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Chapter 4 
Randomized Blocks, Latin Squares, and Related Designs 

Solutions 
 
 
4.1. The ANOVA from a randomized complete block experiment output is shown below. 
 

Source DF SS MS F P 

Treatment 4 1010.56 ? 29.84 ? 

Block ? ? 64.765 ? ? 

Error 20 169.33 ?   

Total 29 1503.71    

 
(a) Fill in the blanks.  You may give bounds on the P-value. 

 
Completed table is: 

 
Source DF SS MS F P 

Treatment 4 1010.56 252.640 29.84 < 0.00001 

Block 5 323.82 64.765   

Error 20 169.33 8.467   

Total 29 1503.71    

 
(b) How many blocks were used in this experiment? 

 
Six blocks were used. 

 
(c) What conclusions can you draw? 

 
The treatment effect is significant; the means of the five treatments are not all equal. 

 
 
4.2. Consider the single-factor completely randomized experiment shown in Problem 3.4.  Suppose that 
this experiment had been conducted in a randomized complete block design, and that the sum of squares for 
blocks was 80.00.  Modify the ANOVA for this experiment to show the correct analysis for the randomized 
complete block experiment. 
 

The modified ANOVA is shown below: 
 

Source DF SS MS F P 

Treatment 4 987.71 246.93 46.3583 < 0.00001 

Block 5 80.00 16.00   

Error 20 106.53 5.33   

Total 29 1174.24    
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4.3. A chemist wishes to test the effect of four chemical agents on the strength of a particular type of 
cloth.  Because there might be variability from one bolt to another, the chemist decides to use a randomized 
block design, with the bolts of cloth considered as blocks.  She selects five bolts and applies all four 
chemicals in random order to each bolt.  The resulting tensile strengths follow.  Analyze the data from this 
experiment (use α = 0.05) and draw appropriate conclusions. 
 

   Bolt   
Chemical 1 2 3 4 5 

1 73 68 74 71 67 
2 73 67 75 72 70 
3 75 68 78 73 68 
4 73 71 75 75 69 

 
Design Expert Output 
 Response: Strength 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 157.00 4 39.25 
 Model 12.95 3 4.32 2.38 0.1211 not significant 
 A 12.95 3 4.32 2.38 0.1211 
 Residual 21.80 12 1.82 
 Cor Total 191.75 19 
 
 The "Model F-value" of 2.38 implies the model is not significant relative to the noise.  There is a 
 12.11 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 1.35  R-Squared 0.3727 
 Mean 71.75  Adj R-Squared 0.2158 
 C.V. 1.88  Pred R-Squared -0.7426 
 PRESS 60.56  Adeq Precision 10.558 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 70.60  0.60 
  2-2 71.40  0.60 
  3-3 72.40  0.60 
  4-4 72.60  0.60 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -0.80 1 0.85 -0.94 0.3665 
   1 vs  3 -1.80 1 0.85 -2.11 0.0564 
   1 vs  4 -2.00 1 0.85 -2.35 0.0370 
   2 vs  3 -1.00 1 0.85 -1.17 0.2635 
   2 vs  4 -1.20 1 0.85 -1.41 0.1846 
   3 vs  4 -0.20 1 0.85 -0.23 0.8185 
 
There is no difference among the chemical types at α = 0.05 level. 
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4.4. Three different washing solutions are being compared to study their effectiveness in retarding 
bacteria growth in five-gallon milk containers.  The analysis is done in a laboratory, and only three trials 
can be run on any day.  Because days could represent a potential source of variability, the experimenter 
decides to use a randomized block design.  Observations are taken for four days, and the data are shown 
here.  Analyze the data from this experiment (use α = 0.05) and draw conclusions. 
 

   Days  
Solution 1 2 3 4 

1 13 22 18 39 
2 16 24 17 44 
3 5 4 1 22 

 
Design Expert Output  
 Response: Growth 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 1106.92 3 368.97 
 Model 703.50 2 351.75 40.72 0.0003 significant 
 A 703.50 2 351.75 40.72 0.0003 
 Residual 51.83 6 8.64 
 Cor Total 1862.25 11 
 
 The Model F-value of 40.72 implies the model is significant.  There is only 
 a 0.03% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.94  R-Squared 0.9314 
 Mean 18.75  Adj R-Squared 0.9085 
 C.V. 15.68  Pred R-Squared 0.7255 
 PRESS 207.33  Adeq Precision 19.687 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 23.00  1.47 
  2-2 25.25  1.47 
  3-3 8.00  1.47 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -2.25 1 2.08 -1.08 0.3206 
   1 vs  3 15.00 1 2.08 7.22 0.0004 
   2 vs  3 17.25 1 2.08 8.30 0.0002 
 
There is a difference between the means of the three solutions.  The Fisher LSD procedure indicates that 
solution 3 is significantly different than the other two. 
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4.5. Plot the mean tensile strengths observed for each chemical type in Problem 4.3 and compare them to 
a scaled t distribution.  What conclusions would you draw from the display? 
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There is no obvious difference between the means.  This is the same conclusion given by the analysis of 
variance. 
 
 
4.6. Plot the average bacteria counts for each solution in Problem 4.4 and compare them to an 
appropriately scaled t distribution.  What conclusions can you draw? 
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There is no difference in mean bacteria growth between solutions 1 and 2.  However, solution 3 produces 
significantly lower mean bacteria growth. This is the same conclusion reached from the Fisher LSD 
procedure in Problem 4.4. 
 
 
4.7. Consider the hardness testing experiment described in Section 4.1.  Suppose that the experiment was 
conducted as described and the following Rockwell C-scale data (coded by subtracting 40 units) obtained: 
 

 Coupon 
Tip 1 2 3 4 
1 9.3 9.4 9.6 10.0 
2 9.4 9.3 9.8 9.9 
3 9.2 9.4 9.5 9.7 
4 9.7 9.6 10.0 10.2 

 
(a) Analyize the data from this experiment. 
 
There is a difference between the means of the four tips. 
 
Design Expert Output  
 Response: Hardness 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Terms added sequentially (first to last)] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Bock 0.82 3 0.27 
 Model 0.38 3 0.13 14.44 0.0009 significant 
 A 0.38 3 0.13 14.44 0.0009 
 Residual 0.080 9 8.889E-003 
 Cor Total 1.29 15 
  
 The Model F-value of 14.44 implies the model is significant.  There is only 
 a 0.09% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.094  R-Squared 0.8280 
 Mean 9.63  Adj R-Squared 0.7706 
 C.V. 0.98  Pred R-Squared 0.4563 
 PRESS 0.25  Adeq Precision 15.635 
 
 Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
 1-1 9.57  0.047 
 2-2 9.60  0.047 
 3-3 9.45  0.047 
 4-4 9.88  0.047 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
 1 vs  2 -0.025 1 0.067 -0.38 0.7163 
 1 vs  3 0.13 1 0.067 1.87 0.0935 
 1 vs  4 -0.30 1 0.067 -4.50 0.0015 
 2 vs  3 0.15 1 0.067 2.25 0.0510 
 2 vs  4 -0.27 1 0.067 -4.12 0.0026 
 3 vs  4 -0.43 1 0.067 -6.37 0.0001 
 
(b) Use the Fisher LSD method to make comparisons among the four tips to determine specifically which 

tips differ in mean hardness readings. 
 
Based on the LSD bars in the Design Expert plot below, the mean of tip 4 differs from the means of tips 1, 
2, and 3.  The LSD method identifies a marginal difference between the means of tips 2 and 3. 
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(c) Analyze the residuals from this experiment. 
 
The residual plots below do not identify any violations to the assumptions. 
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4.8. A consumer products company relies on direct mail marketing pieces as a major component of its 
advertising campaigns.  The company has three different designs for a new brochure and want to evaluate 
their effectiveness, as there are substantial differences in costs between the three designs.  The company 
decides to test the three designs by mailing 5,000 samples of each to potential customers in four different 
regions of the country.  Since there are known regional differences in the customer base, regions are 
considered as blocks.  The number of responses to each mailing is shown below. 
 

 Region 
Design NE NW SE SW 

1 250 350 219 375 
2 400 525 390 580 
3 275 340 200 310 

 
(a) Analyze the data from this experiment. 
 
The residuals of the analsysis below identify concerns with the normality and equality of variance 
assumptions.  As a result, a square root transformation was applied as shown in the second ANOVA table.  
The residuals of both analysis are presented for comparison in part (c) of this problem.  The analysis 
concludes that there is a difference between the mean number of responses for the three designs. 
 
Design Expert Output 
 Response:   Number of responses 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Terms added sequentially (first to last)] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 49035.67 3 16345.22 
 Model 90755.17 2 45377.58 50.15 0.0002 significant 
 A 90755.17 2 45377.58 50.15 0.0002 
 Residual 5428.83 6 904.81 
 Cor Total 1.452E+005 11 
  
 The Model F-value of 50.15 implies the model is significant.  There is only 
 a 0.02% chance that a "Model F-Value" this large could occur due to noise. 
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 Std. Dev. 30.08  R-Squared 0.9436 
 Mean 351.17  Adj R-Squared 0.9247 
 C.V. 8.57  Pred R-Squared 0.7742 
 PRESS 21715.33  Adeq Precision 16.197 
 
 Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
 1-1 298.50  15.04 
 2-2 473.75  15.04 
 3-3 281.25  15.04 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -175.25 1 21.27 -8.24 0.0002 
   1 vs  3 17.25 1 21.27 0.81 0.4483 
   2 vs  3 192.50 1 21.27 9.05 0.0001 
 
Design Expert Output for Transformed Data 
 Response:   Number of responses Transform: Square root Constant: 0 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Terms added sequentially (first to last)] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 35.89 3 11.96 
 Model 60.73 2 30.37 60.47 0.0001 significant 
 A 60.73 2 30.37 60.47 0.0001 
 Residual 3.01 6 0.50 
 Cor Total 99.64 11 
  
 The Model F-value of 60.47 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.71  R-Squared 0.9527 
 Mean 18.52  Adj R-Squared 0.9370 
 C.V. 3.83  Pred R-Squared 0.8109 
 PRESS 12.05  Adeq Precision 18.191 
 
 Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
 1-1 17.17  0.35 
 2-2 21.69  0.35 
 3-3 16.69  0.35 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
 1 vs  2 -4.52 1 0.50 -9.01 0.0001 
   1 vs  3 0.48 1 0.50 0.95 0.3769 
   2 vs  3 4.99 1 0.50 9.96 < 0.0001 
 
(b) Use the Fisher LSD method to make comparisons among the three designs to determine specifically 

which designs differ in mean response rate. 
 
