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Two-Way Contingency Tables

Joint, Marginal and Conditional Distributions

SupposeX andY are two categorical response variables, ithavingl levels andY havingJ levels and that
we classify each item in a population using both variables 9i.e. the data twd#e cross-classified.).

Now consider a randomly chosen item from this population. The respoXséscorresponding to this item
have a joint probability distribution. We ILet;; denote the probability that assumes itg" level andY
assumes itg" level.

Consider the followind x J table:

Y
1 2 i J Total
T11 | 12 Ty RN 1+
21| 22 T2 LT T2+
X
| Ti1 | T2 Tij S| g i+
I T | 2 TT|j S| T T+
TOtal T4l | T2 ﬂ"ﬂ LTy Ty = 1

The probability distribution{z;} is thejoint distribution of X and Y and defines the (bivariate)
relationship between these two variables.

Themarginal distributions of X and Y are respectively the row and column totals, obtained by summing
the appropriate joint probabilities. These are denotediy} for X and {x.;} for Y. The marginal

distributions represemtngle-variable information anddo not refer to association links between the two
variables.

Generally{z;j}, {zi.},and{z.} are unknown but they can be estimated by sampling.

Example: Consider a sample of 1783 U.S.military veterans cross-classified hygteblems. This yields 2
X 2 contingency table.

Sleep Problems

Yes No Total
Service | Yes|niy =173\ Nz = 599Ny, = 772
in military | No | nz; =160| npz; = 851|ny =1011
Total | n,; = 333| n,, =1450|| n,., =1783

Note: Here theoverall sample sizeisfixed but row and column totals are not fixed. Thus this study

corresponds to a multinomial sample with 4 outcomes.
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The maximum likelihood estimates (M.L.E.s) 6f;;}, {zi.};and {z.;} are{pij}, {pi.rand {p.;} respectively
and are given below:

Sleep Problems
Yes No Total
Service | Yes|pu = 0.097| p12 = 0.336] p1. = 0.433
in military | No | p21 = 0.090| p22 = 0.447| p2. = 0.567
Total| p;1 = 0.187| p,> = 0.813 p,, = 1.000

In some cases one variable can be thought ofraspmnse variable and the other as axplanatory variable.

(In this study, we might treat sleep problems as a response variable aite $ethe military as an
explanatory variable.) For such cases, it is useful to construct a separbébility distribution forY at each
level of X. Given that an item is classified in rowof X, we user;; to denote the probability of classification

in columnj of Y. This yields the following table:

il

Y
1 2 .. ] .. J |Tota
T2 | 211 | eee | TTjI1 | -o | T2 1
T2 | 2|12 | «ov | Tj|2 | «on | TLY|2 1
X
i Tali | 200 | eer | TTjli | «oe | 7YY 1
| 7'['1|| 7'['2|| 7'['j|| 7'['\]“ l

The probabilities{r; , 7, ,....7;; » represent theonditional distribution of Y at thei*" level of X. The
conditional distribution ofY givenX = i is related to the joint distribution ofX, Y} by
7jji = wfor all i andj.

Usually these conditional probability distributions are also unknown and can beatsditny sampling.

For our example, we estimate the conditional probability distribution for sleepeprts:bﬂ;rl|i VTl } at the
i level of military service using(p,;,p,; . These conditional probabilities are shown below:

Sleep  Problems
Yes No Total
Service | Yespi: = 0.224| py1 =0.776] 1
in military | No | pyj2 = 0.158| p2j> = 0.842] 1

wn
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| ndependence

When both variables aresponse variables, we can describe their association using:
- theirjoint distribution,
- theconditional distribution of Y given X
- theconditional distribution of X givenY.

The variableX andY are said to betatistically independent if
Tij = TitTT4j fori = 1,... andj =1,..J

Thus, whenX andY are independent, we have that for eaghk- 1,...,J

.  P(Y=jX=i
Ty a4 ]
T Wiy i+ = T4

fori=1,...l

However wherY is aresponse andX is anexplanatory variable, the condition
Tjj1 = Tj|j2 = ... = Tj|I
for all j is a more natural definition of independence.

