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HOW TO USE THIS GUIDE
                                
Before turning the page to the table of contents you should
consider the following options:

1.  You want to see immediately how MATLAB will solve equations
   or do eigenvalue problems:
      
      Type matlab at the system prompt.
      Turn to sections III.1 and/or III.2 and type in the
      examples.

2.  You are a first time user and you want to have a good idea of
   how MATLAB can do straightforward matrix type calculations:
      
      Do the sample MATLAB session in section I.1 (10 - 15
      minutes).
      Refer to the table in section II.3 for the MATLAB
      operations of interest to you.
      Turn to sections III.1, III.2, III.3 for sample sessions
      dealing with equations, eigenvalues and matrix models.

3.  You want to learn more about MATLAB
      
      At the beginning of each section there is a summary
      together with a quick reference for the commands. The
      summary is followed by a more detailed explanation of the
      commands, together with illustrative examples and programs.
      
      Read sections I.2, I.3, II.1, II.2.
      Read sections I.4, I.5, II.4, II.5.
      Read sections II.7, II.8.

4.  You are mainly interested in graphing.
      
      The section on the graphing of vectors and matrices (II.6)
      has been made as independent as possible of the rest of the
      guide.
      Graphing of user defined functions (section II.7) requires
      a knowledge of sections I.3 and II.1.



INTRODUCTION

"Qu'on ne dise pas que je n'ai rien dit de nouveau: La disposition des matières est
nouvelle."  - Pascal, Pensées, number 22 (Edition L. Brunschvieg, Hachette, 1950, 
p. 30)

MATLAB is a program which is especially designed for matrix type operations. The 
following examples illustrate, without any explanations for the present, some of 
the range of computations that MATLAB was designed to do.

Pocket type calculator for linear algebra
   
We enter the matrix A:

>> A = [.2 .6;.4 .3]

and find the inverse using the MATLAB function inv(  ):

>> A_inv = inv( A )

   -1.6667    3.3333
    2.2222   -1.1111

Then we check using multiplication:

>> A_inv * A

     1     0
     0     1

Advanced calculations

For A as above we find, using the MATLAB function eig( ), the eigenvalues and 
store them in a diagonal matrix EIG_VAL. At the same time we find the 
corresponding eigenvectors and store them as the columns of a matrix EIG_VEC:

>> [EIG_VEC , EIG_VAL] = eig( A )

EIG_VEC =

   -0.8048   -0.7418
    0.5935   -0.6706

EIG_VAL =

   -0.2424         0
         0    0.7424



Next, we pull out the first column of EIG_VEC so as to obtain the eigenvector 
ready for further computations:

>> eigvec1 = EIG_VEC( : , 1 )

   -0.8048
    0.5935

Programs

At the next level we can program MATLAB to do a sequence of calculations and/or 
determine when certain conditions are met. If for example we want to determine 
the first power of P for which all the elements are less than .1, we need only write 
the following:

P = [.2 .7; .4 .3]
n = 1;

while       max(max(P^n)) > .1
                 n = n + 1;
end

disp('first index when power <= .1 : ') , disp(n)
disp(P^n)

The output of this program is:

first index when power <= .1 : 

     8

    0.0630    0.0916
    0.0523    0.0761

Plotting involving vectors and matrices. 

MATLAB makes the plotting of vectors and matrices of values against vectors of 
domain or index values particularly simple. This combined with the various built-in
functions and the possibility of programming makes MATLAB very useful in 
connection with the visual display of matrix calculations.

An example of this type will be discussed in section II.6 and involves the 
calculation and plotting of the eigenvalues of a matrix. The back cover shows a 
typical output.

Another type of application involves the evolution in time of a system described 
by means of a matrix model. Examples of matrix models are given in section III.3. 



The cover shows a typical outcome of calculations involving an "initial vector" 
multiplied by powers of a 3#x 3 "stochastic matrix". Each of the lines represents 
the values associated with each of 3 states as time evolves. The values were 
stored in a matrix M and the graph was produced by the simple command:

>> plot( index , M )
----

The purpose of this guide is to show the reader how to use MATLAB for the above 
and other purposes. It is called a guide rather than a manual because of the way 
it has been organized. The organization is by activity rather than by commands. 
For quick reference these activities, as well as the associated commands, are 
listed at the top of each section in which they are discussed. Then the sections 
continue with a discussion of the commands and examples which illustrate the 
use of the command with real numbers. References are made to later examples 
where the function is used again. I have deliberately avoided the use of arcane 
symbols which, according to my experience with classes, serve mainly to confuse 
and frustrate users.  

My philosophy while writing this guide has been the following:

a. Only those functions and variations which have been found to be most useful 
should be included; too many functions and too many variations make for 
confusion and abandon, especially for first time users. 

b. Informal suggestions should be made to make life simpler and to point out 
common errors.

The guide starts off with a sample MATLAB session in Section I.1 so that the first 
time user can immediately start to do calculations. All the common MATLAB 
operations and functions are discussed and illustrated in Chapter II, which has 
been split into eight subsections for quick reference.

Once the user is ready for more sophisticated material, they can consult sections 
I.2 (the five basic MATLAB symbols) and I.3 (simple loops and functions). With 
these two sections, the user is ready for advanced manipulations. Sections I.4 
(advanced importing and exporting) and I.5 (formatting the output) can be read 
when needed.

Three special sections at the end give more detailed and advanced examples 
dealing with the solution of equations, eigenvalue problems, and matrix power 
models.

Overall, MATLAB produces quick solutions to straightforward matrix problems, via 
simple transparent commands. For more complicated problems, MATLAB 
programs tend to be very concise and fairly easy to write (see e.g. the program 
for the spectral decomposition of a matrix in section III.8). For plotting graphs 
based on vectors MATLAB is, in my opinion, a sheer delight (see sections II.6 and 



III.3) with the combination of flexibility, simplicity and ease of use being 
unmatched by any other software package. As far as accuracy is concerned, the 
reader is invited to look at example 5 of section III.1 where the solution of 1000 
non-homogeneous equations in 1000 unknowns is discussed.

This book contains shortened versions of various programs that I have written for 
my classes. Complete programs can be obtained free of charge by sending an 
electronic-mail message to me at rhfischl@mathstat.carleton.ca  .

EDITORIAL CONVENTIONS

MATLAB functions are given in boldface type, at the principal points of discussion 
e.g. diary calcul1.dia or inv(A). 

System commands e.g. RETURN are given in uppercase letters.

MATLAB programs that I have written are printed in courier type. The numbering 
starts again in each section, and is referred to by section, e.g program 1 of section
III.1. As mentioned above, the programs used to produce the actual output have 
been printed here in shortened form so as not to obscure the major features.

MATLAB output is also printed in courier type. Sometimes, especially in the earlier 
sections, my comments have been interspersed with the output so as to provide a
running commentary on what is happening; these are printed in Helvetica as is 
the main text. Sometimes, italics have been used in the output for clarity. At other
times, the comments have been put in the programs or added to the MATLAB 
commands using the MATLAB command  % . 

The output is that produced by MATLAB version 4.0a (dated December 11, 1992) 
as installed on the Carleton University UNIX machine called "superior". Various 
redundant or blank lines have been edited out and spacing has sometimes been 
changed. When the output involves complex numbers, I have often put braces 
{###} around them for emphasis.

Example numbering starts again in each section, and is referred to by section, e.g 
example 1 of section I.2.

I find that it is good practice to indicate vectors and scalars by lower case letters, 
e.g. "a" or "vect_1" and matrices that are not vectors by upper case letters, e.g. 
"A" or "STORE" and I have employed this device here.

Another good practice is to use the extensions *.dia and *.gra, so as to easily 
locate diary and graph files. This practice has been followed here.

TECHNICAL NOTES

MATLAB has implementations on various systems, but any differences are related 
to how the system works rather than the MATLAB program itself. An "*.m" file 



written in ASCII format for one system will work on another system. The greatest 
difference between systems will involve the printing out of graphs; see item 3 
below.

Most of the basic commands in MATLAB have stabilized, but since MATLAB is 
being constantly refined, some of the commands have been changed. If you 
created an "*.m" file on one system and then transferred it to another only to find 
that it no longer works, it is probably due to a change in syntax. For example older
implementations used the command eye(A) to create an identity matrix of the 
same size as the square matrix A. Newer versions however require the command 
eye( size(A) ); see Section II.2. Some of these changes have been noted in the 
text, but it is possible that MATLAB will respond to a command with an error 
message on the particular system that you are using.  You should then use the 
command help axis etc. to find what the proper convention is. For some 
applications, in particular in connection with plotting and printing, the number of 
options is very large. I have only listed the most common and most useful options,
but the others may be determined by typing help plot, help axis, help title, help 
print.
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SECTION I.1.  BASICS 

CHAPTER I: RUNNING OCTAVE/MATLAB 

SECTION I.1.  BASICS 

SUMMARY 

If this is your first session with OCTAVE/MATLAB,  go through the following 
OCTAVE/MATLAB session and then do another session with a few of the functions 
in section II.3. 

 i.  To start OCTAVE/MATLAB. 

 Type OCTAVE/MATLAB. at the comand line.

 ii.  To quit OCTAVE/MATLAB. 

  Type quit. 

 iii. To save your work in a diary file calcul1.dia. 

Open a "diary" using the diary command: diary calcul1a.dia. (the extension .dia 
helps you identify your diary files) 

To toggle the diary:  diary off, diary on. 

To end the diary session: diary off. 

      A VERY STRONG SUGGESTION 

In principle, do everything without a diary. In practice however, especially when 
you are learning or when you run a program more than once, or if you run several 
programs, you are going to spend a lot of frustrating time figuring out what went 
wrong, what you want to change etc. Diaries permit you to direct the output of 
different trials or programs to different files. Those files that you want to retain 
will be small and easily edited. 

Suppose that you have a functions tele1.m and tele2.m that you wrote to analyse 
a telephone system. You want to run them, or debug them, for different sets of 
values. An efficient way to keep track of what you doing is to create different 
diaries for different trials and lable them: tele1a.dia, tele1b.dia ..., This way you 
when you look at your files, you will immediately see that you are dealing with the
first, second ... diaries for functions tele1.m and tele2.m. You can check these 
diaries in the middle of a session by using the ! command as in part v. below. 



SECTION I.1.  BASICS 

 iv.  Editing in the middle of a session. 

Use up arrow, down arrow, delete/backspace, or ENTER commands on the   
keyboard. 

[Note: These commands are very useful as they help avoid the necessity of 
retyping an entire line. These commands are also valid in window versions.] 

 v.  Returning to the system. 

Use  !  followed by commands such as DIR, TYPE, LS or by giving the name of a 
text editor.  At the end of the system operation control returns to 
OCTAVE/MATLAB. 

 vi.   Comments. 

Use % to place comments at the OCTAVE/MATLAB prompt or after 
OCTAVE/MATLAB commands. 

 vii. List of variables. 

Type whos. 

 viii.   To clear the work space. 

Type clear. 
To clear just some variables: clear A1, ans 

 ix.    To clear the screen (not the work space). 

      Type clc  (= clear command). 

 x.    To  list the files in the current directory. 

.ls

 Notes AND WARNINGS 

a.   OCTAVE/MATLAB is case sensitive; thus variables A and a are not the same. [If 
you really do not like case sensitive programs then use casesen off and casesen 
on to toggle, but first read the next suggestion]. 

b.  To help you distinguish matrices from vectors and scalars it is suggested that 
you use uppercase for the former and lowercase for the latter, e.g. A or STORE for 
matrices and a or vect_1 for scalars and vectors. 



SECTION I.1.  BASICS 

c.  Variable names can be any length and may contain an underbar e.g.  
MATRIX_1. Do not write MATRIX-1, because OCTAVE/MATLAB will think that you are
subtracting. Do not write 1_MATRIX (i.e. don't start the name with a number) as 
OCTAVE/MATLAB thinks that you are3 dealing with a number.  
d.  Do not use the name of a OCTAVE/MATLAB function for your variables 
3because OCTAVE/MATLAB will think that you are trying to evaluate the function 
and forgot the ( ). Thus since det( ) is a built in OCTAVE/MATLAB function, if you 
want to designate the determinant of your ou.ls3tput matrix, call it deter or d, but 
not det! A very common error is to write something similar to: 
    >>  sum = 2 + 5 
    If you next use the OCTAVE/MATLAB function sum( ) you will find that it does 
not work! 
    >>  b = [2 5] 
    >>  sum(b) 
    OCTAVE/MATLAB responds with the error message: 

    " ???? index exceeds matrix dimensions. " 
    Instead of calling your variable sum, call it sum1 or total. 
Similarly do not use prod for product, or mean for the mean (average). 
e.  OCTAVE/MATLAB functions are all lowercase and use parentheses. The name 
usually gives a good idea of what the function does e.g  inv(A) finds the inverse of
A and rref(A) give the reduced row ech.lselon form of A. Some functions however 
return a pair of matrices. 
f.  OCTAVE/MATLAB is often able to interpret statements that are incorrect in the 
sense that they do not stand for what you wanted them to stand for. In particular 
you can often get away without using parentheses, but not only may the answer 
be different from what you had intended (see II.1), but also later you won't be 
able to understand what you had written. So USE PARENTHESES. Always test pro-
grams and defined functions on examples for which you can do a hand check. 
g.  OCTAVE/MATLAB is now fairly stable as far as the names of commands are 
concerned. If you use a command that has been replaced, you will usually see a 
message that gives you the new form of the command. 
h. If you quit OCTAVE/MATLAB, then return to OCTAVE/MATLAB and use a diary 
name that you have previously used, then OCTAVE/MATLAB adds to the previous 
diary file. 

---- 

A SAMPLE OCTAVE/MATLAB SESSION 

Here is a sample OCTAVE/MATLAB session. 

First we call up OCTAVE/MATLAB at the system co.lsmmand: 

{superior:1} OCTAVE/MATLAB    
.ls
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We now open a "diary" file called calcul1.dia in wh.lsich to save the commands 
and output of the session. If you add the suffix ".dia" it will be easier to locate the 
diary when you go to edit it. 

>> diary calcul1.dia 

To enter a matrix to which we assign the variable name A, type in the matrix 
separating the rows by a semicolon. Push ENTER and OCTAVE/MATLAB 
automatically types out the variable name and the answer, unless commanded 
not to do so by the use of a " ; ": 

>> A = [.2 .6; .4 .3] 

A = 

    0.2000    0.6000 
    0.4000    0.3000 

I now want to find the inverse matrix which I call A_inv. 
% inv( ) is the OCTAVE/MATLAB function for finding inverses: 

>> A_inv = inv(A)   

A_inv = 

   -1.6667    3.3333 
    2.2222   -1.1111 

Check using multiplication, there is no need to give a variable name. Whenever no
variable name has been assigned to an operation OCTAVE/MATLAB assigns the 
value to the variable ans.: 

>> A*A_inv 

ans = 

    1.0000    0.0000 
   -0.0000    1.0000 

I now decide to see what happens if I replace the .4 by .1. Instead of retyping the 
entire matrix, I use the up arrow until I arrive at the data statement. By using the 
arrows, DEL or BACKSPACE, I change the .4 to .1. I also decide to change the 
name of the matrix to A2. When ENTER is pushed  the new A2 appears: 

>> A2 = [.2 .6; .1 .3] 



SECTION I.1.  BASICS 

A2 = 
.ls
    0.2000    0.6000 
    0.1000    0.3000 

If I now use the up arrow to go to A_inv and change A to A2 and then push 
RETURN, the command is repeated. Or I could just retype 

>> A2_inv = inv(A2) 

Warning: Matrix is singular to working precision. 

OCTAVE/MATLAB has come up with an error message. 

I could make more changes, but I have done enough on this problem, so I close 
the diary 

>> diary off 

All of a sudden, I remember that I want to find the determinant of A. So I turn the 
diary on and make sure that I turn it off again at the end. The new material is 
added at the end of the diary. 