Based on the LSD bars in the Design Expert plot below, designs 1 and 3 do not differ; however, design 2 is 
different than designs 1 and 3. 
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(c) Analyze the residuals from this experiment. 
 
The first set of residual plots presented below represent the untransformed data.  Concerns with normality 
as well as inequality of variance are presented.  The second set of residual plots represent transformed data 
and do not identify significant violations of the assumptions.  The residuals vs. design plot indicates a slight 
inequality of variance; however, not a strong violation and an improvement over the non-transformed data. 
 

 

A: Design

S
qr

t(N
um

be
r o

f r
es

po
ns

es
)

One Factor Plot

1 2 3

14.142

16.627

19.113

21.598

24.083

Residual

N
or

m
al

 %
 P

ro
ba

bi
lit

y

Normal Plot of Residuals

-41.75 -22.1667 -2.58333 17 36.5833

1

5

10

20
30

50

70
80

90

95

99

Predicted

R
es

id
ua

ls

Residuals vs. Predicted

-41.75

-22.1667

-2.58333

17

36.5833

199.75 285.88 372.00 458.13 544.25



Solutions from Montgomery, D. C. (2008) Design and Analysis of Experiments, Wiley, NY 
 

4-10 

 
 
The following are the square root transformed data residual plots.   
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4.9. The effect of three different lubricating oils on fuel economy in diesel truck engines is being studied.  
Fuel economy is measured using brake-specific fuel consumption after the engine has been running for 15 
minutes.  Five different truck engines are available for the study, and the experimenters conduct the 
following randomized complete block design. 
 

 Truck 
Oil 1 2 3 4 5 
1 0.500 0.634 0.487 0.329 0.512 
2 0.535 0.675 0.520 0.435 0.540 
3 0.513 0.595 0.488 0.400 0.510 

 
(a) Analyize the data from this experiment. 
 
From the analysis below, there is a significant difference between lubricating oils with regards to fuel 
economy. 
 
Design Expert Output 
 Response:    Fuel consumption 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Terms added sequentially (first to last)] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.092 4 0.023 
 Model 6.706E-003 2 3.353E-003 6.35 0.0223 significant 
 A 6.706E-003 2 3.353E-003 6.35 0.0223 
 Residual 4.222E-003 8 5.278E-004 
 Cor Total 0.10 14 
 
 The Model F-value of 6.35 implies the model is significant.  There is only 
 a 2.23% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.023  R-Squared 0.6136 
 Mean 0.51  Adj R-Squared 0.5170 
 C.V. 4.49  Pred R-Squared -0.3583 
 PRESS 0.015  Adeq Precision 18.814 
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 Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
 1-1 0.49  0.010 
 2-2 0.54  0.010 
 3-3 0.50  0.010 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -0.049 1 0.015 -3.34 0.0102 
   1 vs  3 -8.800E-003 1 0.015 -0.61 0.5615 
   2 vs  3 0.040 1 0.015 2.74 0.0255 
 
(b) Use the Fisher LSD method to make comparisons among the three lubricating oils to determine 

specifically which oils differ in break-specific fuel consumption. 
 
Based on the LSD bars in the Design Expert plot below, the means for break-specific fuel consumption for 
oils 1 and 3 do not differ; however, oil 2 is different than oils 1 and 3. 

 
 
(c) Analyze the residuals from this experiment. 
 
The residual plots below do not identify any violations to the assumptions. 
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4.10. An article in the Fire Safety Journal (“The Effect of Nozzle Design on the Stability and Performance 
of Turbulent Water Jets,” Vol. 4, August 1981) describes an experiment in which a shape factor was 
determined for several different nozzle designs at six levels of jet efflux velocity.  Interest focused on 
potential differences between nozzle designs, with velocity considered as a nuisance variable.  The data are 
shown below: 
 

 Jet Efflux Velocity (m/s) 
Nozzle 
Design 11.73 14.37 16.59 20.43 23.46 28.74 

1 0.78 0.80 0.81 0.75 0.77 0.78 
2 0.85 0.85 0.92 0.86 0.81 0.83 
3 0.93 0.92 0.95 0.89 0.89 0.83 
4 1.14 0.97 0.98 0.88 0.86 0.83 
5 0.97 0.86 0.78 0.76 0.76 0.75 
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(a)  Does nozzle design affect the shape factor?  Compare nozzles with a scatter plot and with an analysis 
of variance, using α = 0.05. 

 
Design Expert Output 
 Response: Shape 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.063 5 0.013 
 Model 0.10 4 0.026 8.92 0.0003 significant 
 A 0.10 4 0.026 8.92 0.0003 
 Residual 0.057 20 2.865E-003 
 Cor Total 0.22 29 
 
 The Model F-value of 8.92 implies the model is significant.  There is only 
 a 0.03% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.054  R-Squared 0.6407 
 Mean 0.86  Adj R-Squared 0.5688 
 C.V. 6.23  Pred R-Squared 0.1916 
 PRESS 0.13  Adeq Precision 9.438 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 0.78  0.022 
  2-2 0.85  0.022 
  3-3 0.90  0.022 
  4-4 0.94  0.022 
  5-5 0.81  0.022 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -0.072 1 0.031 -2.32 0.0311 
   1 vs  3 -0.12 1 0.031 -3.88 0.0009 
   1 vs  4 -0.16 1 0.031 -5.23 < 0.0001 
   1 vs  5 -0.032 1 0.031 -1.02 0.3177 
   2 vs  3 -0.048 1 0.031 -1.56 0.1335 
   2 vs  4 -0.090 1 0.031 -2.91 0.0086 
   2 vs  5 0.040 1 0.031 1.29 0.2103 
   3 vs  4 -0.042 1 0.031 -1.35 0.1926 
   3 vs  5 0.088 1 0.031 2.86 0.0097 
   4 vs  5 0.13 1 0.031 4.21 0.0004 
 
Nozzle design has a significant effect on shape factor. 
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(b)  Analyze the residual from this experiment. 
 
The plots shown below do not give any indication of serious problems.  Thre is some indication of a mild 
outlier on the normal probability plot and on the plot of residuals versus the predicted velocity. 
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(c)  Which nozzle designs are different with respect to shape factor?  Draw a graph of average shape factor 

for each nozzle type and compare this to a scaled t distribution.  Compare the conclusions that you 
draw from this plot to those from Duncan’s multiple range test. 
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4.11. An article in Communications of the ACM (Vol. 30, No. 5, 1987) studied different algorithms for 
estimating software development costs.  Six algorithms were applied to several different software 
development projects and the percent error in estimating the development cost was observed.  Some of the 
data from this experiment is show in the table below. 
 

 Project 
Algorithm 1 2 3 4 5 6 
1 (SLIM) 1244 21 82 2221 905 839 
2 (COCOMO-A) 281 129 396 1306 336 910 
3 (COCOMO-R) 220 84 458 543 300 794 
4 (COCOMO-C) 225 83 425 552 291 826 
5 (FUNCTION POINTS) 19 11 -34 121 15 103 
6 (ESTIMALS) -20 35 -53 170 104 199 

 
(a) Do the algorithms differ in their mean cost estimation accuracy? 
 

The ANOVA below identifies the algorithms are significantly different in their mean cost estimation 
error. 

 
Design Expert Output 
 
 Response Cost Error 
         ANOVA for selected factorial model 
 Analysis of variance table [Classical sum of squares - Type II] 
  Sum of  Mean F p-value 
 Source Squares df Square Value Prob > F 
 Block 2.287E+006 5 4.575E+005 
 Model 2.989E+006 5 5.978E+005 5.38 0.0017 significant 
     A-Algorithm 2.989E+006 5 5.978E+005 5.38 0.0017 
 Residual 2.780E+006 25 1.112E+005 
 Cor Total 8.056E+006 35 
 
 The Model F-value of 5.38 implies the model is significant.  There is only 
 a 0.17% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 333.44  R-Squared 0.5182 
 Mean 392.81  Adj R-Squared 0.4218 
 C.V. % 84.89  Pred R-Squared 0.0009 
 PRESS 5.764E+006  Adeq Precision 8.705 
 
  Treatment Means (Adjusted, If Necessary) 

0.7 0.8 0.8 0.9 0.9 
Shape  

Scaled t  
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  Estimated  Standard 
  Mean  Error 
  1-SLM 885.33  136.13 
  2-COCOMO-A 559.67  136.13 
  3-COCOMO-R 399.83  136.13 
  4-COCOMO-C 400.33  136.13 
  5-FUNCTION POINTS 39.17  136.13 
  6-ESTIMALS 72.50  136.13 
 
  Mean  Standard t for H0  
 Treatment Difference df Error Coeff=0 Prob > |t| 
   1 vs  2 325.67 1 192.51 1.69 0.1031 
   1 vs  3 485.50 1 192.51 2.52 0.0184 
   1 vs  4 485.00 1 192.51 2.52 0.0185 
   1 vs  5 846.17 1 192.51 4.40 0.0002 
   1 vs  6 812.83 1 192.51 4.22 0.0003 
   2 vs  3 159.83 1 192.51 0.83 0.4143 
   2 vs  4 159.33 1 192.51 0.83 0.4157 
   2 vs  5 520.50 1 192.51 2.70 0.0122 
   2 vs  6 487.17 1 192.51 2.53 0.0181 
   3 vs  4 -0.50 1 192.51 -2.597E-003 0.9979 
   3 vs  5 360.67 1 192.51 1.87 0.0727 
   3 vs  6 327.33 1 192.51 1.70 0.1015 
   4 vs  5 361.17 1 192.51 1.88 0.0724 
   4 vs  6 327.83 1 192.51 1.70 0.1010 
   5 vs  6 -33.33 1 192.51 -0.17 0.8639 
 
 
 
(b) Analyze the residuals from this experiment. 

 
The residual plots below identify a single outlier that should be investigated. 
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(c) Which algorithm would you recommend for use in practice? 

 
The FUNCTIONAL POINTS algorithm  has the losest cost estimation error. 

