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The problem

Problem description

• Mathematical problem:

min
x∈Rp

K

∑
i=1
|aix +bi |,

where ai ’s are known p-dimensional vectors and bi ’s are known scalars,
i = 1, 2, · · · , K . The objective function is convex, but nonsmooth.

• Difficulty: Large scale nonsmooth problems (p – a few hundreds and K –
the order of a million) usually demands long CPU time or requires large
computer memory.

• Purposes: Design algorithms that are reasonably fast and consume
small/moderate amount of memory (the amount that can be found on
most modern personal computers)
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Statical background

Statistical background – regression with
L1-type loss function

• Consider i.i.d data {(xi , yi)}N
i=1 and linear regression model

Yi = β
T Xi + εi ,

where β is a p-dimensional parameter and ε is a random error.

• A few L1-type estimation methods for model parameter β:
• Quantile regression (QR) (Koenker and Bassett, 1982) and Least absolute

deviation (LAD) estimation
• Composite quantile regression (CQR) (Zou and Yuan, 2008)
• Rank estimate with Wilcoxon score (Jaeckel, 1972)
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Statical background

LAD and QR
• Least absolute deviation regression:

β̂LAD = argmin
β∈Rp

N

∑
i=1
|yi −β

T xi |.

• Quantile regression: estimate the regression parameter β and the τ’s
quantile of ε, bτ, by

(β̂QRτ
, b̂τ) = argmin

β,b

N

∑
i=1

ρτ(yi −b−β
T xi),

where ρτ(t) = τt++(1− τ)t− is called the check function. NOTE:
|t|= t++ t− and all algorithms we are going to talk about apply here.

• Dimension of the parameter: p; number of terms to be summed up:
K = N.
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Statical background

CQR

• Composite quantile regression: fix a positive integer M, and estimate β

and the τ1, τ2, · · · ,τM ’s quantile of ε, b1, b2, · · · , bM , by

(β̂QRτ
, b̂1, · · · , b̂M) = argmin

β,b1, ··· ,bM

M

∑
j=1

{
N

∑
i=1

ρτ(yi −bj −β
T xi)

}
.

• Pro: for a large M (say 15), the efficiency of the CQR estimator (β̂CQR) of
β is significantly higher than the QR estimator β̂QR of β for a wide range
of distributions, e.g. normal, t and Weibull.

• Con: increased computational complexity – dimension of the parameter:
p; number of terms to be summed up: K = M ∗N
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Statical background

Rank regression of Jaeckel (1972)
• Rank estimator of β is given by

β̂rank = argmin
β

∑
1≤i<j≤N

|ei −ej |,

where ei = yi −βT xi , i = 1, · · · ,N, is the residual.
• Pros:

• Highly efficient – the asymptotic variance of β̂Rank is equivalent to that of
β̂CQR when number of quantile used (M) in CQR tends to infinity (a limit
that CQR can never reach in practice).

• Robust to outliers in ε – β̂rank has bounded influence in Y space (Chang et
al, 1999 JASA).

• There are high breakdown versions of rank estimator to β which provides
further robustness to both outliers in X and ε and also retains the convexity
of the objective function, e.g. GR by Naranjo and Hettmansperger (1994,
JRSSB) and HBR by Chang et al (1999, JASA)
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Statical background

Rank regression of Jaeckel (1972) (cond’)

• Being an earlier invented than and theoretically superior method to QR,
why rank regression is not as popular as QR/LAD (at least in subject
areas)?

• Con: high computational cost: dimension of the parameter: p; number of
terms to be summed up: K = N ∗ (N−1)/2 = O(N2), if sample size
N = 1500, K is over 1,000,000.
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A survey of existing methods

Golden oldies

• From late 1960’s to mid 1980’s, a lot of algorithms have been proposed.
To name a few famous ones: BR (Barrodale and Roberts, 1973), AFK
(Armstrong, Frome and Kung, 1979), BS (Bloomfield and Steiger, 1980).

• BR (implemented in R quantreg package) has been a golden standard to
be compared with because it is reasonably fast using the standard at that
time and numerically stable. Most famous algorithms at that time have
similar performance to BR.

• For recent development (e.g. extension of BR to constrained
optimization) see Shi and Lukas (2002) and references therein.

• Problem: slow (in today’s standard) for large scale problem. Try using
quantreg with default method “BR” to solve a 1-dimensional optimization
problem with 1,000,000 absolute terms . . .
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A survey of existing methods

Golden oldies (cond’) – Code for the test
example of slow speed

library(quantreg)

beta <- 0.8

x <- rnorm(1000000, 3, 2)

e <- rnorm(1000000, 0, 1)

y <- beta*x + e

rq(y x, method=“br”)
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A survey of existing methods

Modern way – use a decent interior-point
linear programming solver

• “Correct” way to go today – use a parallel inerior-point linear
programming (LP) solver.