>>  diary on 

In order to continue with the computations, the names of the variables and their 
dimensions must be known. This is done via the OCTAVE/MATLAB command whos:

>> whos 

Name          Size            Total     Complex 

A             2 by 2          4         No 
A2            2 by 2          4         No 
A2_inv        2 by 2          4         No 
A_inv         2 by 2          4         No 
ans           2 by 2          4         No 

The variable ans came about from the check on A_inv to which no variable name 
had been assigned. If we had done this several times only the last ans is kept. 

I now proceed 

>> determinant = det(A) 
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determinant = 

   -0.1800 

>> diary off                     % close the diary 

The additional material has been added to the diary 

We could now start a whole new set of computations; first clear all the variables 
and then open a new diary: 

>> clear 

>> diary calcul2.dia 

or we could just clear A2 and its inverse 

>> clear A2, A2_inv 

We now go through a series of calculations using some of the operations of 
section II.1 or the functions of section I.3. 
When we are done we close the diary: 

>> diary off 

At this point I want to see what the results were. There is only one problem, I can't
remember the name of the first diary!! (We could also have used the UP ARROW 
to find the original diary command.) 

To produce a list of  *.dia files I type ! at the OCTAVE/MATLAB command line to 
invoke the system directory commands. For UNIX systems, the directory 
command is "ls". For DOS systems, use DIR  *.dia and for window systems click on
the file listings. 
 
>>  ! ls *.dia   

From the file listing, I remember that the diary name was calcul1.dia. 

To actually see what is in the file calcul1.dia, I use either a word processor or a 
viewing command. At this point, I can either leave OCTAVE/MATLAB or use the 
system command " ! " : 

>> ! {name of text editor} calcul1.dia   % invoke the editor 

The viewing command in UNIX is "more". For DOS systems use TYPE calcul1.dia: 
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>> ! more calcul1.dia  

I can now continue my calculations, with the same or another diary. If I want a 
clear screen I use clc 

>> clc 

To leave OCTAVE/MATLAB: 

>> quit 

The file calcul1.dia can now be edited and printed using a text editor. 



SECTION I.2. FIVE SPECIAL SYMBOLS:  [  ]  ( )  ;  ,  : 

SUMMARY 

These five symbols are the most important in MATLAB. They have several uses 
and are used in conjunction with one another. The summary is grouped by 
symbol, whereas the example section is grouped by function. 

NOTE: In order to make the symbols stand out, space has been left between 
symbols throughout this guide. This is not necessary when actually using MATLAB,
but neither does it affect the result. 

i      The square bracket [  ] 

To build matrices: A = [1 2 ] 

ii     The parentheses (  ) 

To indicate functions: B = eig(C) 

To extract elements: 
   b = A(1 , 2) for matrices 
   b = a(3) for vectors 

To redefine elements: A(1 , 2) = -5 

iii.   The semicolon ; 

To separate the rows of a matrix: A = [1 2 ; 3 4] 
To place submatrices under one another: C = [A ; B] 
To suppress printing: A = [1 2 3 4]; 

iv.   The comma , 

To place matrix blocks side by side: B = [vec1 , vec2] 
To extract elements of a matrix: a = C(2 , 3) 
To separate functions on a line: a = 1 , B = eig(C) 

v.    The colon : 

      1 to 4 by steps of 1:    1 : 4 
      -1 to 2 by steps of .5:    -1 : .5 : 2 
      5 to 1 in decreasing steps of 1:   5 : -1 : 1 

-- 
DETAILS AND EXAMPLES 

i.   The use of  [  ]  to indicate the building of a matrix. 
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     The use of  ;  and  ,  as matrix separators. 

When we enter the elements of a matrix, we use square brackets, and separate 
the rows (which can be thought of as row vectors) by a semicolon. 

>> A = [1 2 3 ; 4 5 6]         % two vectors on separate lines 

A = 
     1     2     3 
     4     5     6 

>> B = [7 8 9 ; 10 11 12] 

B = 
     7     8     9 
    10    11    12 

We can now join the two matrices A and B in two ways to form a new matrix: 

We can put B underneath A by using a semicolon. 

>> C = [A ; B]                 % place submatrix B under A 

C = 
     1     2     3 
     4     5     6 
     7     8     9 
    10    11    12 

 
We can put A and B next to one another by using a comma. 

>> D = [A , B]      

D = 
     1     2     3     7     8     9 
     4     5     6    10    11    12 

ii.  The use of (  ) as a function indicator. 

If we wanted to find the rank of C, we would use the rank function rank(  ). The 
dependent variable is placed inside the parentheses. 

>> rank_C = rank(C) 

rank_C = 
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     2 

 iii.  The use of (  ) and , to extract or redefine an element. 

To find the element in row 2 and column 3 of A above we use parentheses which is
the extraction function indicator and then enter the row and column values 
separated by the comma: 

>> b = A(2 , 3)                 % row 2 , column 3 
  
     6 

If a is a vector then all we have to do is give the element number: 

>>  a =  [1 3 5]; 

>>  b = a(2) 
  
     3 

On the other hand suppose that we wanted to change the element in row 2 and 
column 3 so that it is -9, while leaving all the other elements alone. There is no 
need to retype all of A. We just specify the new value. 

>> A(2,3) = -9                  % redefine row 2, column 3 

A = 
     1     2     3 
     4     5    -9 

The use of the colon to extract submatrices is discussed in subsection v, below 
and in section II.4 

iv.  The use of  : to indicate the "range" of indices. 

The colon could be loosely translated by the term "range". Thus if we wanted a 
row vector with the integer range -1 to 4 we write: 

>> x = [-1 : 4]    

    -1     0     1     2     3     4 

Note that since we are building a vector we use brackets, [ ]. 

If we wanted to go from  -1 to 2 by steps of .5, we would include the .5 in the 
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statement. Note that there are now two colons. 

>> x_step = [-1 : .5 : 2] 

 -1.0000   -0.5000  0    0.5000    1.0000    1.5000  2.0000 

 To generate a vector in reverse order use negative steps. 

>> X_dec = [5 : -1 : 1] 

X_dec = 

     5     4     3     2     1 

[Note: Writing [5 : 1] would give the empty matrix [  ]; see section II.2.vi]. 

For examples of the use of the colon, see Section II.1, example 1 and Section II.4 

v.  The use of : when extracting submatrices. 

Subsection iv illustrated the used of the colon as a range indicator. By combining 
the colon with the extraction function of subsection iv, we can extract rows, 
columns and submatrices. 

To extract the second row of A we fix the row value at 2 and let the column values 
range over all values as indicated by the colon. 

>> row_2 = A(2 , : )            % the entire column range in row 2 

     4     5     6 

To extract the third column of A we fix the column value at 3 and let the row 
values range over all values as indicated by the colon. 

>> col_3 = A( : , 3)            % the entire row range in column 3 

     3 
     6 

If we only wanted to extract columns 2 through 3 of row 2 of A we would limit the 
column range by use of [2 : 3] 

>> row_2_shortened = A(2 , [2 : 3])  % row 2, columns 2 to 3 
 
     5     6 
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We could also write: 

>> indices  = [2 : 3] 

     2     3 

and then 

>>  row_2_shortened = A(2 , indices) 

     5     6 

More examples of the use of the colon are given in section II.4 which deals with 
extracting and building matrices. 

vi.  The use of ; to suppress printing. 

We reenter B, but this time we put a semicolon after the bracket to suppress 
printing. Note that the semicolon is also used inside the brackets to separate the 
rows: 

>> B = [7 8 9 ; 10 11 12] ;         % outside to suppress printing 

To print B we simply type: 

>> B 

B = 

     7     8     9 
    10    11    12 

To print just the matrix without "B = " we would type 

>> disp(B)             % see section I.5.i ]. 

To suppress printing several variables in a row we put a semicolon after each: 

>> B; C; 

vii.  Using , to place commands on the same line. 

If we wanted to find the ranks of C and D, we could write the two commands on 
separate lines or use a comma. 

>> rank_C = rank(C) , rank_D = rank(D) 
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rank_C = 
     
    2 

rank_D = 

     2 
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SUMMARY

i.    Creating and importing your own program or data file.

Use a text editor to create an "m-file", e.g. "program1.m" in which you have typed
the instructions, and data, exactly as you would do at the MATLAB command line.
Invoke the program by typing the name without the extension:

>> program1

[Note: Do not start file names with numbers, e.g. "1program.m" is not a valid 
name.]

ii.   Pauses

To have a program pause until return is pushed:  pause
To have a program pause for 10 seconds:  pause(10)

 iii.  "For-loops"  

for  n = 1 : 5
              P^n
end

[Note: MATLAB is most efficient when working with vectors
(or matrices). Thus whenever possible work with vectors
instead of using loops. See Section II.1, example 1 for the
conciseness and power of the vector approach.]

iv.   Creating and using your own functions

Create the file trans1.m which starts off with:
   function NEW = trans1(OLD)
to evaluate a function at the variable A:

>> B = trans1(A).

[Note: For function names, as well as for the variables, do not use the names of 
MATLAB functions e.g. "det" .

Note: In certain versions you can use capital letters for your functions; e.g. in 
Section II.3 R( ) is defined to be equal to the MATLAB function sqrt( ).]

--
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DETAILS AND EXAMPLES

i.  Creating and importing your own program or data file.

Instead of typing in commands at the MATLAB prompt it is often preferable to 
create a program file which contains the instructions and then call up the 
program. This is particularly handy when we have several steps to perform in our 
computation or when we want to perform other calculations which are 
modifications of a previous one. It makes corrections much simpler and avoids a 
great deal of frustration caused by typing and other simple errors. When the 
amount of data to be used in a program is small, as in program.1 of example 1, 
then the  program file will contain both data and instructions. Some files contain 
just data and are then called up in another  program file or via a function (see iv). 
As far as MATLAB is concerned there is no distinction between a program file and 
a data file. In both cases we create an "m-file" or "*.m file". If we have two large 
sets of data that we want to analyse we might put them into two files data1.m 
and data2.m.
In our program file we would then change the call-up portion of the file from 
data1.m to data2.m. The use of a file that just contains data and is called up by a 
program is shown in example 2. If we are going to analyse many sets of data, we 
may prefer to write a function (see iv).

Program vs. function. The main difference between a program and a function, is 
that with a program all the variables become MATLAB variables (they are listed 
when we type whos - Section I.1, viii) that can be used later on. For a function 
only the designated dependent variables become MATLAB variables. This 
distinction often helps us to decide if we want to write a program or a function.

To write a program or data file we simply use a text editor (to create a pure ASCII 
file) and type in the instructions and the data. When naming the file, the name 
portion is arbitrary (except that it must start with a letter and not a number), but 
the extension must be "m", e.g. program1.m. To call the program one types the 
name, e.g. program1 of the file, without the extension. Large data sets, saving 
data and loading data are discussed in more detail in section I.4.

WARNING: Do not use the name of a MATLAB function for your variables because 
MATLAB will think that you are trying to evaluate the function and forgot the (  ). 
Thus since det(  ) is a built in MATLAB function, if you want to designate the 
determinant of your output matrix, call it "deter" or "d", but not "det"!

ii. Including a pause in a program.

Example 1 also illustrates the use of pause. When there are many variables the 
earlier ones will be "gone" before we have had the time to read and check them. 
So we put either pause in which case MATLAB waits until you push ENTER (or any 
key), or pause(10) - or pause(15) etc. - in which case MATLAB automatically 
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resumes after 10 seconds.

Example 1. I used a text editor to type the following program "prog1.m" which 
contains some data and a sequence of commands to manipulate this data. Note 
that we can leave a space between lines and put in comments using %.

Program 1

% [prog1.m]

C = [1 2 3 ; 4 5 6]           % data

pause(10)

ra_C = rank(C)                  % find the rank

pause

ech_C = rref(C)                 % reduced row echelon form

I invoke the program with the command prog1; this loads the variable "C" and 
then invokes functions which find the rank and reduce the matrix to row echelon 
form are invoked. The output is assigned to the variables "ra_C" and "ech_C".

>> prog1                        % no extension              

C =                             % MATLAB prints C

     1     2     3
     4     5     6

MATLAB pauses for 10 seconds

ra_C =   2

MATLAB pauses until enter is pushed

ech_C =

     1     0    -1
     0     1     2

[Note: In this program the matrix C is automatically printed. For
large matrices we may want to suppress printing. To do so we
would place a semicolon after the matrix; see Section I.2,vi.
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>> C = [1 2 3 ; 4 5 6];           % data

If we needed to see C we would use disp( ); see Section I.5,i:

>> disp(C)

]

Instead of placing the data inside the program we can also place it in a data file 
C.m

Program 2

% [data1.m]  contains only data

C = [1 2 3 ; 4 5 6]             % data

We now modify prog.1 so that it calls up the data file data1.m.

Program 3

% [prog1b.m]

data1                            % calls up data file [data1.m]

pause(10)

ra_C = rank(C)                  % find the rank

pause

ech_C = rref(C)                 % reduced row echelon form

We now call up prog1b:

>> prog1b

C =
     1     2     3
     4     5     6

ra_C =   2

ech_C =



SECTION I.3.  PROGRAMS, SIMPLE LOOPS AND FUNCTIONS

     1     0    -1
     0     1     2

When we type whos (Section I.1, viii) to find out what our variables are we see 
that all variables that appear in prog1b are there

>> whos
                 Name        Size          Total     Complex

                    C       2 by 3             6        No
                ech_C       2 by 3             6        No
                 ra_C       1 by 1             1        No

iii.  "for - loops".

Often we want to repeat an operation many times and instead of constantly 
recomputing individual quantities we can use a "for-loop". This consists of a 
statement of the form:

for n = 1 : 5 

      instructions to do something

end

Note that for and end are in lower case letters. 

Loops are normally created in "m-files"  and then called up in MATLAB, although 
simple ones can be typed in at the prompt. It is suggested that neither i nor j be 
used for indices since these are also used for imaginary numbers (section II.3.iii) 
and confusion in reading the program might result.

Example 2. We have a recursive relationship of the form:

nk = Pk * n0 , 

where P is a square matrix and nk and n0 are column vectors. To compute nk, for 
a sequece of values of k, we create the m-file called power1.m which contains P, 
n0 and a "for-loop":

Program 4

% [power1.m]  compute powers.

% enter initial vector and take the transpose; since the % elements are real we 
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can use '.

n_0 = [2  3]'   

P = [.2 .6 ; .4 .3]  % enter the matrix;

%loop starts
for n = 1 : 3
      u = P^n * n_0
end

We call up "power1.m" by typing power1 without the extension  *.m . Notice how 
for each loop the variable "u" changes its value and is printed out.

>> power1

n_0 =

     2
     3

P =

    0.2000    0.6000
    0.4000    0.3000

u =

    2.2000
    1.7000

u =

    1.4600
    1.3900

u =

    1.1260
    1.0010

In the above loop we could have indicated the subscript by adding the index n in 
the loop:

Program 5
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% [program3.m]    have the program print the value of n

for n = 1:3
      n             
      u = P^n * n_0
end

A nicer output can be obtained by suppressing printing using ; and then using  
disp(n) , disp(u); see section I.5.

Program 6

% [program3.m]    suppress "n = " and use disp(n)

for n = 1:3
      n;                       % suppress printing n
    u = P^n * n_0;              % suppress printing u
    disp(n) , disp(u)
end

iv.  Creating and using your own functions.