 
 
4.12. An article in Nature Genetics (2003, Vol. 34, pp. 85-90) “Treatment-Specific Changes in Gene 
Expression Discriminate in vivo Drug Response in Human Leukemia Cells” studied gene expressionas a 
function of different treatments for leukemia.  Three treatment groups are:  mercaptopurine (MP) only; 
low-dose methotrexate (LDMTX) and MP; and high-dose methotrexate (HDMTX) and MP.  Each group 
contained ten subjects.  The responses from a specific gene are shown in the table below: 
 

 Project 
MP ONLY 334.5 31.6 701 41.2 61.2 69.6 67.5 66.6 120.7 881.9 
MP + HDMTX 919.4 404.2 1024.8 54.1 62.8 671.6 882.1 354.2 321.9 91.1 
MP + LDMTX 108.4 26.1 240.8 191.1 69.7 242.8 62.7 396.9 23.6 290.4 

 
(a) Is there evidence to support the claim that the treatment means differ? 

 
The ANOVA below identifies the treatment means are significantly different. 

 
Design Expert Output 
 
 Response Gene Expression 
         ANOVA for selected factorial model 
 Analysis of variance table [Classical sum of squares - Type II] 
  Sum of  Mean F p-value 
 Source Squares df Square Value Prob > F 
 Block 9.206E+005 9 1.023E+005 
 Model 5.384E+005 2 2.692E+005 3.68 0.0457 significant 
     A-Treatment 5.384E+005 2 2.692E+005 3.68 0.0457 
 Residual 1.316E+006 18 73130.15 
 Cor Total 2.775E+006 29 
 
 The Model F-value of 3.68 implies the model is significant.  There is only 
 a 4.57% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 270.43  R-Squared 0.2903 
 Mean 293.82  Adj R-Squared 0.2114 
 C.V. % 92.04  Pred R-Squared -0.9714 
 PRESS 3.657E+006  Adeq Precision 5.288 
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  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-MP Only 237.58  85.52 
  2-MP + HDMTX 478.62  85.52 
  3-MP + LDMTX 165.25  85.52 
 
  Mean  Standard t for H0  
 Treatment Difference df Error Coeff=0 Prob > |t| 
   1 vs  2 -241.04 1 120.94 -1.99 0.0616 
   1 vs  3 72.33 1 120.94 0.60 0.5572 
   2 vs  3 313.37 1 120.94 2.59 0.0184 
 
 
 
(b) Chec the normality assumption.  Can we assume these samples are from normal populations? 

 
The normal plot of residuals below identifies a slightly non-normal distribution. 

 

 
 
(c) Take the logarithm of the raw data.  Is there evidence to support the claim that the treatment means 

differ for the transformed data? 
 
The ANOVA for the natural log transformed data identifies the treatment means as only moderately 
different with an F value of 0.07 
 

Design Expert Output 
 
 Response Gene Expression 
 Transform:Natural Log Constant: 0 
         ANOVA for selected factorial model 
 Analysis of variance table [Classical sum of squares - Type II] 
  Sum of  Mean F p-value 
 Source Squares df Square Value Prob > F 
 Block 14.75 9 1.64 
 Model 6.30 2 3.15 3.09 0.0700  
     A-Treatment 6.30 2 3.15 3.09 0.0700 
 Residual 18.32 18 1.02 
 Cor Total 39.37 29 
 
 The Model F-value of 3.09 implies there is a 7.00% chance that a "Model F-Value"  
 this large could occur due to noise. 
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 Std. Dev. 1.01  R-Squared 0.2558 
 Mean 5.09  Adj R-Squared 0.1731 
 C.V. % 19.83  Pred R-Squared -1.0672 
 PRESS 50.89  Adeq Precision 4.942 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-MP Only 4.79  0.32 
  2-MP + HDMTX 5.73  0.32 
  3-MP + LDMTX 4.74  0.32 
 
  Mean  Standard t for H0  
 Treatment Difference df Error Coeff=0 Prob > |t| 
   1 vs  2 -0.95 1 0.45 -2.10 0.0505 
   1 vs  3 0.050 1 0.45 0.11 0.9122 
   2 vs  3 1.00 1 0.45 2.21 0.0405 
 
 
 
(d) Analyze the residuals from the transformed data and comment on model adequacy. 

 
The residual plots below identify no concerns with the model adequacy. 
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4.13. Consider the ratio control algorithm experiment described in Section 3.8.  The experiment was 
actually conducted as a randomized block design, where six time periods were selected as the blocks, and 
all four ratio control algorithms were tested in each time period.  The average cell voltage and the standard 
deviation of voltage (shown in parentheses) for each cell are as follows: 
 

Ratio Control    Time Period   

Algorithms 1 2 3 4 5 6 

1 4.93 (0.05) 4.86 (0.04) 4.75 (0.05) 4.95 (0.06) 4.79 (0.03) 4.88 (0.05) 

2 4.85 (0.04) 4.91 (0.02) 4.79 (0.03) 4.85 (0.05) 4.75 (0.03) 4.85 (0.02) 

3 4.83 (0.09) 4.88 (0.13) 4.90 (0.11) 4.75 (0.15) 4.82 (0.08) 4.90 (0.12) 

4 4.89 (0.03) 4.77 (0.04) 4.94 (0.05) 4.86 (0.05) 4.79 (0.03) 4.76 (0.02)  

 
(a)  Analyze the average cell voltage data.  (Use α = 0.05.)  Does the choice of ratio control algorithm 

affect the cell voltage? 
 
Design Expert Output  
 Response: Average 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.017 5 3.487E-003 
 Model 2.746E-003 3 9.153E-004 0.19 0.9014 not significant 
 A 2.746E-003 3 9.153E-004 0.19 0.9014 
 Residual 0.072 15 4.812E-003 
 Cor Total 0.092 23 
 
 The "Model F-value" of 0.19 implies the model is not significant relative to the noise.  There is a 
 90.14 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 0.069  R-Squared 0.0366 
 Mean 4.84  Adj R-Squared -0.1560 
 C.V. 1.43  Pred R-Squared -1.4662 
 PRESS 0.18  Adeq Precision 2.688 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
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  1-1 4.86  0.028 
  2-2 4.83  0.028 
  3-3 4.85  0.028 
  4-4 4.84  0.028 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 0.027 1 0.040 0.67 0.5156 
   1 vs  3 0.013 1 0.040 0.33 0.7438 
   1 vs  4 0.025 1 0.040 0.62 0.5419 
   2 vs  3 -0.013 1 0.040 -0.33 0.7438 
   2 vs  4 -1.667E-003 1 0.040 -0.042 0.9674 
   3 vs  4 0.012 1 0.040 0.29 0.7748 
 
The ratio control algorithm does not affect the mean cell voltage. 
 
(b)  Perform an appropriate analysis of the standard deviation of voltage.  (Recall that this is called “pot 

noise.”)  Does the choice of ratio control algorithm affect the pot noise? 
 
Design Expert Output 
 Response: StDev Transform: Natural log Constant: 0.000 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.94 5 0.19 
 Model 6.17 3 2.06 33.26 < 0.0001 significant 
 A 6.17 3 2.06 33.26 < 0.0001 
 Residual 0.93 15 0.062 
 Cor Total 8.04 23 
 
 The Model F-value of 33.26 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 0.25  R-Squared 0.8693 
 Mean -3.04  Adj R-Squared 0.8432 
 C.V. -8.18  Pred R-Squared 0.6654 
 PRESS 2.37  Adeq Precision 12.446 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 -3.09  0.10 
  2-2 -3.51  0.10 
  3-3 -2.20  0.10 
  4-4 -3.36  0.10 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 0.42 1 0.14 2.93 0.0103 
   1 vs  3 -0.89 1 0.14 -6.19 < 0.0001 
   1 vs  4 0.27 1 0.14 1.87 0.0813 
   2 vs  3 -1.31 1 0.14 -9.12 < 0.0001 
   2 vs  4 -0.15 1 0.14 -1.06 0.3042 
   3 vs  4 1.16 1 0.14 8.06 < 0.0001 
 
A natural log transformation was applied to the pot noise data.  The ratio control algorithm does affect the 
pot noise. 
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(c)  Conduct any residual analyses that seem appropriate. 
 

 

 
The normal probability plot shows slight deviations from normality; however, still acceptable. 

 
(d)  Which ratio control algorithm would you select if your objective is to reduce both the average cell 

voltage and the pot noise? 
 
 Since the ratio control algorithm has little effect on average cell voltage, select the algorithm that 
minimizes pot noise, that is algorithm #2.   
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4.14. An aluminum master alloy manufacturer produces grain refiners in ingot form.  The company 
produces the product in four furnaces.  Each furnace is known to have its own unique operating 
characteristics, so any experiment run in the foundry that involves more than one furnace will consider 
furnaces as a nuisance variable.  The process engineers suspect that stirring rate impacts the grain size of 
the product.  Each furnace can be run at four different stirring rates.  A randomized block design is run for a 
particular refiner and the resulting grain size data is as follows. 
  

 Furnace 
Stirring Rate 1 2 3 4 

5 8 4 5 6 
10 14 5 6 9 
15 14 6 9 2 
20 17 9 3 6 

 
(a)  Is there any evidence that stirring rate impacts grain size? 
 
Design Expert Output 
 Response: Grain Size 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 165.19 3 55.06 
 Model 22.19 3 7.40 0.85 0.4995 not significant 
 A 22.19 3 7.40 0.85 0.4995 
 Residual 78.06 9 8.67 
 Cor Total 265.44 15 
 
 The "Model F-value" of 0.85 implies the model is not significant relative to the noise.  There is a 
 49.95 % chance that a "Model F-value" this large could occur due to noise. 
 
 Std. Dev. 2.95  R-Squared 0.2213 
 Mean 7.69  Adj R-Squared -0.0382 
 C.V. 38.31  Pred R-Squared -1.4610 
 PRESS 246.72  Adeq Precision 5.390 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-5 5.75  1.47 
  2-10 8.50  1.47 
  3-15 7.75  1.47 
  4-20 8.75  1.47 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -2.75 1 2.08 -1.32 0.2193 
   1 vs  3 -2.00 1 2.08 -0.96 0.3620 
   1 vs  4 -3.00 1 2.08 -1.44 0.1836 
   2 vs  3 0.75 1 2.08 0.36 0.7270 
   2 vs  4 -0.25 1 2.08 -0.12 0.9071 
   3 vs  4 -1.00 1 2.08 -0.48 0.6425 
 
The analysis of variance shown above indicates that there is no difference in mean grain size due to the 
different stirring rates. 
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(b)  Graph the residuals from this experiment on a normal probability plot.  Interpret this plot. 
 

