician example and, in general, for arare condition.)
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SAS program for the physician example.

If the data is internal to the program:
data aspirin;
input Group $ MI $ count;
cards;
Placebo Yes 189
Placebo No 10845
Aspirin Yes 104
Aspirin No 10933
;
proc freq order� data;
tables GROUP*MI
/ chisq expected cellchi2 nocol nopct measures;
weight count;
run;

If the data is external to the program:
data aspirin;
infile ’k:/STAT5602/aspirin.txt’;
input Group $ MI $ count;
proc freq order� data;

tables GROUP*MI / chisq expected cellchi2 nocol nopct measures;
weight count;

run;