Programs perform a sequence of operations on one set of data. When the same 
operations are going to be performed over and over it is preferable to define a 
function. To create a new function we create an "m-file" whose name (without the 
".m") is exactly the same as the function. Thus if we want to define a function 
"trans1( )" we have to create a file "trans1.m"

The first statement - not including comments which start with % - in  trans1.m 
must start off with the word function so that MATLAB knows that it is not dealing 
with a simple sequence of commands and data as in subsection i. The word 
function is followed by the statement that defines the dependent variable(s) as 
trans1( ) of the independent variables. The function name should be written in 
lower case letters (some older versions will accept upper case). Thus in the file 
"trans1.m" we start off with:

function  NEW = trans1(OLD)

In this case we have one dependent variable, called NEW  and one independent 
variable called OLD, but MATLAB functions can have several dependent and 
several independent variables as will be seen in the examples below. These 
variables are all internal variables, i.e. they will not appear directly in the list of 
MATLAB variables that we obtain when we type whos; see Example 3 for a further 
discussion of this. 

WARNING (second time in this section): Do not use the name of a MATLAB 
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function for your variables because MATLAB will think that you are trying to 
evaluate the function and forgot the (  ). Thus since det(  ) is a built in MATLAB 
function, if you want to designate the determinant of your output matrix, call it 
"deter" or "d", but not "det"!

Once the name of the function and symbols for the dependent and independent 
variables have been decided the next step is to give an algorithm which relates 
the variables:

Example 3. We have a fixed matrix F = [-2 2 ; 3 1] and we want to take various 2 x
2 matrices, square them and then add F. The function program would be:

Program 7
% [trans1.m]

function  NEW = trans1(OLD)

F = [-2 2; 3 1];                % suppress printing

% give the formula. add ; to avoid printing twice
NEW = (OLD)^2 + F; 

To use this function we have to assign a variable name to the independent 
variable that whose functional value we are going evaluate.  We do not have to 
use OLD as in the program and can use any variable name, e.g. A:

>> A = [1 2; 3 4];

Next, we a assign a variable name, e.g. B, to the value of the function (we do not 
have to use the name NEW)  as follows

>> B = trans1(A)

B =

     5    12
    18    23

It is preferable, but not necessary, to assign a variable to the value of the 
function. If we do not then the value is assigned to the variable ans as follows:

>> trans1(A)

ans =

     5    12
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    18    23

Internal variables. Note that in the function trans1.m  the variables OLD, NEW, F 
are variables which are internal to the function; they will not appear when we type
whos (Section I.1, viii). Sometimes we do not want to keep a quantity as a MATLAB
variable, but we want to print out the value, perhaps as a check when we run the 
program. The quantities can also be introduced as internal variables as shown in 
the next example:

Example 4. Suppose that as we go along in the above calculation we want to 
check the determinant of A to make sure that it is non-zero:

Program 8

% [trans2.m]   
% prints out determinant as part of function call

function  NEW = trans2(OLD)

F = [-2 2; 3 1];                % suppress printing

det_check = det(OLD)            % do not suppress printing!!

% alternative method of printing out the value
disp(det(OLD))

NEW = (OLD)^2 + F;              

We run the program and then type whos:

>> B = trans2(A)

det_check =    -101

B  =    
     5    12
    18    23

>> whos
                 Name        Size          Total     Complex
                    A       2 by 2             4        No
                    B       2 by 2             4        No

Note that the quantity det_check has been printed out, but does not appear as a 
variable. The value of det_check was printed out because we did not put a 
semicolon. An alternative method, as shown in the program, is to use the disp 
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function. The value assigned to NEW by the function is listed under the variable B.

Functions of several independent variables. MATLAB functions can also be 
functions of several independent variables. Suppose that instead of a fixed adder 
in example 3, we want to have a variable adder. We simply include the adder as a 
variable in the defined function as in the following example.

Example 5.
Program 9

% [trans3.m]  - illustrates a function of two variables

function NEW = trans3(OLD, ADDER)

NEW = (OLD)^2 + ADDER;    % give the formula do not print out.

To use this function we need to define the adder, using any symbol:

>> C = [1 -2; 0 1]

We designate the dependent variable as D:

>> D = trans3(A , C)

     8     8
    15    23

Several dependent variables. In calculus a true function can only have one 
dependent variable, but a MATLAB function can compute and store several 
variables. For the function trans2( ) in example 4, we computed the determinant 
of the input matrix as we went along and even had the value printed out, but we 
did not assign a variable name to it. As we saw in example 4 the quantity does not
appear in the "whos" list and thus cannot be used again. If we want to save the 
quantity as a variable then we proceed as in the following example:

Example 6. Suppose that in example 5 we had wanted to compute the rank of the 
output matrix, and also to assign a variable name to it. In this case, there are two 
dependent variables, which we designate as NEW and rank_new. We place both of
these variable names inside square brackets on the first line of the m-program. 
Note that the two variables do not need to have the same dimensions, i.e. we are 
not forming a true matrix:
Program 10

% [trans4.m]  - illustrates a multi-variable output
% modification of program 5
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function [NEW, rank_new] = trans4(OLD)

F = [-2 2; 3 1];    %suppress printing

NEW =(OLD)^2 + F;  % give the formula do not print out.

rank_new = rank(NEW);

At the MATLAB prompt we define our dependent variables. In this case we will 
assign the function value NEW to a variable whose name is also NEW. We assign 
the function value rank_new to a variable whose name is different namely lin_ind.

>> [NEW, lin_ind] = trans4(A)  % A was entered above.

NEW =

     5    12
    18    23

lin_ind =

     2

If we had just written:

>> Z = trans4(A)

then the value of Z would be that of the first of the variables (NEW) and the 
second variable lin_ind would not have appeared.

No independent variables. It is possible to define a function with no independent 
variables. In the following example we use the input function, which is discussed 
in I.4, to obtain that value we use in the computation.

Program 11

% [squa_it.m] - a function with zero variables

function c = squa_it;

N = input(' what is N? ');
c = N^2;

We could have obtained exactly the same value for c if we had not put in the 
function statement, in which case we would have had an ordinary MATLAB 
program. In the function format only c becomes a MATLAB variable, whereas with 
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the program format both N and C become variables that can be used later on.

Functions with one or several dependent variables. For some built-in MATLAB 
functions there is the possibility of assigning either one or two dependent 
variables. An example of this is the function diag( ) which is discussed in detail in 
sections I.3.1 and III.2. If we type:

>> EIG_VAL = eig(A)

then we will obtain a diagonal matrix whose diagonal elements are the 
eigenvalues of A. But if we type:

>> [EIG_VEC , EIG_VAL] = eig(A)

we obtain two matrices, the first one having the eigenvectors of A stored as 
columns and the second again being a diagonal matrix whose diagonal elements 
are the eigenvalues of A.
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SUMMARY

[Typical names of files are indicated in the summary by italics; note that in the 
save and load commands discussed in iv and v, the extension .mat is added 
automatically by MATLAB. The expression "m-file" refers to a file with the 
extension *.m]

 i.    Importing data.

Use a word editor to create an "m-file" e.g. import1.m in which you have entered 
the variables and data exactly as you would at the MATLAB command line.

 ii.   Long lines of data.

The data is enclosed in brackets [ ] as is the case with all matrices of data. At the 
end of each line we type ellipses   ...  , push ENTER, then continue the data on the
next line. This applies to "m-files" as well as at the MATLAB command.

[Warning! Leave a space after the last number, e.g. 5 ...
Otherwise MATLAB thinks that you have put decimal points.]

iii.  Importing data from the keyboard.

vect_1 = input('type in your first vector:  ');

for string variables use the form:
     comment = input('type your comment: ' ,  's' );

A string input is made without ' ', e.g yes (and not 'yes').

iv.   Saving variables to a "mat-file" called results.mat.

To save all variables: save results (no extension).
To save several specific variable: save results A1 a
[Note: there is no comma anyplace in the statement].

v.    Reloading variables from a "mat-file" results.mat.

>> load results.

vi.   Saving one variable A in ascii format to a file data1

>> save data1 A  /ascii  /double.

[Note and warning: As discussed in section I.1 output can be saved in a "diary". 
Although the output from such a diary can be placed (by use of a text editor) in an
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m-file and then loaded into MATLAB, this is not advisable when decimals are 
present and high accuracy is desired. A variable saved in a mat-file is saved to a 
high degree of accuracy, whereas a variable saved in a diary has been 
permanently truncated! 

ASCII output (see vi) can only be done one variable at a time and the accuracy 
may not be as high as with mat-files.]

----
DETAILS AND EXAMPLES

i.  Importing data. 

For small data sets one can enter the numbers at the MATLAB control line. For 
larger sets of data and for situations where one wants to make repeated changes, 
it is better to use a text editor to create an ASCII file which contains the data. 
When naming the file, the name is arbitrary, but the extension must be ".m", e.g. 
data1.m. To call the program one types the name, e.g. data of the file, without the
extension.

The concept of m-files was discussed in section I.3.i in connection with programs. 
From the viewpoint of MATLAB a program file is no different from a data file. The 
concept of putting data in an m-file is repeated here so that a comparison can be 
made with other methods discussed later in this section. Recall also that in 
section I.3.iii, we saw how user defined functions were also created by putting the 
instructions in a file with the extension .m . The difference between function files 
and program/data m-files is that a function file starts off with the word "function". 
Functions, via function files, operate on variables, whereas m-files contain a once 
only sequence of instructions.

Example 1. A simple data file. 

The file contains the names of two variables: a matrix and a
scalar, and the corresponding data. Note that the variable name
MAT1 is not the same as the file name. However it could be the same if
we wished.

Program 1

% [import.m]

MAT1  = [1 2 3; 4 5 6];          % the semicolon suppresses printing

a = sin( pi/2 );                 % sin(  ) and pi are MATLAB functions

To run this program in MATLAB we simply type the name of the file, without the 
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extension, at the command line.

>> import1

To check that the variables are there:

>> whos

Name         Size         Total        Complex
MAT1         2 by 3       6            No
a            1 by 1       1            No

ii.  Long lines of data.

For long strings of data we want to be able to continue data entry on the next line.
To do so, type three or more ellipses  "... ", push ENTER and continue the data on 
the next line. Make sure that you put a semi-colon if you do not want a huge mass
of data to be printed out!

Ellipses can be used in "m-files" as well as at the MATLAB command.

Program 2

% [dots.m]

% place the data in brackets; add ellipses at the end
% of each line of data. But make sure that you leave a space
% between the last number and the ellipses.
% place a semicolon after the data to suppress printing.
% there is no need to have the same number of elements in each row.

a =  [1  3  ...  
                  4 ];

s = sum(a)

>> dots        % call up the program "dots.m"; no extension

a = 

     1     3     4

s  = 

     8



SECTION I.4. ADVANCED IMPORTING AND EXPORTING TECHNIQUES

If we have large sets of data and want to have the same number of elements in 
each row we can place ... in the first row.

a = [ ...                                 % first row is empty
      *  *                       *  ...   % !! space after the last number
      *  *                       *  ...                        
                                       ]; % ! closing bracket

[Warning: Leave a space between the last number and the ellipses; otherwise 
MATLAB thinks that you have put a decimal point!]

[Note: Nothing prevents you from using a semicolon to form a
matrix. For example:

>> F = [4 5 6 ...       % ellipses to continue row 1
        7 8;            % end of row 1
        9 10 11 12 13]  % row 2 all on one line

   F =

       4   5   6   7  8
       9  10  11  12  13

iii.  Inputing data from the keyboard

One can also import data directly from the keyboard. This is especially useful in 
connection with a program that we want to check or run several times and which 
involves small sized matrices. By using the keyboard, we can avoid switching to a 
text editor in order to change the data.

To invoke the keyboard, we assign a variable, e.g. vect_1 to the MATLAB function 
input('    '). Inside the apostrophes, we place a prompt message:

>> vect_1 = input(' type in your first vector:  ')

Note that for clarity a colon has been included in the prompt message and a little 
space has been left after the colon.

The input can also be a string, i.e. text, and to indicate this we add , 's' :

>> comment = input('type your comment: ' , 's');

When we input the text we do not put the apostrophes around it; i.e if the input 
asks yes or no? we type yes, not 'yes'.

Example 2. Program 3 illustrates the use of input('    ') to input two variables  and 
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to input a comment.

Note that I have not placed a semicolon after vect_1 and vect_2 and so MATLAB  
prints out the values. I could have placed a semicolon and then used disp(vect_1).
This however has been done with the variable "comment"; a semicolon has been 
placed at the end of the line which defines "comment" and then disp( comment ) 
has been used.

The example shows that when we multiply a column vector by a row vector we 
obtain a matrix of rank 1. We input vect_1 as a row vector and then take its 
transpose by using the true transpose operator  .'  ; see section II.3.i for a 
discussion of the transpose operators.

Program 3

%[keyb1.m]   

vect_1 = input(' type in your first vector:  ')
vect_2 = input(' type in your second vector: ')

% multiply the transpose of vect_1 and vect_2; find the rank
% .' is the true transpose; see section II.3.i

col_x_row = (vect_1).' * (vect_2);  
ran_1 = rank(col_x_row) ;

comment = input(' type your comment: ', 's');
disp(comment)

Invoke this program by typing the file name keyb1 without the extension. Boldface
in the following indicates what the prompt text is. Italics in the following indicates 
what is typed in at the keyboard.

>> keyb1

type in your first vector: [1 2]

vect_1 =

     1     2

 type in your second vector: [3 4]

vect_2 =

     3     4
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col_x_row =

     3     4
     6     8

ran_1 =

     1

type your comment:  each row is a multiple of first

each row is a multiple of first

iv. and v. Saving variables to "mat-files" and reloading them.

In example 2 we imported two variables "vect_1" and "vect_2", and then 
calculated the values of two variables "col_x_row" and "ran_1". If we wanted to 
save all four variables for later use, the simplest and best manner is to save them 
to a "mat-file". This is a file written in machine language in which the variables are
saved to a very high degree of accuracy. In principle, one could take the contents 
of a "diary" that has been created (section I.1), put them into an "m-file" (as in 
subsection i above) and then call up the "m-file". Not only would that way require 
a lot of work, but it also has the added inconvenience that accuracy is lost 
because the output appears in truncated form in the "diary".  If you need to save 
the variables in ascii format, e.g. for export to another program, see vi below and 
the save ... ascii command; the precision may be less however.

To place all the current variables into a "mat-file" called results we give the 
command save and follow this by the name (without the extension ".mat")

>> save  results

MATLAB will automatically assign the extension .mat so that in the directory there 
will be a file results.mat.

If during another MATLAB session we want to have access to the variables we use 
the load command:

>> load  results

Sometimes we only want to save a few of the variables. Supose that we only 
wanted to save "vect_1" and "col_x_row" to a mat-file results2.mat. We could 
either first clear "vec_2" and "ran_1" by using:
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>> clear vec_2, ran_1

and then typing:

>> save results2

or we could use save with the name of the file results2 followed by the list of the 
variables that we want to save. Notice that there is no comma anyplace in the 
statement.

>> save results2 vec_1  ran_1

To re-obtain the variables from results2, we use the load command:

>> load results2

To find what variables were stored in results2, and what their dimensions are, we 
use whos:

>> whos

Name         Size         Total        Complex
vec_1        1 by 2       2            No
ran_1a       1 by 1       1            No

We can now display the variables that we want by typing their names or by using 
disp( ):

>> vec_1                        % "vec_1 =" is printed
>> disp(ran_1a)                 % only the value is printed

Note: It is not possible to load just one of the variables from results. Just load and 
clear the ones that you do not want.

vi.   Saving one variable A in ascii format to a file data1

To save the variable "A" in ascii format to a file data1, we use save with the option
/ascii:

>> save data1 A /ascii /double.