 
The plot indicates that normality assumption is valid. 

 
(c)  Plot the residuals versus furnace and stirring rate.  Does this plot convey any useful information? 

 
The variance is consistent at different stirring rates.  Not only does this validate the assumption of uniform 
variance, it also identifies that the different stirring rates do not affect variance. 

 
(d)  What should the process engineers recommend concerning the choice of stirring rate and furnace for 

this particular grain refiner if small grain size is desirable?   
 
There really is no effect due to the stirring rate. 
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4.15. Analyze the data in Problem 4.4 using the general regression significance test. 
 

1 2 3 1 2 3 4

1 1 1 2 3 4

2 2 1 2 3 4

3 3 1 2 3 4

1 1 2 3 1

1 1 2 3 2

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ: 12 4 4 4 3 3 3 3 225
ˆ ˆ ˆ ˆˆ ˆ: 4 4 92
ˆ ˆ ˆ ˆˆ ˆ: 4 4 101
ˆ ˆ ˆ ˆˆ ˆ: 4 4 32
ˆˆ ˆ ˆ ˆ: 3 3 34

ˆˆ ˆ ˆ ˆ: 3 3 50

ˆ ˆ ˆ: 3

µ µ τ τ τ β β β β

τ µ τ β β β β

τ µ τ β β β β

τ µ τ β β β β

β µ τ τ τ β

β µ τ τ τ β

β µ τ

+ + + + + + + =

+ + + + + =

+ + + + + =

+ + + + + =

+ + + + =

+ + + + =

+ + 2 3 3

1 2 3 4

ˆˆ 3 36
ˆˆ ˆ ˆ ˆ: 3 3 105

τ τ β

β µ τ τ τ β

+ + =

+ + + + =

 

 
Applying the constraints ∑ ∑ == 0ji

ˆˆ βτ , we obtain: 
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Model Restricted to τ i = 0 : 
 

1 2 3 4

1 1

2 2

3 3

4 4

ˆ ˆ ˆ ˆˆ: 12 3 3 3 3 225
ˆˆ: 3 3 34

ˆˆ: 3 3 50
ˆˆ: 3 3 36

ˆˆ: 3 3 105

µ µ β β β β

β µ β

β µ β

β µ β

β µ β

+ + + + =

+ =

+ =

+ =

+ =

 

 
Applying the constraint ∑ = 0jβ̂ , we obtain: 
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Model Restricted to 0=jβ : 
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Applying the constraint ∑ = 0iτ̂ , we obtain: 
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4.16. Assuming that chemical types and bolts are fixed, estimate the model parameters τi and βj in 
Problem 4.3. 
 
Using Equations 4.18, applying the constraints, we obtain: 
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4.17. Draw an operating characteristic curve for the design in Problem 4.4.  Does this test seem to be 
sensitive to small differences in treatment effects? 
 
Assuming that solution type is a fixed factor, we use the OC curve in appendix V.  Calculate 
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using MSE to estimate σ2.  We have: 
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This test is not very sensitive to small differences. 
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4.18. Suppose that the observation for chemical type 2 and bolt 3 is missing in Problem 4.3.  Analyze the 
problem by estimating the missing value.  Perform the exact analysis and compare the results. 
 

y23 is missing.  
( )( )

( ) ( )
( )( )

' ' '
2. .3 ..

23

4 282 5 227 1360
ˆ 75.25

1 1 3 4
ay by yy

a b
+ −+ −

= = =
− −

 

 
Therefore, y2.=357.25, y .3=302.25, and y ..=1435.25 

 
Source SS DF MS F0 

Chemicals 12.7844 3 4.2615 2.154 
Bolts 158.8875 4   
Error 21.7625 11 1.9784  
Total 193.4344 18   

 
F0.05,3,11=3.59, Chemicals are not significant.  This is the same result as found in Problem 4.3. 
 
 
4.19. Consider the hardness testing experiment in Problem 4.7.  Suppose that the observation for tip 2 in 
coupon 3 is missing.  Analyze the problem by estimating the missing value. 
 

y23 is missing.  
( )( )

( ) ( )
( )( )

' ' '
2. .3 ..

23

4 28.6 4 29.1 144.2
ˆ 9.62

1 1 3 3
ay by yy

a b
+ −+ −

= = =
− −

 

 
Therefore, y2.=38.22, y .3=38.72, and y ..=153.82 

 
Source SS DF MS F0 

Tip 0.40 3 0.133333 19.29 
Coupon 0.80 3   

Error 0.0622 9 0.006914  
Total 1.2622 15   

 
F0.05,3,9=3.86, Tips are significant.  This is the same result as found in Problem 4.7. 
 
 
4.20. Two missing values in a randomized block.  Suppose that in Problem 4.3 the observations for 
chemical type 2 and bolt 3 and chemical type 4 and bolt 4 are missing. 
 
(a)  Analyze the design by iteratively estimating the missing values as described in Section 4.1.3. 
 

12
54 32

23

'
..

'
.

'
. yyyŷ −+

=  and 
12
54 44

44

'
..

'
.

'
. yyyŷ −+

=  

 
Data is coded y-70. As an initial guess, set 0

23y  equal to the average of the observations available for 

chemical 2.  Thus, 50
4
20

23 .y ==  .  Then , 

( ) ( ) 043
12

52565840
44 ..ŷ =

−+
=  

( ) ( ) 415
12

0428175241
23 ..ŷ =

−+
=  
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( ) ( ) 632
12

413065841
44 ..ŷ =

−+
=  

( ) ( ) 445
12

6327175242
44 ..ŷ =

−+
=  

( ) ( ) 632
12

443065842
44 ..ŷ =

−+
=  

44523 .ŷ =∴  63244 .ŷ =  
 
Design Expert Output  
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 156.83 4 39.21 
 Model 9.59 3 3.20 2.08 0.1560 not significant 
 A 9.59 3 3.20 2.08 0.1560 
 Residual 18.41 12 1.53 
 Cor Total 184.83 19 
 
(b)  Differentiate SSE with respect to the two missing values, equate the results to zero, and solve for 

estimates of the missing values.  Analyze the design using these two estimates of the missing values. 
 

∑∑∑∑ ∑ +−−= 2
20
12

4
12

5
12

..j..iijE yyyySS  

Ryy.y.y.y.y.SSE ++−−+= 44234423
2
44

2
23 1073866060  

 

From 0
4423

==
y
SS

y
SS EE

∂
∂

∂
∂ , we obtain: 

 

732110
861021

4423

4423

.ŷ.ŷ.

.ŷ.ŷ.
=+
=+

    45523 .ŷ =⇒ , 63244 .ŷ =  

 
These quantities are almost identical to those found in part (a).  The analysis of variance using these new 
data does not differ substantially from part (a). 
 
(c)  Derive general formulas for estimating two missing values when the observations are in different 

blocks. 
 

( ) ( ) ( ) ( ) ( )2 2 2 2 2

. . . . ..2 2 i iu k kv u iu v kv iu kv
E iu kv

y y y y y y y y y y y
SS y y

b a ab

′ ′ ′ ′ ′+ + + + + + + +
= + − − +  

 

From 0
4423

==
y
SS

y
SS EE

∂
∂

∂
∂ , we obtain: 

 
( )( )

ab
ŷ

ab
'y'by'ay

ab
baŷ kv..j..i

iu −
−+

=



 −− 11  

ab
ŷ

ab
'y'by'ay

ab
)b)(a(ŷ iu..v..k

kv −
−+

=



 −− 11  
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whose simultaneous solution is: 
 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

2 2 2 2 2 2
. . ..

2 2

' 1 1 1 ' 1 1 1 ' 1 1 1
ˆ

1 1 1 1 1

i u

iu

y a a b ab y b a b ab y ab a b
y

a b a b

     − − − − + − − − − − − − −     = +
 − − − − − 

 

 [ ]
( ) ( )

. . ..
2 2

' ' '

1 1 1
k vab ay by y

a b

+ −

 − − − 

 

( )( )[ ]
( ) ( )

. . .. . . ..
2 2

' ' ' 1 1 ' ' '
ˆ

1 1 1
i u k v

kv

ay by y b a ay by y
y

a b

+ − − − − + −
=

 − − − 

 

 
(d)  Derive general formulas for estimating two missing values when the observations are in the same 

block.  Suppose that two observations y ij and ykj are missing, i≠k (same block j). 
 

( ) ( ) ( ) ( )
ab

yyy
a

yyy
b

yyyy
yySS kjij..kjijj.kj.kij.i

kjijE

2222
22 ++′

+
++′

−
+′++′

−+=  

 

From 0E E

ij kj

SS SS
y y

∂ ∂
∂ ∂

= = , we obtain 

 

( )( ) ( )( )211
11

−−+
−−

′−′+′
= baŷ

ba
yybya

ŷ kj
..j..i

ij  

( )( ) ( )( )211
11

−−+
−−

′−′+′
= baŷ

ba
yybya

ŷ ij
..j..k

kj  

 
whose simultaneous solution is: 
 

( )( )
( ) ( )( ) ( )

( ) ( )

2
. . .. . . ... . ..

2 4

1 1 1
ˆ

1 1 1 1 1

k j i ji j
ij

b ay by y a b ay by yay by y
y

a b a b

 ′ ′ ′ ′ ′ ′− + − + − − + −′ ′ ′+ −  = +
− −  − − − 

 

( ) ( )
( )( ) ( ) ( )

2
. . .. . . ..

2 4

1 1
ˆ

1 1 1 1 1
k j i j

kj

ay by y b a ay by y
y

a b a b

′ ′ ′ ′ ′ ′ + − − − − + − =
 − − − − − 

 

 
 
4.21. An industrial engineer is conducting an experiment on eye focus time.  He is interested in the effect 
of the distance of the object from the eye on the focus time.  Four different distances are of interest.  He has 
five subjects available for the experiment.  Because there may be differences among individuals, he decides 
to conduct the experiment in a randomized block design.  The data obtained follow.  Analyze the data from 
this experiment (use α = 0.05) and draw appropriate conclusions. 
 

