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A "Very Pleasant Theorem9 

Roger Herz- Fischler 

Roger Herz-Fischler teaches mathematics and culture at 
Carleton University. After teaching a course in mathematics for 
students of architecture he realized that some statements made 
to students about the "golden number" were completely without 
an historical basis. This has led to a "career change" and 
various scholarly articles; e.g., the recent "Golden Numberism 
in France from 1896 to 1927." The book A Mathematical History 
of Division in Extreme and Mean Ratio is being followed by The 
Golden Number: A Philosophical, Historical, Sociological and 
Analytic Study. The sociological aspect will examine the spread 
of the golden number myth in various mathematically literate and 
illiterate circles. 

The independent discovery of a result is common throughout the history of 
mathematics, particularly in geometry. This article is about a simple result con? 

cerning certain right triangles that has been repeatedly rediscovered in a variety of 
contexts and it discusses how the result has been rephrased, extended and 

reproved in some not so simple ways. We will even see how it leads to an 

approximate fold-up paper model of the Great Pyramid of Egypt! 
The basic form of the result?which has been given a name based on its 

description by Kepler?is, in modern notation, the following: 

A "very pleasant theorem." If a right triangle has its sides in geometric ratio 
1: 4G : G, then G = (1 + t/5 )/2. 

An analytic proof is immediate from the Pythagorean theorem which gives: 

1 + G = G2, (1) 

whose positive solution is G = (1 + V5 )/2. The reader will recognize this latter 
number as being the "golden number" and thus should not be surprised to learn 
that among the rediscoverers of the result were various "golden numberists." A 

right triangle having the ratio 1: v^G : G among its sides will be referred to as a 

Kepler triangle. 

Magirus and Kepler (1597). The first written statement of the result appears in 
a letter that the mathematician-astronomer Kepler wrote to his former professor 
Michael Mastlin; see [4, p. 159], Kepler states that part of the result is due to a 
music professor named Magirus, but it is not clear what the latter should be 
credited with. Kepler writes, "I...show my thankfulness to [Magirus] because of 

this, that as by his very pleasant theorem he has pleased me among others with a 
new enthusiasm for geometry... I have changed it into another form such that I 
think I will easily persuade even Magirus himself to think that it is entirely mine." 
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To see how Kepler extended the basic result, we start with a Kepler triangle 
EFD (Figure 1) and then determine point A on the extension of EF by taking AD 

perpendicular to ED. Theorem VI,8 of Euclid's Elements states that when the 

perpendicular DF is constructed the three triangles EFD, EDA and DFA are 
similar and this permits us to make the following statements: 

Figure 1 

1. AF = ED 

Proof. Since the sides of a Kepler triangle EFD are, by definition, proportional, 
ED:DF = DF:FE. But by similar triangles AF: DF = DF: FE and for both 

proportions to hold we must have AF = ED. 

2. AE: AF =AF: FE, i.e., the ratio of the line AE to the larger segment AF is 
the same as the ratio of AF to the smaller segment FE. In the technical language 
of Euclid's Elements VI, def. 3, point F divides AE in extreme and mean ratio; in 
numerical terms the common ratio is G. 

Proof. By similar triangles AE : ED = ED : FE. Substitution of AF for ED (from 
(1)) gives the result. 

These statements, and essentially the same proofs, are what we find in the 1597 

letter, except that Kepler started with the assumption that line AE is divided in 
extreme and mean ratio and showed that the sides of the larger triangle are 

proportional. The relationships among the various sides and segments can be 

expressed in numerical terms by starting with FE = 1 and then using the definition 
of the Kepler triangle and the above results (Figure 2). Note that the relationship 
FEJrAF=AE is the geometric equivalent of (1). The reader can find other 

relationships involving G from the diagram. 

Before turning to the rediscoverers of the theorem it should be noted that 

Kepler's letters were not published until 1857-1871, so that it is hardly possible 
that this was the source of the rediscovery. 
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^A 

Figure 2 

Mascheroni (1797). Mascheroni is known for his Geometry of the Compass 
which deals with geometric constructions involving only a compass with a variable 

opening. A construction of the Kepler triangle is found in Section 180 of the 10th 

part. Mascheroni's method is to suppose that the hypotenuse AE (Figure 3) is the 
diameter and that we have divided AE in extreme and mean ratio at F with AF 

being the larger segment (a problem which Mascheroni had considered earlier). 
Now at E we swing an arc of radius AF which meets the semicircle on diameter 
AE at D. Since triangle ADE is a right triangle and ED =AF we have precisely 
the situation of Figure 1 and of Kepler's result. 

Figure 3 

Wiegand (1847). The Kepler triangle also appeared, but in a partially algebrai- 
cized version, in an 1847 German geometry book written by Wiegand. This 

suggests that the result may have been fairly widely known at the time. 

Rober (1855). This virtually unknown author is in fact one of the co-founders of 

"golden numberism." Rober's aim was to convince the reader, via quantities 
obtained from the Kepler triangle, that the golden number was used to design 
virtually all the Egyptian pyramids except the Great Pyramid. For the Great 

Pyramid Rober states, in accordance with previous authors, that the base to height 
ratio was 8:5. For details of the 8:5 theory, as distinct from a golden number 
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theory, as well as a description of Rober's very involved use of the quantity G, see 

[2, 5]). 
In Figure 4, which is a modification of the diagram in Rober's The Egyptian 

Pyramids, we take AF ? FC = 1 and BF = 1/2. Using BC as a radius, we obtain 

point E on the extension of AF with BE = BC = \/5 /2 and this in turn implies 
that AE = (1 + {S)/2 = G. When we draw the semicircle AD? and the perpen? 
dicular DF, we have the three Kepler triangles as in Figure 1. 