The option /double is usually added to ensure a high degree of accuracy.
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SUMMARY

i.    Using disp() to avoid "A = ".
disp(A) gives A without the statement, " A = "
disp(' A is a matrix ') gives the statement typed between the apostrophes.
Use disp(' ') to skip a line.

ii.   The number of decimal places in the output.
For 14-15 places:
   format long      57.27564927611034
to return to the standard fixed point format (4 places):
   format short     57.2756
floating point (scientific) notation:
   format short e    5.7276e+001
   format long e     5.727564927611034e+001
converting matrices to the  + {  } -  format

   format +
[Note: Recent versions of MATLAB have more commands for specifying the format:
e.g.

   format bank       57.27 (2 decimal places, for money!)

   sprintf  This  command is based on C syntax and can be used to control the 
number of decimal places more precisely. String statements (such as in disp('hello
') ) can also be included:

      a = 57.27564927611034
      sprintf( ' %10.5f ' , a ) = 57.27564
      [5 decimal places; the 10 indicates the printing is being done in a minimum of 
10 spaces with the "4" being placed on the extreme right.]

   using e instead of f will give the answer in floating point notation.

   format hex  the output will be in hexadecimal format.

   type help format, help fprintf for details of what is available on the system that 
you are using]

----
DETAILS AND EXAMPLES

i.  Using disp() to avoid "A = "; construction of simple tables.

MATLAB output is usually in the form: "A = "  followed by the value of A. To print 
out just the value of A we use disp(  ) :
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>> disp(A) 

The display command is also used to produce alphanumeric text. The text to be 
displayed is enclosed within apostrophes. Thus if we enter:

>> disp(' A is a matrix ')

we obtain:

     A is a matrix

The use of disp( ) is illustrated in the following two methods of producing a table 
of sines and cosines. There are various ways of producing the individual results 
and these are also illustrated. In the first method we produce individual row  
vectors of values one at a time and print them out; this method is shown first in 
step by step format and then in a program. In the second method, we compute 
the vectors, take their transposes and create a matrix whose columns are these 
transposes. We then ask MATLAB to display the matrix.

Example 1. Producing the output in rows.

We first form a vector "values" that gives the range of values that interests us.

>> values =[0 pi/4 pi/2];           % ; to suppress printing

>> disp(values)

         0    0.7854    1.5708

Next, we calculate the sines of the values in "values" by using the MATLAB vector 
function sin(  ). MATLAB trigonometric and other functions are discussed in detail 
in section II.3. We use both sin(  ) and disp(  ) in the same statement

>> disp( sin( values ) )

         0    0.7071    1.0000

For the sine, we did not assign a symbol, but we do so for the cosine values. A 
common error is to use a function name for a variable, e.g to let cos = 
cos(values). Note that we have used the underbar in the variable name 
"cos_variables", because the use of a minus sign, e.g.  "cos-values" would make 
MATLAB think that we want to subtract!

>> cos_values = cos(values);
>> disp(cos_values)



SECTION I.5. FORMATTING THE OUTPUT

    1.0000    0.7071    0.0000

Finally we produce a title for our table. To indicate that we are dealing with an 
alphanumeric quantity we enclose it in apostrophes. Some space is left after the 
first comma to shift the title over to the right:

>> label = '     table of sines and cosines';
>> disp(label)

    table of sines and cosines             % MATLAB response

Above, the commands were given on different lines, but they could also have 
been put on one line using the comma. Since the line is too long we use ellipses to
indicate that we want to continue on the next line, although in this case it is just 
as simple to push ENTER and go to the next command line. Note how we use 
disp('   '), i.e. the message is empty, in order to have MATLAB skip a line

>> disp(label) , disp(values) , disp(sin( values )) , ...    disp('   ') , disp(cos_values)

      table of sines and cosines

         0    0.7854    1.5708
         0    0.7071    1.0000
    1.0000    0.7071    0.0000

Instead of doing the above steps individually we can write a short program 
"disp2.m".

Program 1
% [disp2.m]

x = [0:.2:1];               % ; to suppress printing
disp('  first row  values; second is sine; third is cosine')
disp('   ')                 % empty message to leave a space
disp(x)
disp( sin(x) )  
disp( cos(X) )

We now call up "disp2.m". Note that we just type "disp2" and not "disp2.m"

>> disp2 

  first row is values; second is sine; third is cosine

0        0.2000   0.4000   0.6000   0.8000   1.0000



SECTION I.5. FORMATTING THE OUTPUT

0        0.1987   0.3894   0.5646   0.7174   0.8415
1.0000   0.9801   0.9211   0.8253   0.6967   0.5403

Example 2. Producing the output in columns.

In the first method, the output is in rows, but if the range of values is above nine 
or ten, then the rows will not fit on one line of print. So, instead of working 
exclusively with row vectors we take the transpose of the vectors, create a matrix 
whose columns are these vectors and then print the matrix. This method is 
followed in the program "disp3.m". Note how we compute the variables, but do 
not print them immediately. It is sometimes difficult to place the title exactly and 
it is often simpler to make a final adjustment with a text editor. Since the entries 
are all real, we can use the operator ' for transpose instead of .' (see section II.1). 
In the program we first use the semicolon (section I.2.v) to generate a domain 
vector with values going form 0 to 1 by steps of .2.

Program 2
% [disp3.m]

y = ( [0 : .2 : 1] )';          % ' change to a column vector
si = sin(y);                    % ; to suppress printing
co = cos(y);
A = [y , si , co];      % put in a matrix by means of `,'

disp('   x  sin(x)  cos(x)  ')   % display the title
disp('   ')                      % empty message, leaves a space
disp(A)                             % display the matrix

We now call the program:

>> dispro3            % type filename - without the extension .m

         x  sin(x)  cos(x)

    0         0         1.0000
    0.2000    0.1987    0.9801
    0.4000    0.3894    0.9211
    0.6000    0.5646    0.8253
    0.8000    0.7174    0.6967
    1.0000    0.8415    0.5403

One should not spend too much time lining up a title inside the disp('   '); it is 
usually simpler to do it later with a text editor.

 ii.  The number of decimal places in the output.
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MATLAB usually shows the results to five digits; to display more places use format 
long:

>> s1 = 81*sin(pi/4)

   57.2756

>> format long
>> s1                    % type s1 to display it

  57.27564927611034

To display the answer in "floating point" notation use `format short e' or `format 
long e'

>> format short e
>> s1

  5.7276e+001

>> format long e
>> s1

    5.727564927611034e+001

To return to the standard format use format short

>> format short
>> s1 

   57.2756

For some matrices we may want to just see if elements are negative, zero or 
positive. Use the "format +" command. MATLAB leaves a very small space where 
the terms are 0.

>> format +
>> C = [-2 0 5]

     -  +                      % There is a space between the - and +
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SUMMARY

ia.   Transpose of a matrix with real elements:   '

ib.   Transpose of a matrix with complex elements:   .'

ii.    Addition:   A + B ;  A + 5 adds 5 to each element.

iii.   Multiplication:  A*B;  2*A

iv.   Powers:   A^3

v.    Element by element multiplication:   (A).* B 

         [Note the dot;  use parentheses to avoid problems and confusion. A and B 
must have the same dimensions.]

vi.   Element by element division: (A)./B  

         [Note the dot;  use parentheses to avoid problems and confusion. A and B 
must have the same dimensions.]

vii. Element by element powers: scalar a, vector x:
            (a).^x ;  (x).^a  ; (x).^x

         [Note the dots;  use parentheses to avoid problems and confusion. Vectors a
and x must have the same dimensions.]

viii. For very large matrices:

         Instead of A*inverse(B) use A/B.
         Instead of inverse(B)*A use B\A.

         See the examples in section III.1.vii

ix.   Use parentheses! 

         MATLAB interprets 5/2*4 as (5/2)*4. Is this what you wanted or was it 5/
(2*4)?
---

DETAILS AND EXAMPLES

>> A = [1 2; 3 4]

     1     2



SECTION II.1.  BASIC MATLAB OPERATIONS

     3     4
i. Transpose of a real matrix:   '  or  .'

>> TRANS = A'

     1     3
     2     4

[Note: See section II.3 for examples involving complex numbers and the difference
between '  (conjugate transpose) and .'  (true transpose).

ii. Addition:  +

>> S = A + A'

     2     5
     5     8

To add 5 to each element of A there is no need to define a matrix of the same 
dimensions as A, and having all entries equal to 5. MATLAB interprets A + 5 in this
sense:

>> B = A + 5

     6     7
     8     9

iii. Multiplication:  *

>> A * B

    22    25
    50    57

>> 5*A

     5    10
    15    20

>> L = (1/5)*A

    0.2000    0.4000
    0.6000    0.8000

iv. Powers:  ^
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>> A^3

    37    54
    81   118

Element by element operations

v. Element by element multiplication.

To multiply each element of A by the corresponding element of B use .* . Note the 
dot which distinguishes pointwise multiplication from regular matrix 
multiplication. It is advisable to get in the habit of using parentheses, even though
they are not always required, to avoid problems and confusion that arise with 
numbers. A and B must have the same dimensions.

>> D = (A).*B  

     6    14
    24    36

vi. Element by element division. 

To divide each element of A by the corresponding element of B use (A)./B. A and B
must have the same dimensions. To remember the direction of the slash in ./  
think of 6/2  = 3. Division tends to be confusing so use many parentheses.

>> (A)./B

    0.1667    0.2857
    0.3750    0.4444

To divide each element of A by the number 5, use (A)./5. Note that this is 
equivalent to doing element by element division of A by a matrix all of whose 
elements equal 5.

>> F3 = (A)./5

    0.2000    0.4000
    0.6000    0.8000

To divide each element of A into the number 5, use (5)./A. Note that this is 
equivalent to doing element by element division of a matrix all of whose elements
equal 5, by the matrix A

>> F =(5)./A
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    5.0000    2.5000
    1.6667    1.2500

See the function "normalize.m" in section III.3, example 1 where pointwise division
is used to normalize a positive matrix so that the row sums are all 1. 

Example 1. The sum and products of the first eight odd numbers.

% [div.m] 
% Illustrate term by term division of a vector
% Sum and product of the reciprocals of the first 8 odd
% numbers.
% note how the upper index of the vector a is a variable % that has been 
calculated on the previous line.

odd_8 = 1 + (8-1)*2;          % 8th odd number

a = [ 1: 2 : odd_8];          % I.2,iv

% Note the dot and the ( ) in the following!!
recip_a = (1)./a;

sum_recip = sum(recip_a);      % II.3,iv

prod_recip = prod(recip_a);    % II.3,iv

disp('The eighth odd number: '), disp(odd_8)
disp('The first eight odd numbers:'), disp (a)

disp('The reciprocals:'), disp(recip_a)
disp('Their sum and product are: ')
disp(sum_recip), disp(prod_recip)

The output of this program is:

The eighth odd number: 15

The first eight odd numbers: 

     1     3     5     7     9    11    13    15

The reciprocals: 

1.0000    0.3333    0.2000    0.1429    0.1111    0.0909    0.0769    0.0667
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Their sum and product are: 

   2.0218    4.9333e-007

vii. Element by element powers

We start with a vector:

>> x = [-1: .5 : 1]   % section I.2,v

   -1.0000   -0.5000     0    0.5000    1.0000

Suppose that we want to raise each element of x to the third power. We use the 
point-wise power operator .^ and write (x).^3.  As with multiplication it is a good 
habit to use many parentheses.

>> (x).^3  

   -1.0000   -0.1250   0    0.1250    1.0000

On the other hand, if we want to use the elements of the vector x as powers to 
which we raise the number 3 then we write (3).^x.

>> (3).^x   

    0.3333    0.5774    1.0000    1.7321    3.0000

To show what can happen if we do not put parentheses consider:

>> 3.^x      

This is ambiguous since we are perhaps referring to the number 3.0. MATLAB 
responds with:

Error using  ^
Matrix must be square.

One can also raise each element of a vector to a power determined by the 
elements of another vector of the same size.

>> (x).^x

  -1.0000  {0.0000 - 1.4142i}   1.0000  0.7071 1.0000

The element is the complex number obtained by evaluating   (-.5)^(-.5):
 >> (-.5)^(-.5)
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SUMMARY

[Note: It is for the commands in this section that MATLAB has changed the most. 
Because of this the newer syntax is given first and then this is followed by the 
older syntax. If the newer command does not work, then try the older form or 
type help eye etc. One difference that is common to the first four forms is that the
term size is now needed; e.g before one could write ones(A) to obtain an identity 
matrix with the same dimensions as A, but now one must write ones( size(A) ).]
i.     Identity matrix.

eye(3) or eye( size(A) ), if A is already defined and square.

older versions: eye(A). 
ii.    Matrix of ones.

ones(1 , 5):   a vector of length 5 of ones.
ones(3 , 5):   3 rows, 5 columns.
ones(3):   3 x 3 square matrix of ones.
ones( size(A) ):   If A is already defined.

older versions: ones(A)
iii.   Matrix of zeros.

zeros(1 , 5):   a vector of length 5 of zeros.
zeros(3 , 5):   3 rows, 5 columns.
zeros(3):   3 x 3 square matrix of zeros.
zeros( size(A) ):   If A is already defined.

older versions: zeros(A) 
iv.   Matrix of random elements.

random elements in [0,1) ("uniform generator")

rand  or rand(1) - one random number
rand(1 , 5):   a vector of length 5 of random numbers.
rand(3 , 5) - 3 rows, 5 columns.
rand(3) -  3 x 3 square matrix of random numbers
rand( size(A) ) - If A is already defined.

older versions: rand(A) 

To have a different set of random numbers corresponding to the initial seed 
9956295 : rand('seed' , 9956295)

Repeating this command will result in the same initial seed as the first time that 
this command was issued.
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To print out the present value of the seed: rand('seed') [newer versions only].

See the discussion for details and problems associated with the seed.

[note: for testing purposes use the built in seed or a fixed seed; for serious work 
pick your seed at random, e.g. via randomly picked telephone numbers.]

normal random numbers with mean 0 and variance 1

In the newer versions the commands are the same as for random numbers in [0,1)
except that rand is replaced by randn, i.e. "n" is added on. A seed change for the 
normal generator does not change the seed for the [0,1) generator. To return to 
the [0,10 generator one simply uses the rand( ) commands given above.

newer versions: randn(1,5), rand('seed' , 127269), randn('seed' , 0), randn('seed') 

older versions:
to switch to the normal generator: rand('normal')
to return to the [0,1) generator:  rand('uniform')
to change the seed: rand('seed', 7626)
v.    Row vector of indices.

[-1 : .5 : 2] gives -1 to 2 by steps of .5
vi.    The empty matrix [ ].
--

DETAILS AND EXAMPLES

i.  Identity matrices. 

MATLAB uses the function eye(  ) to define the identity matrix.

>> IDENT = eye(2)

IDENT =
     1     0
     0     1

If however, we have already defined a square matrix A and we want an identity 
matrix of the same size, we can simply type eye(A):

>> A = [4 -1 ; 3 0]

     4    -1
     3     0
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>> eye(size(A))

     1     0
     0     1

The use of eye(size (A)) is very useful in multiple operations:

 >> A - 3*eye(size(A))

     1    -1
     3    -3

ii.  Matrix of ones.

A matrix all of whose elements equal 1 is defined using the function ones(2 , 3).  

>> a = ones(3 , 1)   % column vector of ones

     1
     1
     1

If the matrix is square one can write ones(2):

>> E = ones(2)

     1     1
     1     1

If A has already been defined we can use ones( size(A) ):

>> E = ones( size(A) )

     1     1
     1     1

A vector of 1's is useful in constructing a matrix all of whose rows are equal to a 
given vector:

>> b = [2 4 6];

>> a*b                     % a = ones(3,1); see above

     2     4     6
     2     4     6
     2     4     6
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This idea is used in the function "normaliz.m" which is defined in section III.3 
program 1.

iii.  Matrix of zeros. 

A matrix all of whose elements equal 0 is defined using the function zeros(2 ,3). 

>> B = zeros(2 , 3)

     0     0     0     
     0     0     0

If the matrix is square one can use zeros(2).

 >> D = zeros(2)

     0     0
     0     0

If A has already been defined we can use zeros( size(A) ):

>> F = zeros( size(A) )

     0     0
     0     0

A vector of zeros is very useful in predefining the size of a matrix. We can then fill 
in various positions with non-zero elements. Suppose that B is a 2 x 3 matrix of 
zeros obtained, as above, by zeros(2 , 3) as above. If we redefine the element in 
row 2 and column 3 to be 5, then we obtain a matrix of the same dimensions as B,
but with a 5 replacing the 0 in row 2, column 3.