Note: In some tables wheréis a response variable aXds an explanatory variabl is fixed rather than
random. In such cases the idea of a joint distributiond@andY is no longer meaningful. However, for a
fixed level of X, Y still has a probability distribution. We would therefore consider the conditional
distribution ofY and different fixed levels oX.

Test for Homogeneity: Prospective Study

Example:

The Physicians’ Health Study was a 5 year study testing whether regulee imttaspirin reduces mortality

from cardiovascular disease. In this study, 22,071 physicians were randorglyea$sither to a group that

was to take one aspirin tablet every other day or to a group that was to takeeb@kaery other day. Of the
22,071 physicians, 11,034 were assigned to receive the placebo and 11,037 were assigedektaspirin.

The study was blind - i..e. the physicians did not know which type of pill they were askigriake.

(NOTE: This study is &linical trial, since the researchers assign the physicians to the placebo and aspirin
groups. Another type of prospective study isanort study, where the researchers dot assign individuals

to groups. e.g. to study the effect of smoking on MI, a researcher might seleoptesaf smokers

nonsmoking groups.)
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Of the 11,034 physicians taking the placebo, 189 suffered myocardial infarcatipoybtithe course of the
study while of the 11,037 taking aspirin, 104 suffered MI. The results are summharmiee following 2 x 2
contingency table:

M
Yes No Total
Placeba ni1 = 189 n;, =10845|| ny, = 11034
Group| Aspirin| Nz =104| nyp = 10933| n,. = 11037
Total | n;; =293| n, =21778| n,, = 22071

Note that the row (group) totals are fixed by the study.

Resear ch Question:

Is the proporton of physicians taking a placebo who suffer MI the same as the proponioysafians taking
aspirin who suffer MI?

This is an example of prospective study. (Note: In a prospective study, thew totals are fixed.)

Let 711 = probability of suffering Ml (i.e.Y = 1) given that the physician takes the placebo e 1)
721 = probability of not suffering Ml (i.eY = 2) given that the physician takes the placebo &e- 1)
712 = probabiility of suffering Ml (i.e.Y = 1) given that the physician takes aspirin (Xe= 2)

72,2 = probability of not suffering Ml (i.eY = 2) given that the pysician takes aspirin (Reé= 2)

MI. Y
Yes No | Total
Group,X | Placebqg 11 mo1| 1
Aspirin 12 wo2|| 1

The research question translates to wanting to test
Ho .

11 = M112 =T

First we find MLEs for ther;;; . This will allow us to determine estimated expected frequerfdigand
compare them with what we have observed. Pearson’s Chi-square teststatighen be used here.

Thelikelihood of the data is the probability of observing the sample result we have obtained ahd can
written as
N1t
N1

so thekernel of the likelihood is .

N4

n —
A -y (02

)ﬂTle(l— m12)™ ™

n — n n2+—nN
ﬂlﬁ.(l _ ﬂl\l)nh nuﬂ-lle(l_ 7[1|2) 2+—N21
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Under Ho the kernel can be rewritten and becomes

ﬂﬂu(l _ 71') n1+*ﬂ11n-ﬂ21(1 _ 7[) N2:—N21 _ n-nll+ﬂ21(1 _ 71') (N14+N24)=(N11+N21)

— n-ml(l — 7[) n—ny1

Thelog likelihood of the kernel is
L = ny log(n) + (n—n,1)log(1 - 7)
and maximizing this we obtain
oL _hy _ (N-Nna) _ g4

on T 1-rn

Thus,under Hy, 71,1 andzy, are estimated by

A n
T = _ﬁl = Psa.

Hence n,j1(= 1 - 71)1) andrz 2 (= 1 - 74)1) are estimated by
1-

)

n
:%ZszrZ

Using these results, the estimated frequencies under the assumptigauaf
M = nipy = ni+(%) = ni,Ny/n
Thus for our data we obtain:
My = 11034293)/22071= 146.48
12 = 1103421778/22071= 10887.52

m
My = 11037293)/22071= 146.52
My, = 1103721778/22071= 10890.48

Pearson’s X? can be used to test the null hypothesis here. Recall that for large saXplesy? .