   Subject   
Distance (ft) 1 2 3 4 5 

4 10 6 6 6 6 
6 7 6 6 1 6 
8 5 3 3 2 5 

10 6 4 4 2 3 
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Design Expert Output 
 Response: Focus Time 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 36.30 4 9.07 
 Model 32.95 3 10.98 8.61 0.0025 significant 
 A 32.95 3 10.98 8.61 0.0025 
 Residual 15.30 12 1.27 
 Cor Total 84.55 19 
 
 The Model F-value of 8.61 implies the model is significant.  There is only 
 a 0.25% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 1.13  R-Squared 0.6829 
 Mean 4.85  Adj R-Squared 0.6036 
 C.V. 23.28  Pred R-Squared 0.1192 
 PRESS 42.50  Adeq Precision 10.432 
 
  Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-4 6.80  0.50 
  2-6 5.20  0.50 
  3-8 3.60  0.50 
  4-10 3.80  0.50 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 1.60 1 0.71 2.24 0.0448 
   1 vs  3 3.20 1 0.71 4.48 0.0008 
   1 vs  4 3.00 1 0.71 4.20 0.0012 
   2 vs  3 1.60 1 0.71 2.24 0.0448 
   2 vs  4 1.40 1 0.71 1.96 0.0736 
   3 vs  4 -0.20 1 0.71 -0.28 0.7842 
 
Distance has a statistically significant effect on mean focus time. 
 
 
4.22. The effect of five different ingredients (A, B, C, D, E) on reaction time of a chemical process is 
being studied.  Each batch of new material is only large enough to permit five runs to be made.  
Furthermore, each run requires approximately 1 1/2 hours, so only five runs can be made in one day.  The 
experimenter decides to run the experiment as a Latin square so that day and batch effects can be 
systematically controlled.  She obtains the data that follow.  Analyze the data from this experiment (use α = 
0.05) and draw conclusions. 
 

   Day   
Batch 1 2 3 4 5 

1 A=8 B=7 D=1 C=7 E=3 
2 C=11 E=2 A=7 D=3 B=8 
3 B=4 A=9 C=10 E=1 D=5 
4 D=6 C=8 E=6 B=6 A=10 
5 E=4 D=2 B=3 A=8 C=8 

 
The Minitab output below identifies the ingredients as having a significant effect on reaction time. 
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Minitab Output 
General Linear Model 

 
Factor     Type Levels Values 
Batch    random      5 1 2 3 4 5 
Day      random      5 1 2 3 4 5 
Catalyst  fixed      5 A B C D E 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Catalyst    4    141.440    141.440     35.360   11.31  0.000 
Batch       4     15.440     15.440      3.860    1.23  0.348 
Day         4     12.240     12.240      3.060    0.98  0.455 
Error      12     37.520     37.520      3.127 
Total      24    206.640   

 
 
4.23. An industrial engineer is investigating the effect of four assembly methods (A, B, C, D) on the 
assembly time for a color television component.  Four operators are selected for the study.  Furthermore, 
the engineer knows that each assembly method produces such fatigue that the time required for the last 
assembly may be greater than the time required for the first, regardless of the method.  That is, a trend 
develops in the required assembly time.  To account for this source of variability, the engineer uses the 
Latin square design shown below.  Analyze the data from this experiment (α = 0.05) draw appropriate 
conclusions. 
 

Order of   Operator  
Assembly 1 2 3 4 

1 C=10 D=14 A=7 B=8 
2 B=7 C=18 D=11 A=8 
3 A=5 B=10 C=11 D=9 
4 D=10 A=10 B=12 C=14 

 
The Minitab output below identifies assembly method as having a significant effect on assembly time. 
 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Order    random      4 1 2 3 4 
Operator random      4 1 2 3 4 
Method    fixed      4 A B C D 
 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Method      3     72.500     72.500     24.167   13.81  0.004 
Order       3     18.500     18.500      6.167    3.52  0.089 
Operator    3     51.500     51.500     17.167    9.81  0.010 
Error       6     10.500     10.500      1.750 
Total      15    153.000   
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4.24. Consider the randomized complete block design in Problem 4.4.  Assume that the days are random.  
Estimate the block variance component. 
 
The block variance component is: 
 

[ ] [ ]Blocks2 368.97 8.64
ˆ 120.11

3
EMS MS

aβσ
− −

= = =  

 
 
4.25. Consider the randomized complete block design in Problem 4.7.  Assume that the coupons are 
random.  Estimate the block variance component. 
 
The block variance component is: 
 

[ ] [ ]Blocks2 0.27 0.008889
ˆ 0.06528

4
EMS MS

aβσ
− −

= = =  

 
 
4.26. Consider the randomized complete block design in Problem 4.9.  Assume that the trucks are random.  
Estimate the block variance component. 
 
The block variance component is: 
 

[ ] [ ]Blocks2 0.023 0.0005278
ˆ 0.007491

3
EMS MS

aβσ
− −

= = =  

 
 
4.27. Consider the randomized complete block design in Problem 4.11.  Assume that the software projects 
that were used as blocks are random.  Estimate the block variance component. 
 
The block variance component is: 
 

[ ] [ ]Blocks2 457500 111200
ˆ 57716.67

6
EMS MS

aβσ
− −

= = =  

 
4.28. Consider the gene expression experiment in Problem 4.12.  Assume that the subjects used in this 
experiment are random.  Estimate the block variance component 
 
The block variance component is: 
 

[ ] [ ]Blocks2 102300 73130.15
ˆ 9723.28

3
EMS MS

aβσ
− −

= = =  

 
 
4.29. Suppose that in Problem 4.22 the observation from batch 3 on day 4 is missing.  Estimate the 
missing value and perform the analysis using this value. 
 

y354 is missing. 
[ ]

( )( )
[ ] ( )

( )( ) 583
43

14622415285
12

2
354 .

pp
yyyyp

ŷ ...k...j...i =
−++

=
−−

′−′+′+′
=  
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Minitab Output 
General Linear Model 

 
Factor     Type Levels Values 
Batch    random      5 1 2 3 4 5 
Day      random      5 1 2 3 4 5 
Catalyst  fixed      5 A B C D E 
 
Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Catalyst    4    128.676    128.676     32.169   11.25  0.000 
Batch       4     16.092     16.092      4.023    1.41  0.290 
Day         4      8.764      8.764      2.191    0.77  0.567 
Error      12     34.317     34.317      2.860 
Total      24    187.849   

 
 
4.30. Consider a p x p Latin square with rows (αi), columns (βk), and treatments (τj) fixed.  Obtain least 
squares estimates of the model parameters αi, βk, τj. 
 

...

p

k
k

p

j
j

p

i
i yˆpˆpˆpˆp: =+++ ∑∑∑

=== 111

2 βταµµ  

..i

p

k
k

p

j
jii yˆpˆpˆpˆp: =+++ ∑∑

== 11

βταµα   , p,...,,i 21=  

.j.

p

k
kj

p

i
ij yˆpˆpˆpˆp: =+++ ∑∑

== 11

βταµτ , p,...,,j 21=  

k..k

p

j
j

p

i
ik yˆpˆpˆpˆp: =+++ ∑∑

==

βταµβ
11

, p,...,,k 21=  

 
There are 3p+1 equations in 3p+1 unknowns.  The rank of the system is 3p-2.  Three side conditions are 

necessary.  The usual conditions imposed are: 0
111

=== ∑∑∑
===

p

k
k

p

j
j

p

i
i

ˆˆˆ βτα .  The solution is then: 

 
...

...2

.. ...

ˆ

ˆ , 1, 2,...,i i

y y
p
y y i p

µ

α

= =

= − =

 

. . ...

.. ...

ˆ , 1, 2,...,
ˆ , 1, 2,...,
j j

k i

y y j p

y y k p

τ

β

= − =

= − =
 

 
 
4.31.  Derive the missing value formula (Equation 4.27) for the Latin square design. 
 











+−−−= ∑∑∑∑∑ ∑ 2

2222
2 2

p
y

p
y

p
y

p
yySS ...k...j...i

ijkE  
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Let yijk be missing.  Then 
 

( ) ( ) ( ) ( )2 2 2 2

.. . . .. ...2
2

2i ijk j ijk k ijk ijk
E ijk

y y y y y y y y
SS y R

p p p p

′ ′ ′ ′+ + + +
= − − − + +   

 

where R is all terms without yijk..  From 0=
ijk

E

y
SS

∂
∂

, we obtain: 

 

( )( ) ( )
22

221
p

'y'y'y'yp

p
ppy ...k...j...i

ijk
−++

=
−−

, or 
( )

( )( )21
2

−−

−++
=

pp
'y'y'y'yp

y ...k...j...i
ijk  

 
 
4.32. Designs involving several Latin squares. [See Cochran and Cox (1957), John (1971).]  The p x p 
Latin square contains only p observations for each treatment.  To obtain more replications the experimenter 
may use several squares, say n.  It is immaterial whether the squares used are the same are different.  The 
appropriate model is 
 

ijkhjh)h(kj)h(ihijkh )(y ετρβταρµ ++++++=      











=
=
=
=

n,...,,h
p,...,,k
p,...,,j
p,...,,i

21
21
21
21

 

 
where yijkh is the observation on treatment j in row i and column k of the hth square.  Note that α i h( )  and 
βk h( )  are row and column effects in the hth square, and ρh  is the effect of the hth square, and ( )τρ jh  is the 
interaction between treatments and squares. 
 
(a) Set up the normal equations for this model, and solve for estimates of the model parameters.  Assume 

that appropriate side conditions on the parameters are 0=∑h hρ̂ , ( ) 0=∑i hiα̂ , and ( ) 0=∑k hkβ̂  

for each h, 0=∑ j jτ̂ , ( ) 0=∑ j jhˆρτ for each h, and ( ) 0=∑h jhˆρτ  for each j. 

 
....

... ....

. .. ....

( ) .. ...

( ) .. ...

^

. . . .. ... ....

ˆ
ˆ
ˆ
ˆ
ˆ

h h

j j

i h i h h

k h kh h

j h j h
jh

y
y y
y y

y y

y y

y y y y

µ
ρ
τ

α

β

τρ

=

= −
= −

= −

= −

  = − − + 
 
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(b) Write down the analysis of variance table for this design. 
 