>> B(2 , 3) = 5      % see section I.2.iii

B =

     0     0     0
     0     0     5

The use of a predefined shape helps to avoid confusion and error statements. 
Thus you may think that you are working exclusively with row vectors, but since 
MATLAB tends to work with column vector --e.g. when finding the eigenvalues of a
matrix--you may end up with incompatible matrices. This idea is exploited in 
section II.4, viii and the program "rand1.m" which is discussed in the section II.6.
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iv.  Matrix of random elements.

A matrix whose elements are "random" (i.e. are numbers between 0 and 1 which 
act statistically as if they were picked by chance) is defined using the function 
rand( ). The examples here use the older commands, for the newer ones and also 
additional commands see the summary.

To obtain single elements we use rand( ) or simply rand:

 >> rand

    0.2190

>>  rand(1)

    0.0470

To obtain a random vector of length 3:

>>  rand(1 , 3)

    0.2190    0.0470    0.6789

If the matrix is square one can just write rand(2).

>> rand(2)

    0.6793    0.3835
    0.9347    0.5194

If A has already been defined we can use rand( size(A) ). 

>> rand( size(A) )

    0.5017    0.7013
    0.4919    0.9217

Seeds: The basic MATLAB random number generator is based on a multiplicative 
congruential generator, i.e., a relationship of the form:

Zn = a* Zn-1 mod m

The initial value Z0 is called the seed or the initial seed.

In the context of MATLAB the Zn are also "seeds" (see below) although it would be
better to think of them as the present value of the seed.
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In some versions of MATLAB the following values of a and m are used:

a = 75 = 16807,   m = 231 -1 = 2147483647

The actual implementation of the algorithm depends upon the machine and is 
based on various numerical "tricks". If you write and test your program on say a 
PC, and then switch to a big UNIX machine, the numbers that you obtain might be
different. This in itself is not a problem; however difficulties might arise at the 
level of testing your program (see below)

Once the values of the Zn are obtained we obtain our random numbers, which fall 
in the interval [0,1) by division:

xn = Zn/m

Random numbers are used in simulations and in Monte Carlo evaluations, and 
they are also used to generate data for the purpose of testing statistical 
procedures. They are also quite useful for making up numerical examples 
involving matrices (see Sections III.1.vii and III.4). 

For the purpose of testing programs we would like to be able to always obtain the 
same set of random numbers. On the other hand when actually running an 
experiment on a computer we want to make sure that we obtain a completely new
set of random numbers. For otherwise our simulation would not be completely 
random. In order to replicate the sequence of random numbers we simply reset 
the seed (which we can consider as the new initial seed). Suppose that we decide 
to use 9956295 (the telephone number of NSERC, the Natural Sciences and 
Engineering Research Council of Canada), we use the command:

>> rand('seed', 9956295)  % set the seed

>> rand                   % generate a random number
    0.9216

Now we reset the seed to the same value 9956295

>> rand('seed', 9956295)
>> rand                   % generate a random number
    0.9216                  % the same number before

[Note: MATLAB has a built in inItial seed. On Unix version 5.3.1.29215a (R11.1) 
the value is 931316785. In order to avoid obliging the user to retype this number 
each time, MATLAB switches to this value when 0 is used as the seed.

Using the function rand(  ) is a very quick way of generating matrices for testing. 
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In section III.1.vii we test how long it takes for MATLAB to solve equations by 
generating 1000 equations in 1000 unknowns where the coefficients and 
constants are picked at random. This only takes a few seconds whereas typing in 
1,001,000 numbers would take slightly longer.

v.  Vectors of Indices. 

The concept of building a row vector of indices has already been discussed in 
section I.2.iv, in connection with the semicolon, but a brief summary is repeated 
here for reference and also to emphasize that we are creating a type of matrix.

To obtain the index set  -1, 0,... , 4 we write:

>> x = [-1 : 4]    

    -1     0     1     2     3     4

To obtain the index set  -1, -.5,  0, .5, ... , 4  we write:

>> x_step = [-1 : .5 : 2]

   -1.0000   -0.5000  0   0.5000  1.0000   1.5000   2.0000

To obtain the index set  5, 4, 3, 2, 1  (i.e. in reverse order) we write:

>> X_dec = [5 : -1 : 1]

     5     4     3     2     1

(Note: Writing [5 : 1] would result in MATLAB responding with the empty matrix 
[  ]).

vi.    The empty matrix [ ].

This matrix is often very useful because it can serve as the initial matrix when 
building up matrices by concatenation, see section II.4.ix. The empty matrix is 
treated by MATLAB in exactly the same way it treats any other matrix.

>> length( [ ] )

           0

>> A =  [ ]*[ ]
   A =   
       [ ]
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As the last note in v. above shows, an incorrect statement may lead to MATLAB 
returning the empty matrix.
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SUMMARY 

In the following A represents a matrix, square where required, and x, y vector (row
or column). Some of the functions are discussed in detail in other sections and for 
these only a short example or the function are given together with a reference. 

Note that in general MATLAB functions, e.g. sum(  ), operate on the columns of a 
matrix; to work with rows we use the ordinary transpose of A which is written A' if 
all the entries are real or (A).' . The commands are in usually written in terms of a 
matrix A, but they apply equally well to a vector v. 

i. Linear algebra. 

Examples of the following functions are given in the details section. 

The solution of equations using rref(  ), inv(  ), COEFF\const and lu(  ) is discussed 
in detail in section III.1. 

The computation of eigenvalues and eigenvectors is discussed in detail in section 
III.2. 

ordinary transpose when all entries are real:   A' 
ordinary (true) transpose with complex entries:   (A).' 
conjugate transpose:   A' 
inverse:   inv(A) 
reduced row echelon form (Gauss-Jordan):  rref(A) 
determinant:   det(A) 
eigenvalues as a column vectors of a matrix A:   eig(A) 
eigenvectors (right) & eigenvalues in a diagonal matrix: 
         [VEC , VAL] = eig(A) 
eigenvectors (left) & eigenvalues in a diagonal matrix: 
         first write:   [VEC_L , VAL] = eig(A.') 
         then:           VEC_L = (VEC_L).' 
dot product (program 1):   dot(x,y); 
cross product (program 2):   cross(x,y) 

ii. Matrix manipulations. 

Short examples of the following functions are given in the details section. More 
involved examples are given in section II.4 (extracting and building matrices) and 
throughout chapter III. 

transpose:   see i above 
dimensions of a matrix A as variables:   [rows , cols] = size(A) 
length of a vector v:                                  length(v) 
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diagonal of a matrix as column vector:                  diag(A) 
to form a matrix whose diagonal is a vector d:          diag(d) 
off diagonals of a matrix:                    diag(A , 1) , diag(A , -1) 
trace (sum of diagonal):                                trace(A) 
rotate 90o counterclockwise:                              rot90(A) 
change the order of a vector:                              rot90(rot90(A)) 
reflect matrix in vertical axis (flip left to right):   fliplr(A) 
reflect vector in vertical axis (flip left to right):   fliplr(v) 
reflect matrix in horizontal axis (flip up to down):    flipud(A) 
reflect vector in horizontal axis (flip up to down):    flipud(v) 

iii. Pi, square and other roots, complex numbers, roots of polynomials 

3.14159  :  pi 
square root of a number (real or complex) 
     sqrt( ) or define the function R( ) 
principal nth root: ( )^(1/n) 
square root of -1:  i or j 
      [avoid using i and j elsewhere; use n for loops] 
complex number a + bi:   (a + b*i) 
      [use parentheses to be sure that the entry is correct.] 
zeros of a polynomial: 
p = [1 0 0 1] is the vector of coefficients 
roots( p ) 

iv  Summing, maximum etc. 

Examples of the use of the following operations are given in section II.5, rather 
than in this section. 

Notice the use of the transpose operator ' when working with rows. This is done 
because the functions are intrinsically column operators.

sums of the columns of a matrix as a row vector:      sum(A) 
sums of the rows of a matrix A as a row vector:       sum(A.') 
sum of a vector (row or column):   sum(x) 
      [for cumulative sums use cumsum(A)] 
products:   prod(A)] 
averages of the columns of a matrix as a row vector:   mean(A)\mni 
averages of the rows of a matrix A as a row vector:    mean(A.') 
average of the elements of a vector (row or column):   mean(x) 
      [for medians use median(A); for standard deviation: std(A)] 
maximums of the columns of a matrix as a row  vector:  max(A) 
maximums of the rows of a matrix A as a row vector:    max(A.') 
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minimums of the columns of a matrix as a row vector:   min(A) 
minimums of the rows of a matrix A as a row vector:    min(A.') 
maximum and minimum of a vector x:              max(x),  min(x) 

v.  Real and imaginary parts etc. 

matrix of real parts:             real(A) 
matrix of imaginary parts:        imag(A) 
matrix of conjugates parts:       conj(A) 
matrix of amplitudes (radians):   angle(A) 

vi. Rounding the answer etc. 

matrix of absolute values:        abs(A) 
matrix of values rounded to the nearest integer: round(A) 
matrix of values rounded downwards :           floor(A) 
matrix of values rounded upwards :           ceil(A) 
matrix of values rounded towards 0:              fix(A) 
fractional part: define the function             fract( ) 
matrix of sign function (1, 0, -1) :             sign(A) 

vii. Exponential type (pointwise and matrix) 

exponential (pointwise):    exp(A)exponential (matrix):       expm(A) 
logarithmic pointwise:      log(A) 
logarithmic (base 10):      log10(A) 
square root:                sqrt(A) 

viii. Trigonometric. 

trigonometric:             sin(A),   cos(A),   tan(A) 
inverse trigonometric:     asin(A),  acos(A),  atan(A) 
hyperbolic:                sinh(A),  cosh(A),  tanh(A) 
inverse hyperbolic:        asinh(A), acosh(A), atanh(A) 

ix. Timing. 

time:   clock 
elapsed time:   t1 = clock; t2 = clock; etime(t2,t1) 
-- 
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DETAILS 

When several functions in a group work in exactly the same way, then only one 
example will be given, e.g only sin in the trigonometric group. 

i.  Linear algebra. 

The solution of equations using rref(); inv( ) and COEFF\const is discussed in detail
in section III.1. The computation of eigenvalues and eigenvectors is discussed in 
detail in section III.2. 

The following matrices and vectors will be used in this subsection. 

A = 
    -1     2     0 
     3     1    -2 

B = 
    -1     2 
     3     1 

x = 
    -1     2     4 

y = 
     3     1    -3 

---- 
Transposes require special attention in MATLAB. If the entries of a matrix are real 
then we can use ' 

>> A_TRANSPOSE = A' 

    -1     3 
     2     1 
     0    -2 

However if the entries are complex then in order to obtain the ordinary transpose,
which will usually be referred to as the true transpose, we have to use .' 

complex = 

    -1     i         % i is the square root of -1; see iii. 

>> (complex).'       % true transpose uses dot-apostrophe 
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    -1 
     i 

If however we were to use the symbol ' without the period then what we obtain is 
the conjugate transpose: 

>> (complex)'       % conjugate transpose 

    -1 
    -i 

Special care must be taken when dealing with eigenvalues and eigenvectors, 
because even though all the entries in a matrix may be real, the eigenvectors and
eigenvalues may be complex; see the examples in section III.2. 

>> B_INVERSE = inv(B) 

   -0.1429    0.2857 
    0.4286    0.1429 

>> det_B = det(B) 

    -7 

Eigenvectors are discussed in detail in section III.2. 

>> eigenvalues = eig(B) 

   -2.6458 
    2.6458 

>> [EIGENVECTORS , EIGENVALUES] = eig(B) 

EIGENVECTORS = 

   -0.7722   -0.4810 
    0.6354   -0.8767 

EIGENVALUES = 

   -2.6458         0 
         0    2.6458 

>> ECHELON_a = rref(A) 

    1.0000         0   -0.5714 
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         0    1.0000   -0.2857 

For the dot and cross products the following user defined functions may be used. 

Program 1 

% [dot.m] 
%  dot(x,y) computes the dot product of two vectors x and y, 
%  if x and y are both row or both column vectors. 

function v = dot(x,y) 

% use point wise multiplication & add terms 
v = sum(x .* y);    

Program 2 

% [cross.m] 
% cross(x,y) computes the cross product of two 
% 3-dimensional row vectors. 

function v = cross(x,y) 

B =[x ; y];                         %  form 2 x 3 matrix 

% the ti are minors of 3 x 3 matrix with i j k in first row 
t1 =  det( B(: , [2 , 3]) );        % for t1 use cols 2 & 3 
t2 = -det( B(: , [1 , 3]) );        % for t2 use cols 1 & 3 
t3 =  det( B(: , [1 , 2]) );        % for t3 use cols 1 & 2 

v = [t1, t2, t3];                   % put terms in a vector 

We test these functions out on x and y as above: 

>> do = dot(x,y) 

   -13 

>> cr = cross(x , y) 

   -10     9    -7 

ii.  Matrix manipulations. 

The following matrices and vectors wiil be used in this subsection: 
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C = 

    -3     6    12 
    -1     2     4 
     3    -6   -12 

x = 

    -1     2     4 

>> [ rows , cols] = size(C) 

      3  3                % rows = 3, cols = 3 

>> length(x) 
     
      3                  % length of x 

>> diag(C)               % for the main diagonal 

    -3 
     2 
   -12 

>> diag(C , 1)          %  first "off diagonal" above the main 

     6 
     4 

>> diag(C , -1)        %  first "off diagonal" below the main 

    -1 
    -6 

>> trace(C)   % sum of diagonal elements 

   -13 

>> rot90(C)   % counter clockwise rotation 

    12     4   -12 
     6     2    -6 
    -3    -1     3 
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To change the order of a matrix. 

Sometimes we want to change the order of a vector row or column. For example 
the function sort( ) - section II.5 - sorts the elements of a vector in increasing 
order and we may want the elements in a decreasing order. The use of the 
function rot90(  ), which rotates a matrix 90o in a counterclockwise direction, 
twice in succession will reverse the order for both column and row vectors. For 
this reason it should be used in programs rather than the next two functions fliplr(
) and flipud(  ), which will work on row and column vectors respectively. 

>> rot90(rot90( x )) 

     4     2    -1 

To take the mirror image of a matrix about a vertical axis: 

fliplr(   )        ( FLIP Left to Right) 

>> C3 = fliplr(C) 

    12     6    -3 
     4     2    -1 
   -12    -6     3 

To take the mirror image of a matrix about a horizontal axis: 

flipud(  )        (= flip Up to Down) 

>> C4 = flipud(C) 

     3    -6   -12 
    -1     2     4 
    -3     6    12 

iii.  Pi, square roots and other roots, complex numbers, 
              zeros of polynomials. 

The number pi: 

>> pi 

    3.1416 

>> format long               % section I.5.ii 

>> pi 
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   3.14159265358979 

>> format              % return to short format (or format short) 

Roots: 

MATLAB use the symbol sqrt( ) for the square root of a real number and the 
principal square root of a negative or complex number. This can be cumbersome 
so we use the original square root symbol R( ) which goes back to the Italian 
Renaissance (R stood for radix = radicii = racine]. 

% [r.m] 
% instead of sqrt(x) 
function y = R(x) 
  y = sqrt(x); 

Consider the following calculation: 

>> c =  R(1 + R(1 + R(1 + R(1 + R(1 + R(1 + R(1 + R(1)))))))); 

1.61785129060968 

Of course if we wanted to continue the process to see if there is convergence we 
would want to use a "while-loop" (II.8.5) 

% [it_gn.m] 
format long 

initial = input(' What is the initial value? '); 
a = initial; 
b = -100; 
counter = 0; 
while abs(a-b) > 10^(-15) 
     b = a; 
     a = R(1 + a); 
     counter = counter + 1; 
end 

Run the program: 

>> it_gn 

initial value is: 1 
last value is     1.61803398874990 
the process took  30 iterations. 
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In fact the number to which the process converges is: 

>> G = (1 + R(5))/2; 

                  1.61803398874990 

For other roots use ( )^(1/n) 

 (2)^(1/5) 

    1.1487 

Complex numbers. 