• As long as memory (RAM) is big enough, modern interior-point LP
solvers provide

• very accurate result
• very fast convergence rate (probably the fastest way of solving our

optimization problem to a high accuracy level if computer’s memory is big
enough)

• To name a few fastest parallel commercial LP solvers: Xpress, Mosek,
Gurobi, IBM CPLEX
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A survey of existing methods

Modern way (cond’) – LP formulation of
our optimization problem
• Idea: reformulate the nonsmooth problem to a smooth linear optimization

problem with linear constraints, but the cost is the much increase number
of variables (dimension) and lots of constraints.

• One formulation (there are other formulations, e.g. Li 1998):

min
ui

K

∑
i=1

ui

subject to

ui ≥ yi −β
T xi for i = 1, · · · , K

ui ≥−(yi −β
T xi) for i = 1, · · · , K

• Original problem: dimension – p, number of absolute terms – K ; New LP
problem: dimension – K +p, number of constraints – 2K . When K is
1,000,000 and p is 100, LP solvers will use HUGE amount of memory.
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A survey of existing methods

Modern way (cond’) – Code for the test
example of very high memory usage

Warning: If your computer has less than 8GB memory, DON’T try. It will crash
your computer! If you have 16GB memory, try at your OWN risk, and please let
me know your result!

library(quantreg)

beta <- rnorm(100, 0, .8)

x <- matrix(rnorm(1000000*100, 3, 2), 1000000, 100)

e <- rnorm(1000000, 0, 1)

y <- x%*%cbind(beta) + e

rq(y x, method=“fn”)
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A survey of existing methods

Other algorithms

• Subgradient method – slow convergence, no practical stopping rule

• Ellipsoid method – numerical instability for any high dimensional
problems (for p > 10)

• Coordinate descent algorithm

• More . . .
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Proposed algorithm I

Mixed coordinate descent and steepest
descent algorithm

• Coordinate descent algorithm – a popular algorithm for regularized
estimation in regression with convex smooth loss function and
LASSO-type penalty. Wu and Lange (2008) have been promoting it for
L1-type loss function.

• The algorithm:
• Start from an initial point.
• In each iteration step, perform a line search along each coordinate

direction and cycle through all coordinates (cyclic version), or perform one
line search only along the coordinate direction that brings down the
objective value most (greedy version).

• Iterate until algorithm converges.
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Proposed algorithm I

Problems with coordinate descent
• Problems of coordinate descent for nonsmooth objective function:

• May converges to non-optimal kink (no available cures)

• Convergence may be very slow (cures available, e.g. Loshchilov et al.
2011, Li and Acre 2004 for one-dimensional problem)
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Proposed algorithm I

Solving the problem of coordinate decent
• Getting stuck at a non-optimal point frequently happens especially for

high dimensional problems with sparse data points (the surface of the
objective function is very non-smooth).

• One simple idea: if coordinate descent algorithm converges, check for
steepest descent direction, if the point found is not global minimum,
optimize along the steepest descent direction.

• Searching for steepest descent direction in our case is a quadratic
programming problem with simple bounds on variables. And the
computational complexity usually is not high.

• A simple example: a problem with p = 5, K = 10 and minimal objective
function value 0. Pure coordinate descent algorithm obtained wrong
minimal obj. value of 9.7, while mixed coordinate descent and steepest
descent algorithm, with only four additional steepest descent searches,
gives 4×10−15.
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Proposed algorithm II

Modified relaxation method of Camerini,
Fratta and Maffioli ( CFM), 1975
• Idea: At each step of iteration, find a direction that has smaller angle

towards the global minimum than the previous direction.

• Pro: fast convergence (usually faster than coordinate descent and/or
steepest descent)

• Cons:
• Need to know the minimum objective function value (or a good

approximation to it) in advance.
• No formal convergence rule is given in CFM paper, although practical

stopping rule for the algorithm is easy to implement

• Our modification provides:
• better direction search for our particular problem
• good and improved approximation to the minimum objective value at each

iteration
• a formal convergence (to global minimum) rule (to be implemented)
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An numerical example

Numerical experiment

• Set p = 100 and K = 1,000,000 for our optimization problem, and
randomly generate data ten times. For each dataset we try the two
proposed algorithms, BR and Mosek interior-point solver and calculate
the average times.

• Both our algorithms get correct answer for all datasets.
• Algorithm 1 (Mixed CD & SD):

• 330 seconds on average
• memory used < 1GB

• Algorithm 2 (Specialized CFM):
• 37 seconds on average
• memory used < 1GB

• BR: took too long to run, terminated manually
• Mosek interior-point solver: run out of memory (8GB), reset my computer
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Summary

Summary

• When memory is enough, one should use a interior-point solver for high
accuracy and fast speed

• For large scale (especially large number of absolute terms K ) problem,
both proposed algorithms give correct results in reasonable amount of
time and use small amount of memory.

• Algorithm 2 (specialized CFM) in general is faster than algorithm 1 (mixed
cd and sd), but improvements need to be made to find a formal
convergence rule and make better approximation to the minimum
objective value.
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