Source SS DF 

Treatments ∑ − 2

22

np
y

np
y ......j.  p-1 

Squares ∑ − 2

2

2

2

np
y

p
y ....h...  n-1 

Treatment x Squares SquaresTreatments
....h.j. SSSS

np
y

p
y

−−−∑ 2

22

 (p-1)(n-1) 

Rows 
2 2
.. ...i h hy y
p np

−∑  n(p-1) 

Columns 
2 2
.. ...kh hy y
p np

−∑  n(p-1) 

Error subtraction n(p-1)(p-2) 

Total 2

2
2

np
yy ....

ijkh −∑∑∑∑  np2-1 

 
 
4.33. Discuss how the operating characteristics curves in the Appendix may be used with the Latin square 
design. 
 
For the fixed effects model use: 
 

∑∑ == 2

2

2

2
2

σ

τ

σ

τ
Φ jj

p

p
, 11 −= pυ     ( )( )122 −−= ppυ  

 
For the random effects model use: 
 

λ
σ

σ
τ= +1
2

2
p , υ1 1= −p     ( )( )122 −−= ppυ  

 
 
4.34. Suppose that in Problem 4.22 the data taken on day 5 were incorrectly analyzed and had to be 
discarded.  Develop an appropriate analysis for the remaining data. 
 
Two methods of analysis exist: (1) Use the general regression significance test, or (2) recognize that the 
design is a Youden square.  The data can be analyzed as a balanced incomplete block design with a = b =  
5, r = k = 4 and λ = 3.  Using either approach will yield the same analysis of variance. 
 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Catalyst  fixed      5 A B C D E 
Batch    random      5 1 2 3 4 5 
Day      random      4 1 2 3 4 
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Analysis of Variance for Time, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Catalyst    4    119.800    120.167     30.042    7.48  0.008 
Batch       4     11.667     11.667      2.917    0.73  0.598 
Day         3      6.950      6.950      2.317    0.58  0.646 
Error       8     32.133     32.133      4.017 
Total      19    170.550   

 
 
4.35. The yield of a chemical process was measured using five batches of raw material, five acid 
concentrations, five standing times, (A, B, C, D, E) and five catalyst concentrations (α, β, γ, δ, ε).  The 
Graeco-Latin square that follows was used.  Analyze the data from this experiment (use α = 0.05) and draw 
conclusions.  

   Acid Concentration  
Batch 1 2 3 4 5 

1 Aα=26 Bβ=16 Cγ=19 Dδ=16 Eε=13 
2 Bγ=18 Cδ=21 Dε=18 Eα=11 Aβ=21 
3 Cε=20 Dα=12 Eβ=16 Aγ=25 Bδ=13 
4 Dβ=15 Eγ=15 Aδ=22 Bε=14 Cα=17 
5 Eδ=10 Aε=24 Bα=17 Cβ=17 Dγ=14 

 
The Minitab output below identifies standing time as having a significant effect on yield. 
 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Time      fixed      5 A B C D E 
Catalyst random      5 a b c d e 
Batch    random      5 1 2 3 4 5 
Acid     random      5 1 2 3 4 5 
 

Analysis of Variance for Yield, using Adjusted SS for Tests 
 

Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Time        4    342.800    342.800     85.700   14.65  0.001 
Catalyst    4     12.000     12.000      3.000    0.51  0.729 
Batch       4     10.000     10.000      2.500    0.43  0.785 
Acid        4     24.400     24.400      6.100    1.04  0.443 
Error       8     46.800     46.800      5.850 
Total      24    436.000   

 
 
4.36. Suppose that in Problem 4.23 the engineer suspects that the workplaces used by the four operators 
may represent an additional source of variation.  A fourth factor, workplace (α, β, γ, δ) may be introduced 
and another experiment conducted, yielding the Graeco-Latin square that follows.  Analyze the data from 
this experiment (use α = 0.05) and draw conclusions. 
 

Order of   Operator  
Assembly 1 2 3 4 

1 Cβ=11 Bγ=10 Dδ=14 Aα=8 
2 Bα=8 Cδ=12 Aγ=10 Dβ=12 
3 Aδ=9 Dα=11 Bβ=7 Cγ=15 
4 Dγ=9 Aβ=8 Cα=18 Bδ=6 
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Minitab Output 
General Linear Model 

 
Factor     Type Levels Values 
Method    fixed      4 A B C D 
Order    random      4 1 2 3 4 
Operator random      4 1 2 3 4 
Workplac random      4 a b c d 
 

Analysis of Variance for Time, using Adjusted SS for Tests 
 

Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Method      3     95.500     95.500     31.833    3.47  0.167 
Order       3      0.500      0.500      0.167    0.02  0.996 
Operator    3     19.000     19.000      6.333    0.69  0.616 
Workplac    3      7.500      7.500      2.500    0.27  0.843 
Error       3     27.500     27.500      9.167 
Total      15    150.000   

 
Method and workplace do not have a significant effect on assembly time. However, there are only three 
degrees of freedom for error, so the test is not very sensitive. 
 
 
4.37. Construct a 5 x 5 hypersquare for studying the effects of five factors.  Exhibit the analysis of 
variance table for this design. 
 
Three 5 x 5 orthogonal Latin Squares are: 
 

ABCDE
BCDEA
CDEAB
DEABC
EABCD

      

αβγδε
γδεαβ
εαβγδ
βγδεα
δεαβγ

      

12345
45123
23451
51234
34512

 

 
Let rows = factor 1, columns = factor 2, Latin letters = factor 3, Greek letters = factor 4 and numbers = 
factor 5.  The analysis of variance table is: 
 

Source SS DF 
Rows 

25
2 .....
....

1

1
5 25i

i

yy
=

−∑  4 

Columns 
25

2 .....
....

1

1
5 25m

m

yy
=

−∑  4 

Latin Letters 
25

2 .....
. ...

1

1
5 25j

j

yy
=

−∑  4 

Greek Letters 
25

2 .....
.. ..

1

1
5 25k

k

yy
=

−∑  4 

Numbers  
25

2 .....
... .

1

1
5 25l

l

yy
=

−∑  4 

Error SSE by subtraction 4 
Total 

25 5 5 5 5
2 .....

1 1 1 1 1 25ijklm
i j k l m

yy
= = = = =

−∑∑∑∑∑  24 
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4.38. Consider the data in Problems 4.23 and 4.36.  Suppressing the Greek letters in 4.36, analyze the data 
using the method developed in Problem 4.32. 
 

Square 1 - Operator 
Batch 1 2 3 4 Row Total 
1 C=10 D=14 A=7 B=8 (39) 
2 B=7 C=18 D=11 A=8 (44) 
3 A=5 B=10 C=11 D=9 (35) 
4 D=10 A=10 B=12 C=14 (46) 
 (32) (52) (41) (36) 164=y…1 

 
Square 2 - Operator 

Batch 1 2 3 4 Row Total 
1 C=11 B=10 D=14 A=8 (43) 
2 B=8 C=12 A=10 D=12 (42) 
3 A=9 D=11 B=7 C=15 (42) 
4 D=9 A=8 C=18 B=6 (41) 
 (37) (41) (49) (41) 168=y…2 

 
Assembly Methods Totals 

A y .1..=65 
B y .2..=68 
C y .3..=109 
D y .4..=90 

 
Source SS DF MS F0 
Assembly Methods 159.25 3 53.08 14.00* 
Squares 0.50 1 0.50  
A x S 8.75 3 2.92 0.77 
Assembly Order (Rows) 19.00 6 3.17  
Operators (columns) 70.50 6 11.75  
Error 45.50 12 3.79  
Total 303.50 31   

 
Significant at 1%. 

 
 
4.39. Consider the randomized block design with one missing value in Problem 4.19.  Analyze this data 
by using the exact analysis of the missing value problem discussed in Section 4.1.4.  Compare your results 
to the approximate analysis of these data given from Problem 4.19. 
 
To simplify the calculations, the data in Problems 4.19 was transformed by multiplying by 10 and 
substracting 95. 
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1 2 3 4 1 2 3 4

1 1 1 2 3 4

2 2 1 2 4

3 3 1 2 3 4

4 4 1 2 3 4

1 1 2 3 4 1

2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ: 15 4 3 4 4 4 4 3 4 17
ˆ ˆ ˆ ˆˆ ˆ: 4 4 3
ˆ ˆ ˆˆ ˆ: 3 3 1
ˆ ˆ ˆ ˆˆ ˆ: 4 4 2
ˆ ˆ ˆ ˆˆ ˆ: 4 4 15
ˆˆ ˆ ˆ ˆ ˆ: 4 4 4

ˆ: 4

µ µ τ τ τ τ β β β β

τ µ τ β β β β

τ µ τ β β β

τ µ τ β β β β

τ µ τ β β β β

β µ τ τ τ τ β

β µ

+ + + + + + + + =

+ + + + + =

+ + + + =

+ + + + + = −

+ + + + + =

+ + + + + = −

+ 1 2 3 4 2

3 1 3 4 3

4 1 2 3 4 4

ˆˆ ˆ ˆ ˆ 4 3
ˆˆ ˆ ˆ ˆ: 3 3 6

ˆˆ ˆ ˆ ˆ ˆ: 4 4 18

τ τ τ τ β

β µ τ τ τ β

β µ τ τ τ τ β

+ + + + = −

+ + + + =

+ + + + + =

 

 
Applying the constraints ∑ ∑ == 0ji

ˆˆ βτ , we obtain: 
 

36
41

=µ̂ , 
36
14

1
−

=τ̂ , 
36
24

2
−

=τ̂ , 
36
59

3
−

=τ̂ ,
36
94

4 =τ̂ , 
36
77

1
−

=β̂ , 
36
68

2
−

=β̂ , 
36
24

3 =β̂ , 
36

121
4 =β̂  

 

( ) ∑ ∑
= =

=++=
4

1

4

1

78138
i j

j.j.ii.. .yˆyˆyˆ,,R βτµβτµ  

 
With 7 degrees of freedom. 
 

∑∑ = 001452 .yij , ( )∑∑ =−=−= 22678138001452 ...,,RySS ijE βτµ  
 
which is identical to SSE obtained in the approximate analysis.  In general, the SSE in the exact and 
approximate analyses will be the same. 
 
To test Ho: 0=iτ  the reduced model is  ijjijy εβµ ++= .  The normal equations used are: 
 

1 2 3 4

1 1

2 2

3 3

4 4

ˆ ˆ ˆ ˆˆ: 15 4 4 3 4 17
ˆˆ: 4 4 4

ˆˆ: 4 4 3
ˆˆ: 3 3 6

ˆˆ: 4 4 18

µ µ β β β β

β µ β

β µ β

β µ β

β µ β

+ + + + =

+ = −

+ = −

+ =

+ =

 

 
Applying the constraint ∑ = 0jβ̂ , we obtain: 
 

16
19

=µ̂  , 
16
35

1
−

=β̂ , 
16
31

2
−

=β̂ , 
16
13

3 =β̂ , 
16
53

4 =β̂ .  Now  ( ) ∑
=

=+=
4

1

2599
j

j.j.. .yˆyˆ,R βµβµ  

 
with 4 degrees of freedom. 
 