The imaginary number "square root of  -1" is obtained by typing i or j. Note that 
"i" appears twice in the following. On the right, and in all complex numbers, it is 
used to indicate the imaginary part. On the left i is used to obtain the complex 
number with real part = 0 and imaginary part 1. 

>> i 

        0 + 1.0000i 

>> j 

        0 + 1.0000i 

Because of this use of i and j one should avoid using i and j elsewhere; use m or n 
for indices in loops. 

If we were to define i = 5 then whenever we type i we obtain the value 5: 

>> i = 5 

i = 

     5 

We can also obtain 0 + 0i ourselves by computation: 

>> im = (-1)^(1/2) 

   0.0000 + 1.0000i 

>> sqrt(-1)            % sqrt(  ) is the square root function 
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   0 + 1.0000i 

>> b = (-1)^(1/3) 

   0.5000 + 0.8660i  

We check this last calculation by taking powers: 

>> b^2 

  -0.5000 + 0.8660i  

>> b^3 

  -1.0000 + 0.0000i      % complex number with imaginary part 0 

zeros of polynomials. 

Note that only only one cube root of -1 is returned in the calculation for "b". To 
obtain all the cube roots of -1 we use the function roots(  ); see also section II.7.ii. 

First we define the polynomial vector which corresponds to the defining equation 
for the cube roots of -1, namely x^3 - 1 = 0. We simply write down the 
coefficients, putting a 0 whenever a term is missing, and then use roots(  ): 

>> p = [1 0 0 1]; 

>> roots(p) 

  -1.0000          
   0.5000 + 0.8660i 
   0.5000 - 0.8660i     

iv.  Summing, maximum etc. 

Examples of the use of the following operations are given in section II.5, rather 
than in this section. 

v.   Real parts etc. 

We start with the following two matrices, which we will then combine and 
manipulate: 
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REA = 

    -1     2     0 
     3     1    -2 

 IMAG = 

    0.5000   -0.6000    0.7000 
   -0.1000    0.2000    0.3000 

>> i * IMAG               % multiply IMAG by i 

        0 + 0.5000i        0 - 0.6000i        0 + 0.7000i 
        0 - 0.1000i        0 + 0.2000i        0 + 0.3000i 

>> C = REA + i*IMAG       % form a complex matrix 

  -1.0000 + 0.5000i   2.0000 - 0.6000i        0 + 0.7000i 
   3.0000 - 0.1000i   1.0000 + 0.2000i  -2.0000 + 0.3000i 

>> real(C)                           % real part of C = REA 

    -1     2     0 
     3     1    -2 

>> imag(C)                         % imaginary part of C = IMAG 

    0.5000   -0.6000    0.7000 
   -0.1000    0.2000    0.3000 

>> conj(C)                         % conjugate matrix 

  -1.0000 - 0.5000i   2.0000 + 0.6000i        0 - 0.7000i 
   3.0000 + 0.1000i   1.0000 - 0.2000i  -2.0000 - 0.3000i 

>> abs(REA)                      % absolute values of REA 

REA = 

     1     2     0 
     3     1     2 

>> abs(IMAG)                      % absolute values of IMAG 

IMAG = 
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    0.5000    0.6000    0.7000 
    0.1000    0.2000    0.3000 

>> abs(C)                            % absolute values of C 

    1.1180    2.0881    0.7000 
    3.0017    1.0198    2.0224 

>> ang = angle(C)                    % amplitudes in radians 

    2.6779   -0.2915    1.5708 
   -0.0333    0.1974    2.9927 

>> ang_deg = (180/pi)*ang            % amplitudes in degrees 

  153.4349  -16.6992   90.0000 
   -1.9092   11.3099  171.4692 

vi.  Rounding the answer etc. 

Often we want an integer valued answer. The following MATLAB functions are used
for this type of operation: 

matrix of values rounded to the nearest integer: round(A) 
matrix of values rounded towards -  :           floor(A) 
matrix of values rounded towards +  :           ceil(A) 
matrix of values rounded towards 0:              fix(A) 

fractional part: define the function             fract( ) 
matrix of sign function (1, 0, -1) :             sign(A) 

>>  z = 

   -5.6000    5.6000 

>> round(z) 

    -6     6 

>> floor(z) 

    -6     5 

>> ceil(z) 



SECTION II.3.  COMMON MATLAB FUNCTIONS 

    -5     6 

>> fix(z) 

    -5     5 

For the decimal part of a number, written as a positive quantity we can use the 
following function. 

% [decimal.m] 
% finds absolute value of fractional part 

function y = decimal(x) 

x1 = abs(x); 
y =  (x1 - floor(x1)); 

>>  z = 

   -5.6000    5.6000 

 decimal(z) 

    0.6000    0.6000 

Another function which is useful is sign(  ) which returns  -1,  0  or  1 depending on
whether the number is negative, zero or positive: 

>> w = 

   -5.4000         0    5.4000 

>> sign(w) 

    -1     0     1 

Instead of -1, 0, 1 we can also return -, {space} or + by using the format + 
command: 

>> format + 
>> w 
     
    -  +                    % there is a space in the second position 
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vii. Exponential type (pointwise and matrix) 

MATLAB functions operate pointwise on vectors and matrices 

Suppose that we have a vector: 

x = 

     1     2     3     4 

When we write exp(x) MATLAB calculates "e" to each element of x 

>> exp(x) 

    2.7183    7.3891   20.0855   54.5982 

In this case we can obtain  the same answer by taking “e” pointwise to the 
“power” x  (see section II.1)

>> base_e = exp(1)

         2.7183 

>> ( base_e) .^(x)      % .^ is pointwise power

   2.7183    7.3891   20.0855   54.5982 

We can also work with matrices

M5=

    0.5000   -0.6000    0.7000
   -0.1000    0.2000    0.3000

>> exp(M5)                  

    1.6487    0.5488    2.0138
    0.9048    1.2214    1.3499

There is a matrix version expm(  ) of the exponential function which uses the 
power series for e^x, but with powers of the matrix. The difference can be seen 
by working with the identity matrix.
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>> R = eye(2)

     1     0
     0     1

>> exp(R)                   % pointwise powers of e

    2.7183    1.0000        % e1 = e;  e0 = 1 ; 
    1.0000    2.7183

>> expm(R)                   % expm(R) = R + R2/2! + R3/3! + ....

    2.7183         0         
         0    2.7183

B1 =

   -0.1250    0.2500
    0.3750    0.1250

>> log(B1)

  {-2.0794 + 3.1416i}    -1.3863          
  -0.9808                -2.0794          

>> sqrt(2)
    1.4142

>> format long

>> sqrt(2)

   1.41421356237310

>> sqrt(B)

   {0 + 1.0000i}      1.4142          
   1.7321             1.0000          

vii.  Trigonometric functions.

The function names for the MATLAB trigonometric and hyperbolic functions are 
the same as the usual names; the inverse functions have the prefix "a" e.g. 
"atan". These functions operate element wise on matrices. See section II.5.i for an
example of the construction of a trigonometric table.
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B =
    -1     2
     3     1

>> tan(B)

   -1.5574   -2.1850
   -0.1425    1.5574

>> 4*atan(1)                    % arctan(1) = pi/4

   3.14159265358979  % = pi

B1 =

   -0.1250    0.2500
    0.3750    0.1250

>> acos(B1)

    1.6961    1.3181
    1.1864    1.4455

>> sinh(B)                    % hyperbolic sine

   -1.1752    3.6269
   10.0179    1.1752

>> atanh(B1)                  % inverse hyperbolic tangent

   -0.1257    0.2554
    0.3942    0.1257

viii.  Timing.

MATLAB has a clock function clock, which gives the time on the computers clock:

>> t1 = clock

t1 = {1.0e+03} *
1.9940   0.0100   0.0170   0.0090  0.0520  0.0384

which is to be interpreted as:

1994,  month 10,  day 17, 09 hours, 52 minutes, 38.4 seconds)
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To find out how long it takes for MATLAB to do a computation (or how long it took 
to debug your program!) we use clock in conjunction with the function etime(  ,  ) 
in the following way:

      >> t1 = clock
      >> ....  do some calculations
      >> t2 = clock
      >> elapsed_time = etime(t2 , t1)

Note how the last time comes first in etime.

Example 1. The program "elapsed.m" calculates how long it takes MATLAB to 
generate a vector of random numbers. The number of terms is an input quantity 
from the keyboard (section I.4.iii).

Program 1

% [elapsed.m]
% input size of vector from the keyboard
terms = input(' how many random numbers, eh?  ')

t1 = clock;

vector = rand(1, terms);                    % do not print!

t2 = clock;

elapsed_time = etime( t2 , t1)               % last time first

We now run this proram for progressively larger vectors of random numbers:

>> elapsed

how many random numbers, eh?  1000

    0.0284   (seconds)

how many random numbers, eh?  10000

   .1629      (seconds) 

how many random numbers, eh?  100000

   2.9340     (seconds) 
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how many random numbers, eh?  1000000

   35.5314 (seconds)

Note that the time goes up by much more than a factor of 10 each time which 
shows that the time to generate vectors of random numbers is not linear. The 
time also varies as we repeat the program with the same numbers; this is 
because MATLAB is generating a different set of random numbers. 

In section III.1.vii we will use the above technique to see how long it takes to solve
1000 linear equations in 1000 unknowns when the coefficients and constants are 
chosen at random. Guess now how long it will take.
    
       



II.4. Extracting and Building Matrices

SUMMARY

i.   Building matrices from vectors. 

      To form the matrix with row 1 = vec1 and row 2 = vec2: 
         A = [vec1; vec2]

      To form the matrix with column 1 = (vec1)', column 2 =(vec2)'
         B = [vec1', vec2']

ii.  Extracting elements and vectors from matrices.
      To extract elements:
         b = A(1 , 2) for matrices  
         b = a(3) for vectors

      To extract vectors:
         row_2 = M(2 , : )      [extract row 2 as a vector]
         column_3 = M( : , 3)   [extract column 3 as a vector]

iii. Extracting several rows or columns from a vector or matrix.

      vectors:
      For sequential terms in vector v:
          v1 = v( [2 : 5] )   [elements 2 through 5]

      for a non-sequential, not necessarily increasing, set of indices of vector v:

         index_1 = [5, 2 , 4]
         v2 = v(index_1)     [elements 5, 2, 4 of v]

      matrices:
      To form the matrix N1 which consists of rows 3 through 6 of matrix M. Note the
colon " : " which says that we should keep the elements in all the columns of M.

         N1 = M( [3 : 6] , : ) 

      To form the matrix N2 which consists of those columns of matrix M that are 
given by the vector index_2 and in the same order as in index_2. Note the colon 
" : " which says that we should keep the elements in all the rows of M.

        index_2 = [5, 1:3]   [col. 5 and then cols. 1 through 3]

        N2 = M( : , index_2) 
      To form the matrix N3 which consists of those elements of M which are in the 
rows given by an index vector index_3 and columns of matrix M that are given by 
the vector index_4.
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        N3 = M( index_3 , index_4  )

iv.  Replacing, or defining, a column or row of a matrix by a vector. Replacing 
certain elements of a vector by another vector
 
         M4 = M;        [we wish to save M so copy it]
         M4( : , 4) = vec_4   [column 4 of M4is now equal to vec_4]
         M4( 3 , :) = vec_5   [row 3 of M4 is now equal to vec_3]

         index = [2 : 5];  w = [9  -7  3]
         v(index) = w       [v(j) = w(j) if j is not in  index]

v.   Building matrices from submatrices.

      M = [A1 , A2 ; A3 , A4] where the submatrices are compatable.  

vi.  Replacing a block of a matrix by a given matrix. 

      To replace the upper right 2 x 3 block of a matrix M by a 2 x 3 matrix ADD:

         M( [1 : 2] , [3 : 5]) = ADD

vii. Building matrices recursively by assignment and by  concatenation;  the 
empty matrix: [ ].

viii. Storing and "fetching" sequences of matrices. 

ix. Building a diagonal matrix whose diagonal is a given vector.   Extracting a 
diagonal from a matrix. Off-diagonal matrices.

      D = diag( dia )

x. Building matrices with many zeros; predefining the dimensions.

      Construct a matrix of zeros and place the vectors of values via assignment 
and simple "for-loops"
--
xi.  Forming a vector from the elements of a matrix and inversely.

      To form a row vector from the elements of M:  vec = M( : )
      To form a 3 x 4 matrix from a 1 x 12 vector a:
      M = zeros(3 , 4) 
      M( : ) = a

      [The command reshape(M, 3 , 4) can be used to reshape a matrix]
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DETAILS AND EXAMPLES

i. Building matrices from vectors.

To illustrate the building of matrices from row vectors we create three row vectors 
of indices in the manner discussed in section II.2.v.

>> row_1 = [3 : 6]

     3     4     5     6

>> row_2 = [7 : -1 : 4]

     7     6     5     4

>> row_3 = [-3 : 0]

    -3    -2    -1     0

To form a matrix M whose rows are equal to these three row vectors, we use 
square brackets together with the semicolon to indicate that we want the vectors 
in diffferent rows:

>> M = [row_1 ; row_2 ; row_3]

     3     4     5     6
     7     6     5     4
    -3    -2    -1     0

If we had used commas then MATLAB would have put the three vectors in the 
same row:

>> M1 = [row_1 , row_2 , row_3]

3   4   5   6    7    6    5   4  -3    -2    -1   0

If instead of row vectors, we have column vectors then we form a matrix using 
commas to indicate to MATLAB that the vectors should be placed side by side. To 
illustrate this, we take the transpose of each row vector using the true transpose 
operator ' .

M2 = [row_1' , row_2', row_3']

3    7    -3
4    6    -2
5    5    -1
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6    4     0

ii.  Extracting elements and vectors from matrices.

If a is a vector then all we have to do is give the element number:

>>  a =  [1 3 5];

>>  b = a(2)

      3

If A is a vector then we specify the row and column:

>>  c = M(2 , 3)

      5

To extract row 2 from the matrix M we use parentheses and separate the row and 
columns by a comma. Since the column values range over all the columns of M 
we indicate this by a colon.

>> extract_row_2 = M(2 , : )

     7     6     5     4

To extract column 3, we let the rows range over all values, again using :

>> extract_col_3 = M( : , 3)

     5
     5
    -1

iii. Extracting several rows or columns from a matrix.

If we want to pull out the range of columns 2, 3, 4 we list these in the column 
position using 
[2 : 4]:

>> extract_1 = M(: , [2 : 4]) 

     4     5     6
     6     5     4
    -2    -1     0
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Instead of listing the columns inside the parentheses, we can use an index vector:

>> index_1 = [2 : 4]

     2     3     4

We then place this index vector in the columns position:

>> extract_1a =M( : , index_1)

     4     5     6
     6     5     4
    -2    -1     0

In this last example, we listed the columns that we wanted to extract in increasing
order. If we specify a different order, then MATLAB will automatically do the 
required switching of the columns:

>> index_2 = [3  4  2]

     3     4     2

>> extract_2 = M( : , index_2)

  % [col3  col4  col2  of M]
 
     5     6     4      % interchanged elements of row 1
     5     4     6
    -1     0    -2

We can work with both row and column index vectors at the same time:

>> index_3 = [3 : -1 : 1]

     3     2     1

>> extract_3 = M(index_3, index_2)

    -1     0    -2
     5     4     6
     5     6     4

iv. Replacing, or defining, a column or row of a matrix by a vector.

