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 Durer's Paradox or Why an Ellipse Is Not
 Egg-Shaped

 ROGER HERZ-FISCHLER
 Carleton University,

 Ottawa, Ontario, Canada

 "The ellipse I will call an egg-curve because it is virtually equal to an egg"
 -A. Diurer

 The drawing of the cone and the ellipse is taken from the 1525 work Treatise on
 Mensuration with the Compass and Ruler in Lines, Planes, and Whole Bodies by the

 German artist and mathematician Albrecht Diirer (1471-1528). Two things are likely
 to attract the attention of the viewer: namely, the mass of lines and arcs and-to use
 Diurer's own expression-the "egg-curve." The purpose of this article is threefold: to

 describe Diurer's method, to explain why the use of the method might lead one to
 believe that the ellipse is egg-shaped, and to show how the analytic version of Diirer's
 method can be used to derive the Cartesian form of the ellipse. I have also included
 some historical material and suggestions for further reading in a separate section at
 the end of the article.

 The method used by Diirer is essentially equivalent to what is now called descrip-

 tive geometry. At present it is only employed to obtain graphical solutions of
 complicated geometrical problems such as the intersection of surfaces, and as far as I
 know this branch of mathematics is now taught only in engineering drawing courses.
 However the French geometer Gaspard Monge (1746-1818), whose Geiome'trie de-
 scriptive provided the systematic development of the subject, wrote [11, p. 1]: "[One
 of the aims of descriptive geometry] is to give means of recognizing, based on an exact
 description, the forms of bodies and to deduce all the truths which are implied by
 their form and their respective positions."

 Descriptive geometry is concerned with the representation of bodies and surfaces in

 space by means of two-dimensional orthogonal projections. Consider for example
 FIGURE 1 in which a point P is shown as being a units in front of a vertical plane and

 b units above a horizontal plane. If we project the point P onto these planes by means
 of perpendicular lines then the two projections pv and pH are both determined. To
 avoid constant awkward repetition and notation, a point and its projections will be
 referred to by a single letter without super and subscripts. If the horizontal plane is
 now folded back about the "folding line"- the line of intersection of the two planes
 -until the horizontal plane is also in a vertical plane, then we will have the situation
 of FIGURE 2. Here the point P is represented by two two-dimensional drawings which
 are such that the two projections lie on a line perpendicular to the folding line.
 Furthermore given the two-dimensional drawings, which are usually referred to as the
 front and top views, then the position in space-relative to the two planes-of the
 point P is completely determined. The folding line is not really necessary and if we
 are only interested in the relative position of various points with respect to one
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 another then any convenient line can be used. This is the case in Diirer's drawing
 where the centre line of the circle is used as the reference line in the top view.

 In the simple case just discussed we are given the distance of the pOilt P from the
 planes, but in general life is not so simple. Sometimes, for example when one is
 dealing with a complicated intersection of two three-dimensional objects, the process
 of obtaining the two views is quite involved. Fortunately, in the case that interests us
 we are only dealing with a plane and a cone.

 Thus suppose (FIGURE 3) that we have a cone that has been cut bDy a horizontal~
 plane. Then in the front view the cone will appear as a triangle and the intersection of
 the cutting plane with the cone will appear as a straight line. On the other hand in the
 top view the intersection of the cutting plane and the cone will be a circle of some
 radius r. Let 0 be the centre of the circle and consider the horizontal centre line
 MON. Since the points M and N are at the extreme light and left respectively of the
 circle the same will be true of the front view of the centre line. Thus the line in the
 front view can also be thought of as representing the centre line of the circle, and so
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 we also label this line as MN. Because the two projections of M lie above one another,
 they will both be at the same distance r from the centreline of the cone. This in turn

 means that in order to draw the circle in the top view we need only measure the
 distance r in the front view and then use this as the radius of a circle, about 0, in the
 top view. If we have an arbitrary point P on the centre line MON then this will
 determine the points P' and P" on the circumference and all three points will
 coincide in the front view.

 Now let us cut the cone with an oblique plane (FIGURE 4). The intersection of the
 plane with the cone determines a curve which, because of previous knowledge, will be
 referred to as the ellipse. The front view of the plane is once again a straight line and
 by the symmetry of the cone this line FG also corresponds to the major axis of the
 ellipse. Because the cutting plane is at an angle with the horizontal the ellipse will
 appear to be distorted when looked at from directly above; it is only when we look at
 right angles to the cutting plane (FIGURE 4) that the ellipse appears in its true shape.
 It is for this reason that the top and front views must be used to obtain a new
 (auxiliary) view, such as the one that appears in Diirer's drawing, which shows the
 true shape of the ellipse.