( ) ( ) ( ) TreatmentsSS...,R,,R,R ==−=−= 5339259978138βµβτµβµτ  
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with 7-4=3 degrees of freedom.  ( )βµτ ,R is used to test Ho: τ i = 0 . 
 
The sum of squares for blocks is found from the reduced model  ijiijy ετµ ++= .  The normal equations 
used are: 
 
Model Restricted to 0=jβ : 

1 2 3 4

1 1

2 2

3 3

4 4

ˆ ˆ ˆ ˆ ˆ: 15 4 3 4 4 17
ˆ ˆ: 4 4 3
ˆ ˆ: 3 3 1
ˆ ˆ: 4 4 2
ˆ ˆ: 4 4 15

µ µ τ τ τ τ
τ µ τ
τ µ τ
τ µ τ
τ µ τ

+ + + + =
+ =

+ =
+ = −

+ =

 

 
Applying the constraint ˆ 0iτ =∑ , we obtain: 
 

13ˆ
12

µ = , 1
4ˆ

12
τ −

= , 2
9ˆ

12
τ −

= , 3
19ˆ

12
τ −

= , 4
32ˆ
12

τ =  

( ) ∑
=

=+=
4

1

8359
i

.ii.. .yˆyˆ,R τµτµ  

 
with 4 degrees of freedom. 
 

( ) ( ) ( ) BlocksSS...,R,,R,R ==−=−= 9578835978138τµβτµτµβ  
 
with 7-4=3 degrees of freedom. 
 

Source DF SS(exact) SS(approximate) 
Tips 3 39.53 39.98 
Blocks 3 78.95 79.53 
Error 8 6.22 6.22 
Total 14 125.74 125.73 

 
Note that for the exact analysis, EBlocksTipsT SSSSSSSS ++≠ . 
 
 
4.40. An engineer is studying the mileage performance characteristics of five types of gasoline additives.  
In the road test he wishes to use cars as blocks; however, because of a time constraint, he must use an 
incomplete block design.  He runs the balanced design with the five blocks that follow.  Analyze the data 
from this experiment (use α = 0.05) and draw conclusions. 
 

   Car   
Additive 1 2 3 4 5 

1  17 14 13 12 
2 14 14  13 10 
3 12  13 12 9 
4 13 11 11 12  
5 11 12 10  8 
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There are several computer software packages that can analyze the incomplete block designs discussed in 
this chapter.  The Minitab General Linear Model procedure is a widely available package with this 
capability.  The output from this routine follows.  The adjusted sums of squares are the appropriate sums of 
squares to use for testing the difference between the means of the gasoline additives.  The gasoline 
additives have a significant effect on the mileage. 
 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Additive  fixed      5 1 2 3 4 5 
Car      random      5 1 2 3 4 5 
 
Analysis of Variance for Mileage, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Additive    4    31.7000    35.7333     8.9333    9.81  0.001 
Car         4    35.2333    35.2333     8.8083    9.67  0.001 
Error      11    10.0167    10.0167     0.9106 
Total      19    76.9500   

 
 
4.41. Construct a set of orthogonal contrasts for the data in Problem 4.40.  Compute the sum of squares for 
each contrast. 
 
One possible set of orthogonal contrasts is: 
 
 21540 µµµµ +=+:H  (1) 
 210 µµ =:H  (2) 
 540 µµ =:H  (3) 
 215430 4 µµµµµ +++=:H  (4) 
 
The sums of squares and F-tests are: 
 

Brand -> 1 2 3 4 5    
Qi 33/4 11/4 -3/4 -14/4 -27/4 c Qi i∑  SS F0 
(1) -1 -1 0 1 1 -85/4 30.10 33.06 
(2) 1 -1 0 0 0 22/4 4.03 4.426 
(3) 0 0 0 -1 1 -13/4 1.41 1.55 
(4) -1 -1 4 -1 -1 -15/4 0.19 0.21 

 
Contrasts (1) and (2) are significant at the 1% and 5% levels, respectively.  
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4.42. Seven different hardwood concentrations are being studied to determine their effect on the strength 
of the paper produced.  However the pilot plant can only produce three runs each day.  As days may differ, 
the analyst uses the balanced incomplete block design that follows.  Analyze this experiment (use α = 0.05) 
and draw conclusions. 
 

Hardwood    Days    
Concentration (%) 1 2 3 4 5 6 7 

2 114    120  117 
4 126 120    119  
6  137 117    134 
8 141  129 149    
10  145  150 143   
12   120  118 123  
14    136  130 127 

 
There are several computer software packages that can analyze the incomplete block designs discussed in 
this chapter.  The Minitab General Linear Model procedure is a widely available package with this 
capability.  The output from this routine for Problem 4.35 follows.  The adjusted sums of squares are the 
appropriate sums of squares to use for testing the difference between the means of the hardwood 
concentrations.  
 
Minitab Output 

General Linear Model 
 
Factor     Type Levels Values 
Concentr  fixed      7  2  4  6  8 10 12 14 
Days     random      7 1 2 3 4 5 6 7 
 
Analysis of Variance for Strength, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
Concentr    6    2037.62    1317.43     219.57   10.42  0.002 
Days        6     394.10     394.10      65.68    3.12  0.070 
Error       8     168.57     168.57      21.07 
Total      20    2600.29   

 
 
4.43.  Analyze the data in Example 4.5 using the general regression significance test. 

 

1 2 3 4 1 2 3 4

1 1 1 2 4

2 2 2 3 4

3 3 1 2 3

4 4 1 3 4

1 1 3 4 1

2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ: 12 3 3 3 3 3 3 3 3 870
ˆ ˆ ˆˆ ˆ: 3 3 218

ˆ ˆ ˆˆ ˆ: 3 3 214
ˆ ˆ ˆˆ ˆ: 3 3 216
ˆ ˆ ˆˆ ˆ: 3 3 222
ˆˆ ˆ ˆ ˆ: 3 3 221

ˆ ˆ ˆ: 3

µ µ τ τ τ τ β β β β

τ µ τ β β β

τ µ τ β β β

τ µ τ β β β

τ µ τ β β β

β µ τ τ τ β

β µ τ τ

+ + + + + + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + 3 2

3 2 3 4 3

4 1 2 4 4

ˆˆ 3 224
ˆˆ ˆ ˆ ˆ: 3 3 207

ˆˆ ˆ ˆ ˆ: 3 3 218

τ β

β µ τ τ τ β

β µ τ τ τ β

+ =

+ + + + =

+ + + + =

 

Applying the constraints 

τ βi j= =∑∑ 0 , we obtain: 
 

 /µ = 870 12 ,  /τ 1 9 8= − ,  /τ 2 7 8= − ,  /τ 3 4 8= − ,  /τ 4 20 8= , 
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 /β1 7 8= , 2
ö 24 /8β = , 3

ö 31/8β = − ,  /β4 0 8=  

( )
4 4

.. . .
1 1

öö ö, , 63,152.75i i j j
i j

R y y yµ τ β µ τ β
= =

= + + =∑ ∑  

 with 7 degrees of freedom. 
 

yij
2 63156 00=∑∑ , .  

SS y RE ij= − = − =∑∑ 2 63156 00 63152 75 325( , , ) . . .µ τ β . 
 
To test Ho: τ i = 0  the reduced model is  yij j ij= + +µ β ε .  The normal equations used are: 
 

1 2 3 4

1 1

2 2

3 3

4 4

ö ö ö öö: 12 3 3 3 3 870
öö: 3 3 221

öö: 3 3 224
öö: 3 3 207

öö: 3 3 218

µ µ β β β β

β µ β

β µ β

β µ β

β µ β

+ + + + =

+ =

+ =

+ =

+ =

 

 
Applying the constraint ∑ = 0jβ̂ , we obtain: 
 

12
870

=µö , 
6
7

1 =βö , 2
13ö
6

β = , 3
21ö
6

β −
= , 

6
1

4 =βö  

( ) ∑
=

=+=
4

1

0013063
j

j.j.. .,yöyö,R βµβµ  

 
with 4 degrees of freedom. 
 

( ) ( ) ( ) TreatmentsSS...,R,,R,R ==−=−= 752200631307563152βµβτµβµτ  
 
with 7 – 4 = 3 degrees of freedom.  ( )βµτ ,R is used to test Ho: 0=iτ . 
 
The sum of squares for blocks is found from the reduced model ijiijy ετµ ++= .  The normal equations 
used are: 
 
Model Restricted to 0=jβ : 
 

1 2 3 4

1 1

2 2

3 3

4 4

ö ö ö ö ö: 12 3 3 3 3 870
ö ö: 3 3 218
ö ö: 3 3 214
ö ö: 3 3 216
ö ö: 3 3 222

µ µ τ τ τ τ
τ µ τ
τ µ τ
τ µ τ
τ µ τ

+ + + + =
+ =

+ =
+ =

+ =

 

 
The sum of squares for blocks is found as in Example 4.5.  We may use the method shown above to find an 
adjusted sum of squares for blocks from the reduced model, ijiijy ετµ ++= . 
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4.44. Prove that ( )a

Qk
a

i i

λ
∑ =1

2

 is the adjusted sum of squares for treatments in a BIBD. 

 
We may use the general regression significance test to derive the computational formula for the adjusted 
treatment sum of squares.  We will need the following: 
 

( )a
kQö i

i λ
τ = , ∑

=

−=
b

i
j.ij.ii ynkykQ

1

 

( ) ∑ ∑
= =

++=
a

i

b

j
j.j.ii.. yöyöyö,,R

1 1

βτµβτµ  

 
and the sum of squares we need is: 
 

( ) ∑∑ ∑
== =

−++=
b

j

j.
a

i

b

j
j.j.ii.. k

y
yöyöyö,R

1

2

1 1

βτµβµτ  

 
The normal equation for β is, from equation (4.35), 
 

∑
=

=++
a

i
j.jiij yökönök:

1

βτµβ  

 
and from this we have: 
 

∑
=

−−=
a

i
iijj.j.j.jj. önyökyyöky

1

2 τµβ  

 
therefore, 
 

( ) ∑ ∑
∑

= =

=





















−−−++=
a

i

b

j

j.

a

i
iijj.

j.j.
.ii.. k

y
k

öny

k
yök

k
y

yöyö,R
1 1

2
1

2 τ
µ

τµβµτ  

 
2

. . ( )
1 1 1 1

1ö( , )
a a a a

i i
i i ij j i Treatments adjusted

i i i i

kQ QR y n y Q k SS
k a a

τ µ β τ
λ λ= = = =

    = − = = ≡    
    

∑ ∑ ∑ ∑  
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4.45. An experimenter wishes to compare four treatments in blocks of two runs.  Find a BIBD for this 
experiment with six blocks. 
 