Figure 4 

This explanation of the diagram is not however the development presented by 
Rober who takes the following roundabout route. The dotted-line construction is 

essentially that of Elements 11,11 and from the proof of this result we learn that 
FE is the larger segment when AF is divided in extreme and mean ratio. Theorem 

XIII,5 of the Elements now tells us that the line AE is also divided in extreme and 
mean ratio with AF being the larger segment. Next height DF is taken to be the 
mean proportional between AF and FE and by the converse of VI,8 triangle ADE 
is a right triangle which in turn implies that arc ADE is a semicircle. We are thus 
back to the situation of Figure 1 with three Kepler triangles. 

So far our discussion has involved only plane geometry, but now however the 

story becomes three-dimensional! 

Ballard (1882). Ballard was an English railway engineer who saw the pyramids 
on his way to Australia and this inspired his book, The Solution of the Pyramid 
Problem or, Pyramid Discoveries with a New Theory as to Their Ancient Use [1]. 
Based on various measurements by others, Ballard had concluded that for the 
Great Pyramid the ratio of the slant-height of a triangular face to the half-base was 
34:21. Since this ratio is an approximation to G by means of Fibonacci numbers, 
Ballard, who was well aware of the approximation, is essentially stating that the 
cross-sectional triangle of the Great Pyramid is made up of two Kepler triangles 
(Figure 5). 
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Kepler Triangle 

Figure 5 

Ballard gives a historical justification for his theory by invoking a statement 

supposedly due to the Greek historian Herodotus. This statement, which has a 

very interesting history in its own right (see [3] for details and the summaries in [7] 
and [8]), says that: 

The Great Pyramid was built so that the area of each face has the same 
area as a square whose side equals the height. 

The reader can easily verify (see the above articles) that this statement implies 
that the secant of the base angle of the cross-sectional triangle is G, and this is 

precisely the case for the Kepler triangle (Figure 2). 
Ballard then continues the development of his theory by the construction of the 

"Star Cheops" which "... is the geometric emblem of extreme and mean ratio and 
the symbol of the Egyptian Pyramid Cheops." The Cheops referred to is the 
Pharaoh who built the Great Pyramid. 

Ballard's construction starts with a circle of radius 1, with center at 0, and the 
inscribed pentagram (Figure 6). By using Elements XIII,8 and similar pentagons it 

Figure 6 
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can be shown that OH, the radius of the circumscribed circle of the small 

pentagon, is equal to (1/G)2. 
About this latter circle we circumscribe (Figure 7) a square ABCD. This square, 

which corresponds to the base of the pyramid, has a half-side equal to the radius of 
the circle, i.e. OH = (1/G)2. Now from the four sides of the base ABCD we draw 
the four triangles which represent the faces of the pyramid, finding M as the point 
where OH meets the unit circle. The slant-height of the triangle CMD is the 

length HM=OM-OH- 
findthat HM = (1/G). 

1 - (1/G)2 and if we divide both sides of (1) by G we 

Figure 7 
Star Cheops. 

It should be noted that this last statement is equivalent to saying that HM is 
obtained by dividing the radius OM in extreme and mean ratio. This remark 

simplifies the construction, but Ballard started with the pentagram for symbolic 
reasons. 

We can now obtain a pyramid by folding up the triangular sides of this "Star 

Cheops." If we consider the half cross-sectional triangle OHM of this fold-up 
pyramid then the secant of the base angle is HM/OH = G. Since G, as stated 

above, is also the secant of the base angle of the Kepler triangle, the shape of the 
our folded paper pyramid will be the same as the pyramid obtained from the 

Kepler triangle (Figure 5) and this pyramid in turn has a shape very close to that of 
the Great Pyramid itself. 

Epilogue. A referee kindly drew my attention to the very interesting 1990 article 

[6] which considers the intersection points of the graphs of four pairs of trigono? 
metric and hyperbolic functions. It turns out that \/G is a common value for the 
ordinate in the four cases and the article examines why this is so. 

Consider the equation csc x = tan x. If we think of x as being an angle of a right 
triangle, then we have hypotenuse: opposite = opposite: adjacent, i.e. the sides are 
in a geometric ratio. The Pythagorean theorem shows that the common ratio is \/G 
so that once again we have the Kepler triangle. Thus the problem of the 
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intersection points of the graphs of trigonometric functions has led to still another 

approach to our result. Furthermore in the introduction to the article the authors 
refer to the approach which uses the Kepler triangle as being a "pleasant 
explanation"! 
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How to Dissect an Ankle 

Nora said. "But this is just a theory, isn't it?" 
"Call it any name you like. It's good enough for me. 
"But I thought everybody was supposed to be considered innocent until 

they were proved guilty and if there was any reasonable doubt, they?" 

"When the murders are committed by mathematicians," I said, "you 
can solve them by mathematics. Most of them aren't and this one wasn't. I 
don't want to go against your idea of what's right and wrong, but when I 

say he probably dissected the body so he could carry it into town in bags 
I'm only saying what seems most probable." 

Dashiell Hammett, The Thin Man, Vintage Books, NY, 1933, p. 195. 
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