Here we have

. (nj —My)?  (189-146.48% _ (10845- 10887.532
2= 2.2 & 14648 10887.52
(104-146.522 , (10933- 10890.482
14652 10890.48
= 25.01

withdf = 2—1 = 1. Thep-value is approximately 0, so there is strong evidence agHinst
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A likelihood ratio Chi-square test could also be used here.

First we maximize the likelihood undéty; then we maximize the likelihood undely U Ha .

The likelihood ratio test is based @nwhich is the ratio of the max. likeliood undelp to the max.
likelihood.undemHo U Ha .

For the test for homogeneity, recall that the kernel of the likelihood is
”Tﬁ(l -1 1)n1+fnu7[f11712(1 _ ﬂllz)nzrnzl

WhenHy is assumed to be true, the kernel simplifies to

n-n+1 (l — n—) n—n.1

and the log likelihood of this kernel is maximized at

A~ n
T = ﬁl = p+1.

\'

Consider now the kernéh the general context (i.e. undeHo U Ha). The log likelihood of this kernel is

L = nyzlog(y1) + (N1 — N11) 10g9(1 — 71)1) + N21log(wy)2) + (N2e — N21) log(1 — 71)2).

We require estimates far; s andrzi> . Now maximizing, we get

oL _ Ny (N —Np) -0
67[1|1 111 1—71'1‘1
/\_ nll _
BTy o vy P11
and similarly,
oL _
Omy|2

- T2 = R—il = P12
and this gives the likelihood ratio test statistic as
(fo)" (L Sy

(R_ﬁ)nu(l _ R_ﬁ)nwnu(g_il)nm(l _ %)nzrnzl

A
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Wilks' statistics isG2 = —2logA..

For this example,
G? = -2logA

| J
m m Ni. Ny
=2 ZZ n; log(n;;/My;) where My = —

i=1 j=1

and thedf = 2 -1 = 1 (which is the same as for Pearson’s Chi-square test).

For our example,

2 _ 189 10845 104 10933
G? = 2{189log 439) + 1084510g 1984%) + 104109 10%>) + 10933log 7 F0955))

= 25.37

with p —value of approximately 0. We again would conclude that there is strong evidencetaldains

Now let’s try to understand the nature of this differen ce in proportions of physi¢aking aspirin who suffer
MI and those physicians taking a placebo who suffer MI. To do this, we examine

e confidenceintervals,
* relativerisk, and
e oddsratios.
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L arge Sample Confidence Interval for 711 — 712 :

Recall that the MLEs of1; andxy, were
Tl = R—ﬁ = P11
and 713 = paj2
whereny, andn,, are fixed.

Also, n1; andny; areindependent binomial random variableswith means and variances
E(nll) = n1+7rm
and

E(n21) = n2+7r1‘2

Var(nll) = r-]l+7-[ 1\1(1 - ﬂ’-lll)
and
Var(n21) = n2+7[1‘2(1 - 7T1|2)

Thereforep;|; andp1j2 are also independent with means and variances

E(p12) = E() = 7,
and

E(pl\Z) =Ty,

Var(pl\l) = 7T1|1(l_7[1\1)/n1+
and
Var(py2) = m,,(1-m,,)/N2

To estimateryj, — 712 We can usei 1 — P12 as the point estimator, where
E(pl\l - p1|2) =Ty T Ty
Var(pl\l - p1|2) = (7[1\1(1 - 7T1|1)/n1+) + (7[1\2(1 - 7T1|2)/n2+)
For large samples, we may use the fact that andpa > will be approximately normally distributed.