Treatment Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 
1 X X X    
2 X   X X  
3  X  X  X 
4   X  X X 

 
Note that the design is formed by taking all combinations of the 4 treatments 2 at a time.  The parameters of 
the design are λ = 1, a = 4, b = 6, k = 3, and r = 2 
 
 
4.46. An experimenter wishes to compare eight treatments in blocks of four runs.  Find a BIBD with 14 
blocks and λ = 3. 
 
The design has parameters a = 8, b = 14, λ  = 3, r = 2 and k = 4.  It may be generated from a 23 factorial 
design confounded in two blocks of four observations each, with each main effect and interaction 
successively confounded (7 replications) forming the 14 blocks.  The design is discussed by John (1971, 
pg. 222) and Cochran and Cox (1957, pg. 473).  The design follows: 
 
 

Blocks 1=(I) 2=a 3=b 4=ab 5=c 6=ac 7=bc 8=abc 
1 X  X  X  X  
2  X  X  X  X 
3 X  X   X  X 
4  X  X X  X  
5 X X   X X   
6   X X   X X 
7 X X     X X 
8   X X X X   
9 X X X X     
10     X X X X 
11 X   X  X X  
12  X X  X   X 
13 X   X X   X 
14  X X   X X  

 
 
4.47. Perform the interblock analysis for the design in Problem 4.40. 
 
The interblock analysis for Problem 4.33 uses 2ö 0.91σ = and 2ö 2.63βσ = .  A summary of the interblock, 
intrablock and  combined estimates is: 
 

Parameter Intrablock Interblock 
τ1  2.20 -1.80 
τ 2  0.73 0.20 
τ 3  -0.20 -5.80 
τ 4  -0.93 9.20 
τ5  -1.80 -1.80 
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4.48. Perform the interblock analysis for the design in Problem 4.42. 
 

The interblock analysis for Pproblem 4.42 uses 07212 .ö =σ  and 
 

( )
( )

[ ]( )
( )

( )2
1 65.68 21.07 6

19.12
1 7 2

Blocks adj EMS MS b
a rβσ

 − − − = = =
−

. 

 
A summary of the interblock, intrablock, and combined estimates is give below 

 
Parameter Intrablock Interblock Combined 

τ1  -12.43 -11.79 -12.38 
τ 2  -8.57 -4.29 -7.92 
τ 3  2.57 -8.79 1.76 
τ 4  10.71 9.21 10.61 
τ5  13.71 21.21 14.67 
τ 6  -5.14 -22.29 -6.36 
τ 7  -0.86 10.71 -0.03 

 
 
4.49. Verify that a BIBD with the parameters a = 8, r = 8, k = 4, and b = 16 does not exist. 
 

These conditions imply that λ =
−
−

= =
r k

a
( ) ( )1

1
8 3

7
24
7

, which is not an integer, so a balanced design with 

these parameters cannot exist. 
 
 

4.50. Show that the variance of the intra block estimators {τi } is ( )
( )2

21
a

)a(k
λ

σ− . 

 

Note that ( )a
kQˆ i

i λ
τ = , and ∑

=

−=
b

j
j.ij.ii yn

k
yQ

1

1 , and ( ) 












−−−=−= ∑∑

==
.i

b

j
j.ij.i

b

j
j.ij.ii yynykynkykQ

11

1  

 
yi.  contains r observations, and the quantity in the parenthesis is the sum of r(k-1) observations, not 

including treatment i. Therefore,  
 

( ) ( ) ( ) ( ) 2222 11 σσ −+−== krkrQVkkQV ii  
or 

( ) ( ) ( ){ }[ ] ( )
k

krkkr
k

QV i

2
2

2
11111 σσ −

=+−−=  

To find ( )iöV τ , note that: 

( ) ( ) ( ) ( )
( )

2
2

2
22 11 σ

λ
σ

λλ
τ

a
kkr

k
kr

a
kQV

a
köV ii

−
=

−






=






=  

 
However, since ( ) ( )11 −=− kraλ , we have: 
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( ) ( ) 2
2
1 σ

λ
τ

a
aköV i

−
=  

Furthermore, the { }iöτ  are not independent, this is required to show that ( ) 22 σ
λ

ττ
a
kööV ji =−  

 
 
4.51. Extended incomplete block designs.  Occasionally the block size obeys the relationship a < k < 2a.  
An extended incomplete block design consists of a single replicate or each treatment in each block along 
with an incomplete block design with k* = k-a.  In the balanced case, the incomplete block design will have 
parameters k* = k-a, r* = r-b, and λ*.  Write out the statistical analysis.  (Hint:  In the extended incomplete 
block design, we have λ = 2r-b+λ*.) 
 
As an example of an extended incomplete block design, suppose we have a=5 treatments, b=5 blocks and 
k=9.  A design could be found by running all five treatments in each block, plus a block from the balanced 
incomplete block design with k* = k-a=9-5=4 and λ*=3.  The design is: 
 

Block Complete Treatment Incomplete Treatment 
1 1,2,3,4,5 2,3,4,5 
2 1,2,3,4,5 1,2,4,5 
3 1,2,3,4,5 1,3,4,5 
4 1,2,3,4,5 1,2,3,4 
5 1,2,3,4,5 1,2,3,5 

 
Note that r=9, since the augmenting incomplete block design has r*=4, and r= r* + b = 4+5=9, and λ = 2r-
b+λ*=18-5+3=16.  Since some treatments are repeated in each block it is possible to compute an error sum 
of squares between repeat observations.  The difference between this and the residual sum of squares is due 
to interaction.  The analysis of variance table is shown below: 
 

Source SS DF 
Treatments 
(adjusted) ∑ λa

Q
k i

2
 a-1 

Blocks 
N
y

k
y ..j.

22

−∑  b-1 

Interaction Subtraction (a-1)(b-1) 
Error [SS between repeat observations] b(k-a) 

Total ∑∑ −
N
y

y ..
ij

2
2  N-1 

 
 
4.52. Suppose that a single-factor experiment with five levels of the factor has been conducted.  There are 
three replicates and the experiment has been conducted as a complete randomized design.  If the 
experiment had been conducted in blocks, the pure error degrees of freedom would be reduced by (choose 
the correct answer): 
 
 (c) 2 
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4.53. Physics graduate student Laura Van Ertia has conducted a complete randomized design with a single 
factor, hoping to solve the mystery of the unified theory and complete her dissertation.  The results of this 
experiment are summarized in the following ANOVA display: 
 

Source DF SS MS F 

Factor - - 14.18 - 

Error - 37.75 -  

Total 23 108.63   

 
The completed ANOVA is as follows: 
 

Source DF SS MS F P 

Factor 5 70.88 14.18 6.76 0.00104 

Error 18 37.75 2.10   

Total 23 108.63    

 
Answer the following questions about this experiment. 
 
(a) The sum of squares for the factor is 70.88. 
 
(b) The number of degrees of freedom for the single factor in the experiment is 5. 
 
(c) The number of degrees of freedom for the error is 18. 
 
(d) The mean square for error is 2.10. 
 
(e) The value of the test statistic is 6.67. 
 
(f) If the significance level is 0.05, your conclusions are not to reject the null hypothesis.  No. 
 
(g) An upper bound on the P-value for the test statistic is 0.001. 
 
(h) A lower bound on the P-value for the test statistic is 0.0001. 
 
(i) Laura used 6 levels of the factor in this experiment. 
 
(j) Laura replicated this experiment 4 times. 
 
(k) Suppose that Laura had actually conducted this experiment as a random complete block design and the 

sum of squares for the blocks was 12.  Reconstruct the ANOVA display above to reflect this new 
situation.  How much has the blocking reduced the estimate of the experimental error? 

 
Source DF SS MS F P 

Block 3 12.00 4.00   

Factor 5 70.88 14.18 9.91 0.00011 

Error 18 25.75 1.43   

Total 23 108.63    

 
The blocking reduced the SSerror by 12 and the MSerror by 0.67 (32%). 
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4.54. Consider the direct mail marketing experiment in Problem 4.8.  suppose that this experiment has 
been run as a complete randomized design, ignoring potential regional differences, but that exactly the 
same data was obtained.  Reanalyze the experiment under this new assumption.  What difference would 
ignoring the blocking have on the results and conclusions? 
 
The solution for Problem 4.8 used a square root transformation, so the solution below also includes this 
same transformation.  The results below are similar to Problem 4.8 in that the the difference in designs is 
statistically significant; however, the F value changed from 60.46 to only 7.02.  The corresponding P value 
increased from 0.0001 to 0.0145. 
 
 
 Response:   Number of responses Transform: Square root Constant: 0 
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Terms added sequentially (first to last)] 
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Model 60.73 2 30.37 7.02 0.0145 significant 
     A-Design 60.73 2 30.37 7.02 0.0145 
 Pure Error 38.90 9 4.32 
 Cor Total 99.64 11 
 
 The Model F-value of 7.02 implies the model is significant.  There is only 
 a 1.45% chance that a "Model F-Value" this large could occur due to noise. 
 
 Std. Dev. 2.08  R-Squared 0.6095 
 Mean 18.52  Adj R-Squared 0.5228 
 C.V. % 11.23  Pred R-Squared 0.3058 
 PRESS 69.16  Adeq Precision 4.803 
 
 Treatment Means (Adjusted, If Necessary) 
  Estimated  Standard 
  Mean  Error 
  1-1 17.17  1.04 
  2-2 21.69  1.04 
  3-3 16.69  1.04 
 
  Mean  Standard t for H0  
 Treatment Difference DF Error Coeff=0 Prob > |t| 
   1 vs  2 -4.52 1 1.47 -3.07 0.0133 
   1 vs  3 0.48 1 1.47 0.33 0.7525 
   2 vs  3 4.99 1 1.47 3.40 0.0079 
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