 In order to find points belonging to the top view of the ellipse we pass a horizontal
 cutting plane through the cone which intersects the given oblique plane at an
 arbitrary height (FIGURE 4). This brings us back to the situation of FIGURE 3 and given
 the radius-or equivalently the location of a point on the major axis FG-the circle
 determined by the horizontal plane can be drawn. Once again we designate the
 centre line of this circle determined by the horizontal plane as MN. But this circle is
 located on the surface of the cone, as is the ellipse, and so the circle and ellipse
 intersect in two points P' and P". In the front view we will see these two points of
 intersection of the ellipse and the cone as the intersection of lines FG and MN. This
 observation in turn determines the location of P' and P" in the top view, for these
 points must lie on both the circle and the vertical line drawn down from P', P" in the
 front view. In particular the width (2w) of the ellipse at the point P on the major axis
 of the ellipse which corresponds to the points P' and P" is now determined.

 By repeating the above process we can find the width of the ellipse for as many
 points on the major axis as we wish. This process is illustrated in FIGURE 5 for two
 points 1 and 2 which are equidistant from the centre 0 of the centreline FG. In
 Diirer's drawing the major axis FG of the ellipse has been divided into twelve equal
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 parts by means of the points labeled 1,...,11. A horizontal line drawn through each
 of these points in the front view corresponds to a horizontal slicing circle and these
 circles are then drawn in the top view as shown in Diirer's diagram. The downward
 projection of each of the eleven points on the corresponding circle now gives the
 width of the ellipse at that point.

 Note now that even though points 1 and 11 are symmetrically located with respect
 to the centreline the corresponding constructions are not symmetric, for point 1
 corresponds to the smallest of the eleven circles whereas point 11 corresponds to the
 largest. Thus it is not at all obvious from this approach that the ellipse is symmetric
 rather than egg-shaped, with the wider part corresponding to point 11. If one did not
 know the analytic form of an ellipse then it might seem more reasonable, using
 Diurer's approach to conclude that the ellipse is indeed egg-shaped. This not unreason-
 able conclusion is what I refer to in the title as Diirer's paradox.

 Despite the apparent paradox we do know that the ellipse is not egg-shaped, and
 the key to understanding why is the fact that the centreline of the cone does not pass
 through the centre of the ellipse. With reference to FIGURE 5 let 0 be the centre of
 the line FG and let 1 and 2 be two points on FOG which are equidistant from 0. Let
 r1 and r2 be the radii of the corresponding circles C1 and C2 and s1 and s2 the
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 horizontal distances from the centrefine of the cone. It is true that r1 < r2, but because
 1 and 2 are equidistant from 0 we also have that s1 < s2, i.e., the point 1 is closer to

 the centre of the smaller circle C1 than point 2 is to the centre of the larger circle C2.

 The reason the ellipse is not egg-shaped is that the combination of shorter distance to

 the centre and smaller radius combine to make wl = w2. Of course I-Diurer does not
 go through any reasoning of this nature-have flippantly stated that wl = w2 because
 I know that this is the way things work out for an ellipse. What is needed is a proof of
 this fact.

 Thus what I will now do is translate Diurer's construction, which involves a finite
 number of points, into an analytic argument and obtain expressions for w1 and w2
 when points 1 and 2 are symmetrically located with respect to the centre 0. It will

 then be shown that not only are the widths equal, but also that we can obtain the

 usual Cartesian equation of the ellipse from the expression for the width. Furthermore

 the relationships between the constants and the angles of the cone and cutting plane,
 as well as some other results, will fall out of the derivation. While the development is
 in principle straightforward, a nonjudicious choice of parameters can lead to some
 very messy algebra. After some trials the following seems to me to be the simplest

 approach.
 We start with a cone whose cone angle is 6 and then pass a cutting plane which

 makes an angle a > 6 with the centreline of the cone. Let FG be the major axis of the
 ellipse with centre 0 and length 2a. We take arbitrary points 1 and 2 which are at a
 distance x from 0 and designate by s and t the horizontal and vertical displacements
 from 0 (FIGURE 6a). Thus:

 s = x sina; t = x cos a. (1)

 If d* is the horizontal displacement of 0 from the centreline, then the points 1 and
 2 are respectively at a horizontal distance s - d* and s + d* from the centreline. If

 r*, rl, r2 are the radii corresponding to points 0, 1, 2, then as indicated at the bottom
 of FIGURE 6a we have the relationships:

 rl = r*-t tanO; r2= r* + t tanO. (2)

 Now looking at the top view (FIGURE 6b) and considering the circles of radii r1 and

 r2, we see that w1 and w2-the respective half-widths of the ellipse corresponding to
 points 1 and 2-satisfy:

 w 2 = r 2- (s - d*)2 = (r* - t tan 0)2 _ (s - d*)2 (3)

 w2 = r22- (s+d*)2 = (r* +-ttan0)2 - (s + d*)2. (4)