Therefore a 10 — a)% confidence interval forr11 — 71,2 can be given by

(p1|1 - pl\Z) * ZdZ\/(plu(l - pl\l)/nl+) + (puz(l - pl\z)/n2+)
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For our example, we may wish to obtain a a 95% confidence interval.fer- 1), .,We use the fact that

P11 = Q—;l — 189/11034= 0.0171

and
P12 = Q—gl — 104/11037= 0.0094
SO
P11 — P12 = 0.0171- 0.0094= 0.0077
and

\/(pul(l - p1|1)/n1+) + (p1|2(1 - p1|2)/n2+)
= J0.0l?Il —0.0172/11034+ 0.00941 - 0.0094/11037
= 0.0015

So a 95% confidence interval faf|; — 71,2 IS given by
0.0077+ 1.960.0015
or
(0.0048,0.0108

This interval does not contain 0. In fact it contains values that-&e thereby indicating that aspirin appears
to diminish the risk of MI.
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Relative Risk

A difference between two proportions may have greater importance when both propanite near 0 or 1 than
when they are near 0.5. So, instead of studying the effect of aspirin on Ml by cangittes differencer .
—-m1y2 , we could look at theelative risk, which is the ratio of the "success” probabilities (iYe= 1) for the

2 groups. Thus we have that

P(Y=1 | le) _ 1)1
PY=1] X=2) 712

(Population)RelativeRisk =

If our Hy is true, then this would translate ag1 = 71,2 (i.e. the response is not affected by the group) or
alternatively==- = 1.

12

We would use theample relative risk Ei:; to estimate the population relative risk. For our example, the

sample relative risl% = 2L = 1.82. This implies that the sample proportion of MI cases was 82% higher
for the group taking the placebo than for the group taking aspirin. In other words, tteefesisintial evidence

that taking aspirin is associated with a lower risk of having M.

Obtaining a 100(1 - @)% confidenceinterval for the
(population)relative risk -

1|2

P11 .

We want to base this confidence interval on the best estimato&;éfwhich is ;= :

The problem here is that the distributionﬁ% is highly skewed unless our sample sizes are extremely large.
So instead, we obtain a confidence interval for(lég—) based on Iod%.

To derive the confidence interval, we use tsta method.
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The delta method for a function of arandom variable:

Let T, be a statistic, depending on a sample of sizé&or large samples, suppoBgis approximately
normally distributed with meaé and variances?/n. Then asn — o

JA(Th=0) 5 N(0,62)
Using aTaylor series expansion of g(T,) aroundd, we can write
OTw) = 9O) + (Ta—0)g'®) + (To 0280 1

Thus we can get

Jn[g(Th) —9(0)] = /n(Ta = 0)g'(0) + ...

and this implies that

Jng(Tn) —9(0)]

has the same limiting distribution as

Jn(Ta—6)g'(0)

(Tn — 8) converges in probability to 0 as— oo so we can write

JAIG(Tn) —90)] > N(0,07g'(0)]%)

a1
T2

In our casewne want a confidence interval for Iog(

)for large samples.

We begin with the point estimator tdg( 7= ) which is
log Bi:; = logpi |1 — logpy 2.

Recall
VN1 (P11 — 71j2) =t NO,z,,(1-7,,))
so

JAz [log(ps 1) — log(my1)] > N(O,(l;ﬂ)

11

al 2 2
becaus{—og(”“”] =[& ]

om11 711
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Similarly
JTz: [10g(P2) — 10g(m312)] = NO, (1= ,)/.)
)
[log(p111) ~ 10g(p112)] - [10g(m1/1) ~ log(z12)] N(O, (1_7;11&)/””1 - (1_7;12'?/7[“2 )

So we have a 10Q - a)% confidence interval folog( Zi:; ) is given by
P11 (l_pl 1)/p11 (l_plz)/plz
Iog P12 * Zalz\/ n1‘+ =+ n2‘+ ‘

a1
T2

For our example, the 95@sl. for log(=-) is

0.0171 (1-0.0172/0.0171 , (1-0.0094/(0.0099
log ) 2 11034 * 11037

0.598+ 1.960.120) or (0.360,0.835.

1|1

Now taking antilogs, a 95%.. for the relative riskz;- in our example ig1.43,2.3). This means that we
are 95% confident in stating that, after 5 years, the proportion of Ml cases feicjdnys taking a placebo
every second day is between 1.43 and 2.31 times the proportion of MI cases for pis/ggiag a single
aspirin every second day. Again it appears that taking aspirin is assbeih a lower proportion of Ml
cases.