Suppose that we want to replace the fourth column of the matrix M by the column
vector:
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vec_4 =

    11
    12
    13

Since we may want to use the matrix M again later on, we first make a copy of it:

>> M4 = M;

To assign the vector col_4 to the fourth column of M4, we use a colon to indicate 
that we are ranging over all the rows of M4 and then we indicate that we want 
column 4 to be changed.

>> M4(:, 4) = vec_4
 
 %                      the new column 4 = vec_4
                         
     3     4     5    11
     7     6     5    12
    -3    -2    -1    13

If had wanted to replace the third row of M by a 1 by 4 row vector vec_5 we would 
write:

>> M4(3, :) = vec_5

Suppose that we want a 1 x 6 vector such that the even elements are all equal to 
3 and the odd ones are 7. We first define a 1 x 6 vector z of 0s.

>> z = zeros(1,6)

We then define two index sets and the vectors of elements that we want in those 
indices

>> index1 = [2, 4, 6]  % or index1 = [2 : 2 : 6]
>> w1 = [1 2 3]     

>> index2 = [1, 3, 5]  % or index2 = [1 : 2 : 5]
>>  w2 = [4 5 6]        

Next we replace the elements of z:

% first replace those elements of z which correspond to elements of index1
% by the element of w1 which occupies the same position. 
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>> z( index1 ) = w1  

%  the elements of z in positions 2, 4 and 6, will be replaced by
%  1, 2 and 3 respectively. The other positions will remain unchanged.

>> disp(z)
    
     0 1 0 2 0 3

%  now do the same with index2
      
>> z( index2 ) = w2

>> disp(z)

     4 1  5  2 6 3
   
The same technique can be used to replace elements of the rows (or columns) of 
a matrix which correspond to a given index set. See example 1 of section x for 
another example.

v. Building matrices from submatrices.

In i we built up matrices from vectors. A more general situation is to build up 
matrices from submatrices and to do this the semicolon and comma are used in 
the same way as with vectors. The key to combining matrices (even more so than 
in marriages) is compatibility. A general rule of thumb is that MATLAB will do more
or less anything if the dimensions are compatible.

We first form four submatrices of dimensions 1 x 2, 1 x 3, 3 x 3 and 3 x 2 using 
the function ones(  ) discussed in II.2.ii.

>> SUB_1 = 1*ones(1 , 2)    

     1     1

>> SUBS_2 = 2*ones(1,3)

     2     2     2

>> SUB_3 = 3*ones(3,3)

     3     3     3
     3     3     3
     3     3     3
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>> SUB_4 = 4*ones(3,2)

     4     4
     4     4
     4     4

We can combine the first two and then the third and fourth so as to form a 1 x 5 
row vector and a 3 x 5 matrix. Note how the comma is used to put the 
submatrices on the same "row".

>> COMBINED_1 = [SUB_1 , SUB_2]

     1     1     2     2     2

>> COMBINED_2 = [SUB_3 , SUB_4]

     3     3     3     4     4
     3     3     3     4     4
     3     3     3     4     4

We join COMBINED_1 and COMBINED_2 together using the semicolon to put them 
on separate "rows":

>> COMBINED_3 = [COMBINED_1 ; COMBINED_2]

     1     1     2     2     2
     3     3     3     4     4
     3     3     3     4     4
     3     3     3     4     4

We could have done all the combining at once:

>> COMBINED_4 = [SUB_1 , SUB_2 ; SUB_3 , SUB_4]

     1     1     2     2     2
     3     3     3     4     4
     3     3     3     4     4
     3     3     3     4     4

To again illustrate extraction we pull out rows 1 and 2 of columns 1 , 3, 5 of 
COMBINED_4. In order to save COMBINED_4 for later use we give a name to the 
extracted matrix:
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>> EXTRACT_4 = COMBINED_4( [1 2] , [1 3 5] )

     1     2     2
     3     3     4

vi. Replacing a block of a matrix by a given matrix. 

Suppose that we wanted to replace the upper right 2 x 3 block of COMBINED_4 by 
submatrix of 5's. If we do not care about saving "COMBINED_4" we could change it
right away. 

>> ADD = 5*ones(2,3);

>> COMBINED_4( [1 : 2] , [3 : 5] ) = ADD         % see iii above

COMBINED_4 =

     1     1     5     5     5
     3     3     5     5     5
     3     3     3     4     4
     3     3     3     4     4

However if we wanted to save COMBINED_4, we would first make a copy of it and 
then work with this copy:

>> COPY_1 = COMBINED_4;  

>> COPY_1( [1 : 2] , [3 : 5]) =  ADD             % see iii above

     1     1     5     5     5
     3     3     5     5     5
     3     3     3     4     4
     3     3     3     4     4

>> NEW_1 = COPY_1;
vii. Building matrices recursively by assignment and by conatenation; the empty 
matrix: [ ].
   
Subsection iv shows how we can assign a column vector to a specific column of a 
matrix and subsection i shows how matrices can be built up from vectors by 
concatenation; i.e. by linking the vectors together. Both of these ideas can be 
used to build up matrices recursively.

Which of the two methods one uses is often a question of taste, but sometimes 
one or the other is more suited to the situation. What is particularly nice is that in 
neither of the two methods is there a need to predefine the dimensions of the 
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final matrix.

To illustrate the techniques suppose that we want to construct a matrix A whose 
first row consists of the integers 1,...,5 and whose second row consists of the 
squares of these integers.

In the first method we simply define the first row and then use pointwise powers 
to find the squares. We then concatenate the two rows, placing the second 
underneath the first by means of a semi-colon ; as in subsection i. This technique 
is given as method 1 in the program concat.m .

In the second method we loop five times. At each stage n we construct the 
column vector c whose first element is n and whose second is n2. We then assign 
vector c to column n as in subsection iv.

In the third method we start with the empty matrix, which is denoted by [ ]. We 
then go into our loop, and, as in the second method, we construct the column 
vector c. This column vector is then concatenated to the matrix that we had at the
previous stage. At the first stage we concatenate c with the empty matrix and so 
obtain c.

% [concat.m]

% method 1: define the first row, use pointwise powers.

a = [1: 5];     % the row vector [1,...,5]; section II.2.v
b = (a).^2;     % pointwise powers;  section II.1.vii
A = [a; b];     % concatenate;  subsection i

disp('final matrix ='), disp(A)

% method 2: assign a column vector to each column of A.

for n = 1:5            % loop; section 1.3.iii
    c = [n; n^2];      % ; puts n^2 underneath n
    A(:, n) = c;       %  column n; subsection  iv
end

disp('final matrix ='), disp(A)

% method 3. start with the empty matrix and concatenate.

A = [ ];               % start with the empty matrix
for n = 1:5
    c = [n; n^2];      % ; puts n^2 underneath n
    % concatenate c, using , to the previous matrix A
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    A = [A, c];        % , puts c on the "side' of A
end

disp('final matrix ='), disp(A)

In all three cases we obtain:

final matrix =

     1     2     3     4     5
     1     4     9    16    25

A more involved example of the second method is given in Section III.3, example 
2. It could of course have been done by the third method.

viii. Storing and "fetching" sequences of matrices. 

One of the weaknesses of MATLAB is that it does not allow for automatic 
sequencing of matrices. If we have only a small fixed number of matrices, we can 
call them A_1, A_2, etc., but sometimes we want to generate matrices using a 
"for-loop" and it would be useful to have the matrices indexed. One way to get 
around this deficiency is to store the matrices generated as submatrices of a 
larger matrix. We then "fetch" the submatrices from the larger matrix as needed.

Example 2. The following program creates a 2 x 2 random matrix A and then 
stores the first three powers of A in a matrix called STORE. This is printed out here
for the purposes of illustration, but for large systems this would not be done; 
submatrices would be pulled out as needed.

Program 1
% [store1.m]

A = rand(2 , 2)                  % section II.2.iv

for n = 1:3                      % for-loop; section I.3.iii
    B = A^n;
    index = [(2*n -1) : (2*n)]
    STORE(: , index) = B;         % extract several columns; subsect. iii
end

We now call up the program "store1.m"

>> store1                     % use only the name not store1.m
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STORE =

    0.2190    0.6789    0.0799    0.6098    0.0462    0.4685
    0.0470    0.6793    0.0423    0.4934    0.0325    0.3638

To "fetch" the submatrices, we use the function "fetch(k, STORE)" which is defined
below. This function of two variables (see section I.3.iv) retrieves the kth 
submatrix of a matrix STORE. It was written for square matrices stored 
horizontally in the matrix STORE, but it can easily be modified to fetch non-square
matrices or matrices stored vertically.

The program includes a check to make sure that the number of rows of the 
storage matrix "STORE" is an integer multiple of the number of columns. This 
check uses:

1. a conditional if-end loop (section II.8.iii).
2. the inequality relation symbol ~= (section II.8.i).
3. the error function error('  message ' ) which returns control to the MATLAB 
command line and displays the enclosed message (section II.8.iv).
4. the double valued function size(  ) to find the dimensions (section II.3.ii)
5. the function round(  ) which rounds to the nearest integer.

Program 2

% [fetch.m]

function B = fetch(k, STORE)

[rows, cols] = size(STORE);     % sect. II.3.ii.

% Check that the matrix is o.k.        % sect. II.8,i,iii.
if round(cols/rows) ~= (cols/rows)     % round: sect. II.3.vi
    error('columns not multiple of rows or matrix is vertical' )
end

% The dimension of the submatrices is rows x rows; there are
% (cols/rows) of them as checked just above.
dim = rows;
num_mat = cols/dim;

% The submatrix that we want is in columns (k-1)*dim + 1 to
% k*dim of "STORE". For complicated ranges do in steps. 
lo = (k-1)*dim + 1; 
up = k*dim;
range = [lo : up];
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B = STORE(: , range);   %  use `;' to avoid a repeat printout

Example 3.  We "fetch" out the third of the submatrices of the storage matrix 
"STORE" which was calculated as A^3.

>> fetch(3,STORE)

    0.0462    0.4685
    0.0325    0.3638

A more involved example of the storage and fetching of matrices - so that linear 
combinations can be calculated - is given in section III.2 in connection with the 
spectral decomposition of a matrix.

ix. Building a diagonal matrix whose diagonal is a given vector.   Extracting a 
diagonal from a matrix. Off-diagonal matrices.

We construct a 1 x 4 vector "dia" all of whose elements equal 2.

>> dia = 2*ones(1,4)

     2     2     2     2

To form a diagonal matrix using "dia" we use the diag(  ) command:

>> D = diag(dia)

     2     0     0     0
     0     2     0     0
     0     0     2     0
     0     0     0     2

The function diag(  ) also works in the other way; we can obtain the vector "dia" 
back again:

>> diag(D)

     2     2     2     2

If we want to construct an off-diagonal matrix we can use a two-valued form of 
diag

>> off_dia = 2*ones(1,3)

     2     2     2 
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To place off_dia below the main diagonal we write:

>> D = diag(off_dia, -1)

     0     0     0     0
     2     0     0     0
     0     2     0     0
     0     0     2     0

To place the vector off_dia above the main diagonal we would use the command:

>> D = diag(off_dia, 1)

x. Building matrices with many zeros; predefining the dimensions.

If a matrix has many zeros one can often avoid, particularly if the non-zero entries
are off-diagonals or rows, typing in all the values.

Example 1. We construct a Leslie matrix (see the population example in section 
III.2) which has 2's in the first row and 7's just below the main diagonal. First we 
define the corresponding vectors and construct a matrix of zeros which has the 
correct dimensions. The first vector is placed in the first row by assignment and 
the second is placed via a "for-loop" (section I.3.iii) which assigns one element of 
the vector at a time to the off-diagonal.

>> A = zeros(4,4);        % predimension: a 4 x 4 matrix of 0's
>> r1 = 2*ones(1,4);      % a 1 x 4 vector of 2's
>> d2 =7*ones(1,3);       % a 1 x 3 vector of 7's

>> A(1 , :) = r1;         % assign r1 to the first row of A

>> for n = 1:3            % for-loop; section I.3.iii
     A(n+1, n) = d2(n);   % element (n+1,n) of A = element n of d2
   end

>> disp(A)                % display A; see I.5.i

     2     2     2     2
     7     0     0     0
     0     7     0     0
     0     0     7     0

xi. Forming a vector from the elements of a matrix and inversely.

Sometimes we want to examine the elements of a matrix in vector form (see 
example 1 of section II.5). If we use the command M( : ), then MATLAB pulls out 
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the elements of M one at a time starting in the upper left corner and working 
down the first column and  then does the same for the next columns. Since the 
vector formed would be a column vector, we use the transpose operator to obtain 
a row vector.

>> vec = M( : )'        % use '  for real matrices

3   7  -3   4    6   -2    5    5   -1    6    4   0

Now we want to take the twelve elements of "vec" and form them into a 4 x 3 
matrix whose elements are obtained by filling the first column from "vec", then 
the second, etc.. First we give it the desired shape. Then we use M( : ), but this 
time the vector is assigned to M( : ) whereas above M( : ) was assigned to the 
vector. Notice how the order, starting from the upper left and working down, of 
the elements is exactly the same as in the original matrix M, but that now the 
matrix is 4 x 3 instead of 3 x 4.

>> M3 = zeros(4,3);

>> M3( : ) = vec       % assign the vector to M

     3     6    -1
     7    -2     6
    -3     5     4
     4     5     0

[Note: If had simply wanted to reshape M we could have used the command:

>> M3 = reshape(M, 4, 3)  ]     
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SUMMARY

i.  Column functions. 
      MATLAB has various column functions including sum(  ), mean(  ),  max(  ), 
min(  ), cumsum( ), prod(  ), cumprod( ), median, std( ).
         [Warning: Do not use "sum" etc. as variable names]

ii.  Sorting

      To sort all the columns of a matrix G in increasing order:

          sort(G)

      To sort a vector x and obtain the set of indices indicating the position of the 
entries before sorting:

         [x_sort , indices] = sort(x). 

      The vector "indices" can be used in turn to change the position of elements of 
another vector or matrix.

iii.  Determining the dimensions of a matrix or vector.

         [rows , cols] = size(A)

      If a is vector:

         terms = length(a)

DETAILS AND EXAMPLES

i.  Column functions.

We use the following matrix in the examples that follow:

G = 

    -1     2     3
     1    -1    -1
     1     2     2
     0     0     0

MATLAB matrix functions are column functions rather than row functions. Thus 
sum(G) calculates the sums of the columns of G and places the sums in a row 
vector which lies underneath the columns:
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>> col_sum = sum(G)

     1     3     4

To obtain row sums we need to use transposes, and if we want the row sums in a 
column vector so as to correspond to the "side" of G, we have to take another 
transpose. Since G is real we can use ' the transpose for real matrices.

 >> row_sum = sum( G' ) ' 

     4
    -1
     5
     0

The average of the columns is obtained using mean(  ).

>> h1 = mean(G)

    0.2500    0.7500    1.0000

h1 is a vector so we can find the mean of its elements:

>> a = mean( h1 )
   
   a = .667

We could have found a in one line:

>> a = mean( mean(G) )

or we could have first formed a vector from the elements of G (see II.4, xi):

a =  mean( G( :  ) ) 

We can also obtain the "median" or "middle" value of the columns of a matrix or 
of a vector by using median(  )

x =
     1     2     3     4     5

>> median(x)

     3
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Since the columns of G have an even number of elements, MATLAB takes the 
average of the two middle elements. For example the elements of column 1 are -1
0 1 1 and so MATLAB takes the average of 0 and 1.

>> h2 = median(G)

    0.5000    1.0000    1.0000

For statistics, one often needs the standard deviation of a vector or matrix

>> std(x)

    1.5811

>> h3 = std(G)

    0.9574    1.5000    1.8257

>> max_col = max(G)

     1     2     3

>> min_col = min(G)

    -1    -1    -1

We can also obtain cumulative sums as we go down the column

>> cumulative_sum = cumsum(G)

    -1     2     3
     0     1     2
     1     3     4
     1     3     4

ii. Sorting.

