
The Programs for Navigation on the Great Plane
Introduction

These programs are written in Octave, which inmy opinion is the best all-around pro-
gram for doing mathematical computations. Octave is open-source and available as
a free installation on almost all platforms; see octave.org for more information. Most
Octave commands and functions -- and this includes those used in the accompanying
programs -- are identical with those of the commercial Matlab©. The one exception is
that where Octave ends if-loops with endif -- and similarly for other types of loops --
Matlab always uses end. Thus to use these programs in Matlab simply change endif
to end, etc.

Those unfamiliar with Octave/Matlab can download my A Guide to Matlab and An
Introduction to Octave, that I wrote for my students, at my mathematics web site:
https: //people.math.carleton.ca/ rhfischl/

The programs described below use the powerful Octave tools for handling data stored
in vectors and matrices and in particular conditional vectors. These are discussed in
detail in: Sections II.5 (“Matrix Column Operations”) and II.8 (Logical Operators).

Input to the Programs

Perhaps you know the coordinates in the degrees-minutes-seconds format for Edin-
burgh and Vancouver and you need to convert this information to the decimal degrees
format via the [dms2deg.m] program. After running the latter program, type the fol-
lowing at the Octave prompt:

save edinburgh_vancouver_values.m

The data will then be available via the command:
load edinburgh_vancouver.m

The Output of the Programs

1. As described in connection with the program descriptions, some of the main pro-
grams automatically save certain variables in Octave's sixteen digit format (this
can bemodified; see help save). For example the program [great circle.m] out-
puts to [spherical results 01.m] and [spherical results 02.m]. These should
be renamed to match the cities, e.g. [edinburgh vancouver results 01.m] and
[edinburgh vancouver results 02.m] so that they will not be overwritten and
will remain available for other computations

2. Because the Octave high precision format can be difficult to read and edit it is
suggested that you open a diary:

% a first diary for the Edinburgh -- Vancouver computations
diary edinburgh_vancouver_01.dia
% perform the computations

https:hskip 3.0pt//octave.org/
https:hskip 3.0pt//people.math.carleton.ca/~rhfischl/


diary off % to toggle the diary

Note that in order to facilitate reading the display on the computer screen and
in the diary the command format bank is invoked in the programs. This dis-
plays the answer to two decimal places. For other display possibiliites, type help
format.

Several of the programs were written while developing the package. In some cases
part of their code has been incorporated into other programs. For the purposes of
testing, I introduced the Octave pause command. as well as other commands. I have
now commented them out via the percentage symbol: %. Remove the % if you want
to follow the intermediate steps.

Main Programs

1. [great circle.m]: This is the main programwhose input variables are two points
P1 and P2 . In addition to the computations described in the article it calls other
programs, in particular [bearing.m] and [decision.m] and uses them to generate
the various results. It saves the results, in Octave's precision format, in [spher-
ical results 01.m] and [spherical results 02.m]. It automatically prints the
graph of the equation of the great circle, i.e. ϕ in terms of θ.

2. [bearing.m]: Calculates the initial bearing when going from point P1 to point P2.
To find the bearing starting from P2, simply reverse the roles of the points in the
function call.

3. [decision.m] Decides which of the possible bearings at p1 and p2 are the correct
ones.

4. [circle path.m] The function which calculates ϕ in terms of θ.

5. [closest point.m]: The input is a point p3 outside the path. The program finds
the point on the path that is closest to the p3, and determines the distance and
bearing from p3. It saves the results, in Octave's precision format, in [coordi-
nates+distance closest point.m]

6. [bearing vector.m]: Calculates the bearing at every degree (this can bemodified)
on the path between a starting point P1 and a destination point P2. It saves the re-
sults in [bearing vector results.m] and automatically prints the graph of bear-
ing vs. θ.

7. [distance vector.m]: Calculates the distance at every degree (this can bemodified)
from a starting point P1 on the path between P1 and a destination point P2. It
saves the results in [distance vector results.m] and automatically prints the
graph of bearing vs. θ.



8. [latitude crossing.m]: Calculates, to any desired degree of accuracy, where the
great cirlcle crosses a given latitude.

Angle Conversion Programs

N.B. To avoid having to convert back and forth between radians and degrees the
programs employ the trigonometric functions (ending with a “d”) which use the
degree format, e.g. sind(30), asind(.5).

9. [dms2deg.m]: Converts degrees, minutes, seconds to decimal degrees. Coordi-
nates must be in the decimal degree format in the main programs.

10. [deg2dms.m]: Converts decimal degrees to degrees, minutes, seconds.

11. [radians2dms.m]: Converts radians to degrees, minutes, seconds.

12. [convert spherical2cart.m]: Converts spherical coordinates to Cartesian coordi-
nates.

13. [convert cart2spherical.m]: Converts Cartesian coordinates to spherical coordi-
nates.

Auxiliary Programs

14. [dot.m]: Octave function for the dot product.

15. [cross.m]: Octave function for the cross product.

16. [angle vectors.m]: Finds the angle between two vectors, given in either two or
three-dimensions.

17. [circle dist.m]: Computes the great circle distance between two points P1 and
P2.

18. [integer part.m]: Removes the decimal part of a number to produce an integer.

19. [fract.m, frac.m]: Finds the absolute value of the fractional part of the number.

20. [magn.m]: Calculates the magnitude of 1, 2 and 3-dimensional real-valued vec-
tors.

21. [sqrt.m]: Finds the square root of a real number.