211
212

Note: There are times when we might want to estimate the ratio of tHaré&iprobabilities rather than

the ratio of "success” probabilitie%ﬂ—;
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Odds Ratio

Another measure of association in contingency tables isdbgratio 6

Consider again our physician example. Within row 1, the odds that the response is im dolustead of
column 2 is

1)1
Q, =
1 2|1

Similarly within row 2, the corresponding odds ratio is

12
Q. =
27 T2

Qi > 1 corresponds to the sitution where response 1 is more likely than response Ziin row

Within-row conditional distributions are identicdl Q1 = Q. (i.e., the variables are independent).

The ratio of the two odd€2;andQ; is called theodds (or cross product) ratio

g

Qs

T1)1
_ m2n _ T11T2)2
T PV Z1P)

0 = 1 tells us that the response is not affected by the group.

We estimate thgopulation odds ratio 6 by thesample odds ratio & where

9 = PPz _ nung

P211P1j2 N21N12

For our example, the sample odds ratio is
0 = [(189)(10933]/[(10845(104)]
=1.83

meaning the odds of Ml are 83% higher for physicians in the placebo group than in the geminin
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A 100(1 — a)% C.I. for the population odds rati® is based on the sample odds ralibut again, since the
sampling distribution od is highly skewed except for extremely large sample sizes, we first obtain a
confidence interval for lo@). We base it on lo§ and use the delta method again.

l0g(9) = logl 71722
= logl 711 1-logl 7]
1)1 _ 12
Iog[ ”1\1] lo 1—7T1|2]

and

~ P111P2j2
IOg<0> Iog[ II)2|1F)1\2:|

- oo B 1o 22
pul _ P12
2] logl 2]

= log

Now using the delta method we can write that

Pi1 \_ _ Ty 1
VN [log( 1-pia ) —log( 1-mi )] N, 7[1|l -

1—7[1|1

and

Iz oG- 22— ) ~log(7H2—)]-% N(O, 745 + L
— P12 — 1|2

,7T1|2 1—7T1|2

giving

5 d 1 1 1 1
[log(f) — log(®)]— N(O, WA + R + 212 + =71 )

Now the variance

1 1 1 1
RTr N1 (1—71)1) T Nz.(1—1my)2)

is estimated by
1 .1 .1 .1
A prs N1, (1—p1j1) MR T N2, (1—p1j2)

_ 1 1 " 1 1
N1 " Nz " N2 " Na

Thus a 1001 - )% C.I.. forlog(0) is given by
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100(0) # 202 7 + 7 + 7 +

For our example, a 95% C.1. for |6@) is given by

1 1 1 1
log(1.83 + 1'96«/ 189 © 10845 © 104 © 10933

i.e. 0.605¢ 1.960.123 or (0.365,0.84%

Now taking antilogs, a 95% C.I. f& is (1.44,2.33.)

We interpret this as: we are 95% confident that, after 5 years, the odds of Ml fsicans taking a placebo
every second day is between 1.44 and 2.33 times the odds of Ml for physicians takitg aspir

Relationship between Odds Ratio and Relative Risk

Since
. TT111702|2
Odds Ratio= TRz
_ mpn(l-ma2)
7T1|2(1—7T1|1)
and
. . i
Relative RiskRR) = 712
we have

Odds Ratio= RR( w)

— 1)1

i.e. when the probabilities of "success” for both groups ¢hg.andrz 12 ) are close to zero. , the odds ratio
and the relative risk are similar. (This happens for our physician examp)eregeneral, for aare condition.)
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SAS program for the physician example.

If the data isinternal to the program:
data aspirin;

input Group $ MI $ count;

cards;

Placebo Yes 189

Placebo No 10845

Aspirin Yes 104

Aspirin No 10933

proc freq order data;

tables GROUP*MI

/ chisg expected cellchi2 nocol nopct measures;
weight count;

run;

If the data is external to the program:
data aspirin;

infile 'k:/STAT5602/aspirin.txt’;
input Group $ MI $ count;

proc freq order data;

tables GROUP*MI / chisq expected cellchi2 nocol nopct measures;

weight count;
run;