 What we need in order to continue are expressions involving r* and d*. These may
 be obtained by considering the triangles OFH and OJG (FIGURE 7) and then applying
 the law of sines to each. This gives the two relationships:

 r*+d*=(a/cos0) sin(a +6) (5)

 r* - d* = (a/cos >) sin(a< - ). (6)

 Adding and subtracting and applying trigonometric reduction formulae we obtain
 after simplification:

 r* =a sinia (7)
 d* = a cos a .tan 6. (8)
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 To obtain the equation of the ellipse-recall that we know by symmetry of the cone
 that the ellipse is symmetric about the major axis-we substitute (7) and (8) in (3)
 and (4) to obtain:

 wT =(asina-xcosatan6)2_(Xsina-acosatan6)2 (9)

 = ( a*sin +xcostan)2_(Xsin+a * cos tan )2. (10)
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 Since the expressions in (9) and (10) only differ by the signs inside the parentheses
 and since the inner terms in the expansions of the squared terms will cancel in each
 case, we have immediately-without any calculations-that w1 = w2, i.e., that the
 ellipse is indeed symmetric.

 If we designate the common width at a distance x along the major axis by y and

 simplify we obtain:

 y2 = (a2 _ x2)[sin2a - cos2a * tan 2] or (i1)

 y 2/b2 + x 2/a 2 = 1 where (12)

 b2= a2[sin2a - cos2 a. tan20] = a2[1 - (cos a/cos 6)2]. (13)

 If the eccentricity is defined by e = cos a/cos 0, then (13) is just the usual
 relationship between the semi-axes of an ellipse so that (12) does indeed agree with
 the standard Cartesian equation of the ellipse. Here the eccentricity can be thought of
 directly as a measure of the distortion of the circle (corresponding to a = 900) due to
 the tilting of the slicing plane.

 There is some more information that we can easily obtain from the above develop-
 ment. As an immediate consequence of (7) and (8) we have that if we draw the
 perpendicular FE in triangle OFH (FIGURE 7) then:

 OE=r*; EH=d* (14)

 and further:

 r*Id*= tan a/tan 6. (15)

 I was unable to obtain either (14) or (15) by more direct trigonometric or geometric
 means.
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 If K is the intersection of the centre line of the cone with the axis FG then by
 similar triangles we obtain:

 OK/a = OL/OE = d*/r* = tan 0/tan a. (16)

 This latter relationship incidentally implies that the right focal point is to the right

 of point K, i.e., the centreline of the cone passes strictly between the centre of the
 ellipse and the "upper" focal point, for if c = ae = a(cos a/cos 6) is the focal
 distance, then (16) implies that c/OK = sin a/sin 0 > 1. This relationship between c

 and OK can also be obtained by drawing the line OM-whose length turns out to be

 equal to c-and then applying the law of sines to both triangles OMG and OKM.

 Finally note that Diurer also constructed the parabola ("bum-curve") and the

 hyperbola ("fork curve"; the drawing is for the special case where the cutting plane is

 vertical) and the reader is invited to make the drawings-before looking at [5] -and

 to obtain the Cartesian equations for these conic sections.

 Historical Notes and Further Reading

 The diagram was taken from the first edition of [5] which has been reprinted twice in
 recent years, once with English translation and commentary. Just before the drawing
 (number 34 of Book I; this is on page 94 of the English edition) Diurer explains how
 the construction proceeds, but unfortunately he gives no historical information as to
 the origin of the method. He merely states at the beginning that the ancients, i.e., the
 Greeks, showed that three different curves are obtained when a cone is cut by
 different planes. Diurer then informs the reader that the learned names are " Elipsis,"
 "Parabola" and " Hiperbole," but that he does not know the German names. He says,
 "We want to give them names which in themselves will serve for identification
 purposes." As Diirer states in the quotation given at the beginning of the article he
 calls the ellipse an egg-curve [eyer lini = eierlinie] because the ellipse is virtually

 [schyer = schier] equal to an egg.
 As indicated by Diirer's remark about "the ancients" he was acquainted with the

 work of the Greek geometers. That he was well versed in the geometry of Euclid and
 others is evident from the various constructions throughout the book. There also exists

 other evidence relating to Diurer's mathematical studies and knowledge. The mathe-

 matical facet of Diirer's life is generally not known, even to people who are
 acquainted with his engraving "Melancolia" (reproduced in Boyer [1, p. 325]) which
 shows a magic square and a polyhedron. While a rarity in our day, many Renaissance
 artists had an advanced knowledge of mathematics. Another example of a great artist
 with a knowledge of mathematics is the Italian artist Piero de la Francesca (c. 1415 to
 1492) who wrote several interesting treatises on perspective and mathematics (see [9,
 Section 31, C]). Staigmiuller [16, p. 3] wrote that the lack of knowledge of Diirer's
 mathematical work among art historians was surprising in view of the emphasis that
 Diirer himself put on it and that when he had laid down his brush he wrote his
 theoretical works in order to pass on his knowledge. ""Indeed he lived in the hope that
 through these works, even more than through his eternal creations with the brush, he
 would lay the foundation of the 'German art' because he regarded the lack of a

 theoretical, particularly mathematical, knowledge in his fellow artists as the main
 hinderance to a prosperous development of the arts in the fatherland."

 On the life and work of Diirer, see [17, p. 35]; [18]; [19]; [10]; [3, p. 109]; [4, p. 61];
 [20, p. 62]. The art of Diurer is discussed by Panofsky [12] who devotes his chapter 8
 to Diirer as a theorist of art.
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 Of particular historical interest to us are Diirer's method of construction and the

 shape of his ellipse and I will briefly indicate what is known.
 The history of the study of the conic sections in the Middle Ages and the

 Renaissance is examined in great detail by Clagett [2]. He suspects [p. 266] that Diurer
 was influenced by the 15th-century mathematician Regiomantus, but not by Diurer's

 contemporary Johann Werner who had published a book on the conics in 1522.
 Regarding Diirer's technique Clagett writes: "The method... has no counterpart in
 the medieval traditions of conic sections, nor indeed in the revived Apollonian

 tradition that was soon to follow."
 The egg-shaped ellipse has been commented upon by several writers. Staigmiuller

 [16, p. 16] believed, based on the drawing and the name egg-curve that he gave it,

 that Durer thought that the ellipse only had one axis of symmetry and that it was

 wider at the end that was at the bottom of the cone. Steck [17, p. 35] also commented

 on this question and gave references to other authors (Doehlmann and Gunther), but
 none of these has any precise information to give on this question. Hofmann [10, p.
 119] mentions other authors who have an egg-shaped ellipse, but these are all in works

 published after Durer except for Witelo (13th century; see [2, Chapter 3]). I checked
 [20], but did not find any sign of an egg-shaped ellipse. Typically Book 7, proposition

 47 shows a cone and a crudely drawn ellipse in perspective. Coolidge f3] merely states
 "It is fair to state that Diirer's ellipse looks rather egg-shaped."

 While reading Pottage's [L5I treasure chest of geometrical and historical informa-
 tion my attention was drawn to Pedoe [14]. Pedoe seems to suggest that the egg shape
 can be accounted for on the basis of errors in the method of reproducing the drawing.
 He points out that, in terms of FIGURE 3 of this article, that (pp",)2 = (PN)(PM)
 (because PP" is the altitude of right triangle NP"M). He then says, without giving
 any further details, that the equations of the conic sections follow from Diirer's
 method if one uses a non-specified theorem on similar triangles. This method, says
 Pedoe, is the method of Apollonius [see 22, p. 288 ff.]. Thus in view of Diurer's
 acquaintance with the ancients, Pedoe suggests that Diirer extracted his practical

 method for constructing the conic sections from the work of Apollonius.
 The above survey suggests that we essentially do not know anything precise about

 the origin of Diirer's technique. It also seems to me that we must presume that Diurer

 thought that the ellipse was indeed egg-shaped. Whether this was for theoretical
 reasons or because of his drawing one cannot say. As regards the latter possibility I
 invite the reader to apply straightedge and dividers to Diurer's drawing and to note
 certain inaccuracies, particularly in the vertical projections. This seems very strange in

 the work of one of the master engravers of all time.
 For descriptions and discussions of Monge's work see Taton [20, 21]. Monge is

 responsible for systematizing and advancing earlier work involving graphical tech-
 niques and particularly in putting them on a sound mathematical basis. Taton [21]
 writes: "Monge viewed descriptive geometry as a powerful tool for discovery and
 demonstration in various branches of pure and infinitesimal geometry. His persuasive
 example rehabilitated the study and use of pure geometry, which had been partially
 abandoned because of the success of Cartesian geometry."

 I have recently advocated ([7], [8]) a computer oriented, algorithmic approach to

 the teaching of certain types of three-dimensional shape, form and space problems,
 which is based in part on the descriptive geometry approach-although with the aim

 of obtaining a numerical answer and not a drawing-and which in a sense follows the
 spirit advocated by Monge. The methods of descriptive geometry-more or less
 explained-and in particular the construction of the ellipse can be found in various
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 "technical drawing" or "descriptive geometry" books. See for example [13, chapter
 21] and [6, section 337].
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