To sort the columns of a matrix in increasing order, we use the function sort(  ). 
The function can be used as a single valued function to simply sort or as a double 
valued function to find the original position of the elements
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>> sort(G)

    -1    -1    -1
     0     0     0
     1     2     2
     1     2     3

Example 1. We form a vector from a matrix using D(:) (see section II.4) and then 
order these elements for further analysis.

D =

     0     0     7     4
     2    -1    -3     0
     0     5     0    -1

To put all the elements of D, in the order (1,1), (1,2), (1,3), (2,1), ...  in a row 
vector we use a single colon.

>> x = D( : )'

0    2    0    0   -1    5    7   -3    0    4    0  -1

We can now sort x in increasing order:

>> y = sort(x)

 -3   -1   -1   0    0    0    0    0    2   4   5  7

Not only can we sort the columns, but we can also find the position of the 
elements in the original columns. Thus from the first row of INDICES below we can
tell that the three terms -1, -1, -1 were respectively in the rows 1, 2 and 2.

To find INDICES we use sort(  ) as a double valued function  (see section I.4; and 
the other common double valued function eig( ) ).

>> [NEW_MAT , INDICES] = sort(G)

NEW_MAT =

    -1    -1    -1
     0     0     0
     1     2     2
     1     2     3
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 INDICES =

     1     2     2
     4     4     4
     2     1     3
     3     3     1

Sorting indices are also used to change the order of a vector (or matrix) according
to the order of the sorted matrix.

Example 2. Suppose that we want to rearrange the rows of G so that the 
corresponding row sums are in increasing order. Above we found the row sums as 
a column vector; this is repeated here for reference:

>> row_sum = sum(G')'  % original row sums

     4
    -1
     5
     0

We now order the row sums and find the corresponding index set. 

>> [row_sum_2 , indices] = sort(row_sum)

row_sum_2 =               % ordered row sums

    -1
     0
     4
     5

indices =
     2
     4
     1
     3

Now we rearrange the rows of G using the index set "indices" (see Section II.4)

>> G_2 = G(indices , :)      % rows contained in indices

     1    -1    -1
     0     0     0
    -1     2     3
     1     2     2
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We check that G_2 does indeed have its row sums in increasing order:

>> row_sum_3 = sum(G_2')'

    -1
     0
     4
     5

iii.  Determining the dimensions of a matrix and the length of a vector.

>> [rows , cols] = size(G)

    rows = 4
    cols = 3

>>  terms = length(indices)
     
    terms = 4



SECTI0N II.6. GRAPHING VECTORS AND MATRICES

SUMMARY

First time users of the plot(  ) function should read the introduction to graphing at 
the beginning of the EXAMPLES section.

Simple plots can be done from the MATLAB command line, but it is generally 
advisable to write a program (see section I.3.i). This allows for changes and 
corrections.

Because plotting involves various options the summaries here are more detailed 
than in other sections. The Details and Examples section illustrates commands via
examples and are not presented in the same order or at the same number as in 
this summary.

i.    The basic plotting command.

plot( domain_vector , value_vector )

      Both domain_vector and value_vector are row vectors of the same length. 
How the values in the domain and value vectors are obtained is of no importance 
e.g.:

          domain_vector              value_vector
          x1 = [-1  6]               y1 = [.1   pi]
          x2 = [2 : 01 : 4]          y2 = sin(x2)
          x3 = [0 : 4]               y3 = rand(1 , 5)
          x4 = [-2]                  y4 = [7]

      The ordered pairs (x , y) - where x and y are the corresponding entries of the 
domain and value vectors - will be connected by a solid line.

      To determine the length of your vectors use length( ).

      [Note: there is no requirement that the values in the domain vector be 
increasing in value, although only examples where this is the case will be 
considered here. If the two vectors are such that the first and last values are the 
same, then the plot will be a closed circuit.]

      [Warning: Special care is need if your index set starts with 0; see Section II.4, 
viii.]
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ii.   To plot several pairs of domain and value vectors.

      Several pairs, possibly of different lengths, can be plotted using a single plot( )
command e.g.:

plot( x1 , y1  ,  x2 , y2  ,  x3 , y3 )

      [See hold in ix.]

 iii.  To plot the x and y axes. 

      Suppose that we want to plot the x-axis between a and b. This is just a special
case of plotting, with the domain vector being [a  b] and the range vector being [0
0]:

plot( [a  b] , [0  0] )

      To plot the y-axis between c and d, we take [0  0] as the domain vector and [c 
d] as the range vector:

plot( [0 0] , [c  d] )

      These axes plots can be added into other plots as in ii; see hold, below in ix.

      The suitable values of a, b, c, d are often obtained from a few preliminary 
plots.

 iv.   To plot without connecting.

      To plot the corresponding points in domain_vector and value_vector and to 
mark then with an asterisk:

 plot( domain_vector , value_vector,  '*' )

 Note how the  *  is enclosed in commas

 Instead of using * , one can mark the points with +    o    . (dot)  x   s 
(square)  d  (diamond)  p (pentagon)  h (hexagram)

Several pairs of domain and value vectors - with each pair having different lengths
- can be plotted using different markers as in ii. Some of the pairs can be 
connected and others non-connected.
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 v.    To plot the rows of a matrix M.

      If M has dimensions rows x cols then to plot the rows of M as lines on a graph, 
with the x-values being the column indices:

      a. indices = [1 : cols]    % the domain vector
      b. plot( indices , M)
    c. The line types, or point formats, are defined as in iii and iv; the same format 
applies to all the rows.

      To use the first column of the matrix for "initial conditions" and to have the 
indices start at 0; see the function shift_1(indices , M) in example 5.

      [Note: Matrices used in plotting are often built-up matrices; see the examples 
below and in section III.6. In such cases, it is very good practice to predefine the 
size of matrices, e.g. M = zeros( rows , cols); and then fill in the rows or columns; 
see section II.4. Do not forget the semicolon or MATLAB will print out huge 
matrices.]

vi.  To connect the points by other types of lines.

      dashed line:   plot( x1 , y1 , '--' )
      dash-dot line:   plot( x2 , y2 , '-.' )
      dotted line:  plot( x1 , y1 , '..' )
      solid line:  plot( x3 , y4 , '-' )

      As in ii, different line type commands can be combined inside one plot( ) 
command.

 vii.  To fix the ranges of the axes of the graph.

      MATLAB has automatic range selection. To fix the ranges yourself, with x going
from x1 to x2 and y going from y1 to y2:

      axis( [ x1 x2 y1 y2 ] )

      Note there is only one set of brackets [ ] and that there are no commas. 

      If this command is placed first, it should be followed by hold (ix). The correct 
selection often requires a few preliminary plots to see what would be a suitable 
range of values.

      Automatic range selection is re-obtained by: axis.
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viii. To have the same scale on both axes.

axis('equal')

      Automatic range selection is re-obtained by: axis

      [Note: for some versions of MATLAB, the correct command is axis('square'); 
type help axis in case of problems.

 ix.   To hold a graph for the later superimposing of other graphs.

 hold

      The command hold is placed only once in a program, after the first plot 
command, rather than after the axis command.

      Note that since the first plot has been held, parts of later plots will be lost if 
their domain and value ranges are not contained in the original ranges. Thus, care
must be taken when using this.

      To turn off the hold type: hold off or hold. The next plot( ) command will plot 
the graph on a clean screen.

x.    To clear the graphics screen before a new plot.

clg

      If you are writing a graphics program, place the command clg at the 
beginning. This will prevent previous plots from being held over.

      If you have quit the graphics screen, without clearing it via clg, you should be 
able to show the graph again with the command shg.

xi.   To put a title at the top of a graph.

title(' plot of averages ')

xii.  To label the x and y axes.

                xlabel(' real parts ')
                ylabel(' imaginary parts ')

 xiii. To print out text on the graph.

      To print out a message at coordinates (.3, r3), where r3 is a scalar:



SECTI0N II.6. GRAPHING VECTORS AND MATRICES

text(.3, r3, 'dominant eigenvalue' )

      Since the range of the plot and/or the free spaces on a graph are usually not 
known ahead of time, the placing of text usually requires a few trials.

 xiv.  To print out a variable on the graph.

      To print out the value of element 1 of the vector eigenvalues at coordinates (.3
, r2), where the quantity r2 is a scalar:

      text(.3, r2,  num2str( eigenvalues(1) ) ) 

 xv.  Printing a hard copy of a graph.

      The programs and examples under details show how to produce a graph on 
the screen or in memory. The following algorithm is typical of how one obtains a 
hard copy from UNIX systems. Bold face indicates MATLAB commands and italics 
indicate system commands. The extension *.gra is not needed, but it makes 
finding your graph files easier! To find the correct commands for personal 
computers and other systems type: help plot

      a. plot and add titles as above.

b. >> print -dps hart8.gra
         [creates a postscript file "hart8.gra"]

    c. Leave MATLAB (quit or ! ).

      d. lpr -Php5230-ps hart8.gra 
         [sends the postscript file to a Postscript printer called "hp5230"; here lpr is 
the "line printer command on the UNIX system].

DETAILS AND EXAMPLES

An Introduction to plotting

Once the idea behind the basic MATLAB command:

plot( domain_vector , value_vector )

is understood, the plotting of simple connected graphs becomes very easy
. What is sometimes confusing to users of MATLAB is the plotting of non-
connected points and also the plotting of matrices. Because of this, I present the 
commands for lines, points and matrices in the same format. This will avoid 
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problems such as incompatibility and the plotting of columns instead of vectors.

Adding titles and labelling axes (xi, xii) is also straightforward. But experience has 
shown that new users become confused and frustrated when they try to put too 
much in their first graphs. 

It is thus suggested that the reader do a few simple graphs involving one pair of 
vectors, then some involving a few pairs. After this, they should do a few non-
connected plots and then plot the rows of some matrices.

Then do some graphs with titles, and only when you are comfortable should you 
attempt to put in axes (iii), use fancy line formats (iv), fix the axes (vii), make the 
scaling equal (viii), hold plots (ix) or print text in the middle of a graph (xiii, xiv). 
As always it is much less frustrating when your instructions have been put in an 
*.m file (section I.3) where they can be easily corrected. If your system has text 
and graphics windows then you can see the changes made to the graph as you 
add commands. And to make yourself feel good and impress others, print out 
some graphs as early as possible (xv).

i. Plotting a value_vector against a domain_vector

The most important step is to make sure that both your domain_vector and 
value_vector are row vectors of the same length. How the values in the domain 
and value vectors are obtained is of no importance.

Example 1. The basic plotting command. It is suggested that the reader do the 
individual plots indicated. Figure 1 shows the result of doing the plot command for
three functions at once as will be discussed at the end of the example.

We start off with the domain vector

>> x1 = [0 : .25 : 1]

and then we define the value vector in terms of x1

>> y1 = sqrt(x1)

Both of these vectors are row vectors of length 5 and so we can plot y1 against 
x1. This is done via the plot(  ,  ) command:

>> plot( x1 , y1 )

Note that the domain vector is stated first and then the value vector. MATLAB will 
take corresponding order pairs, plot them and then connect them with a solid line.
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Thus since x1(2) = .25 and y1(2) = 0.50, the point (.25 , .50) will be on the graph. 
This point is indicated by a star on the first curve in the figure on the next page.
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If we had just plotted y1 against x1, then the MATLAB plot would have occupied 
the entire width of the graph with the x values going from 0 to 1. However, since 
figure 1 shows three curves, the portion allotted by MATLAB to the first curve is 
limited to the segment [0 , 1].

Now we are going to do another plot which involves the same value vector y1 as 
in the previous plot, but we choose a different domain vector.

>> x2 = 5*x1                    % x2 also has 5 elements

Since x2 also has 5 elements, we can plot the values of y1 against x2. In other 
words, how we obtained y1 is of no consequence, we can plot it against any 
domain vector of 5 elements:

>> plot( x2 , y1 )

In this case since x2(2) = 1.25 and y1(2) = .50. Thus the point (1.25 , .50), again 
marked by a star, appears on the second graph. What we have done in effect is 
stretch out the first graph from the interval [0 , 1] to the interval [0 , 5]. The 
starred points correspond to one another.

There is one other thing that should be noticed, namely that the points are 
connected by straight line segments. In the plot of y1 against x1 this is barely 
noticeable, but it is very evident in the spread-out graph of y1 against x2. 

If we want to plot a curve in which the straight line segments are not noticeable, 
we have to make sure that the elements in domain vector are close together. 
Thus, conceptually plotting a curve is just a special case of plotting one vector 
against another. To illustrate this we start off with:

>> x3 = [0: .01 : 1];           % suppress printing with ;

Note that x3 has 101 elements instead of 5 as was the case with x1 and x2. We 
again use the sqrt(  ) function to obtain a vector z of values:

>> z = sqrt(x3);                % suppress printing with ;

Now x3(26) = 0.2500 and  z(26) = 0.5000 so that if we plotted z against x3 the 
point (.25 , .50) would appear on this curve just as it did on the plot of y against 
x1.

However, instead of plotting z against x3, we are going to once again shift the 
curve over, this time to [0 , 10]

>> x4 = 10*x3;                 % also 101 elements
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>> plot( x4 , z )

Since x4(26) = 2.5 and z(26) = 0.50, the starred point on this plot corresponds to 
the starred point on the other two curves.

Up to now we have used the plot(  ) command for one plot at a time. We can 
however plot all three curves at once:

>> plot( x1 , y  ,  x2 , y  ,  x4 , z )

The order in which we enter the plots is of no importance, MATLAB uses the 
largest spread of values in doing the plot. Notice that in each individual pairs the 
length is the same, but that the length changes from pair to pair.

Example 2. Plotting without connecting. 
In the figure, there are three individual points (.25 , .50), (1.25 , .50) and (2.5 , .
50) which correspond to one another. To plot these pairs without connecting them,
we start off exactly as with a connected plot, i.e. we put the x-values in a domain 
row vector and the y-values in a value row vector. However to indicate that we 
want to have the isolated points plotted using a star, we add  ' *'  to the plot 
command.

Instead of using the numbers themselves, we assign them to variable names, 
both to save space and for later use.

>> a = x1(2),   m = y(2);               % (.25 , .50) 
>> b = x2(2),   n = y(2);               % (1.25 , .50)
>> c = x4(26),  p = z(26);              % (2.5 , .50)

Now we have two choices. We can either display the variables explicitly in the plot
command:

>> plot( [a b c] , [m n p ] , '*' )

or we can, as we did in example 1, place the values in domain and value vectors:

>> u = [a b c];                    % domain vector
>> v = [m n p ];                   % value vector

>> plot(u, v, '*')

 The result of the plot command is the set of three points.

We could combine this plot with the plot of the three curves by putting all vectors 
in one command:
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>> plot( x1 , y  ,  x2 , y  ,  x4 , z , u , v, '*')

Instead of  *  one can mark the points with  +  ,  .'   o  ,  x .

The following program was used to plot the curves. Roman numerals refer to the 
summary. 

Program 1

% [plo_sq1.m]                

axis( [ 0 10 0 1 ] )            %  (vii)
hold                            %  (ix)

x1 = [0 : .25 : 1];

% same curve shifted over to [0 , 5]
x2 = 5*x1;

% on [0 , 1] but with finer division points, do not plot
x3 = [0: .01 : 1];
x4 = 10*x3;

plot( x1 , y)                   %  (i)
plot( x2 , y, ':' )             %  (vi)
plot( x4 , z, '--' )            %  (vi)

pause                           % section I.3.ii

% a, b, c are corresponding points of x1, x2 , x3
a = x1(2),   m = y(2);
b = x2(2),   n = y(2);
c = x4(26),  p = z(26);         % m = n  = p

u = [a b c];                    % index vector
v = [m n p ];                   % value vector

% plot the three corresponding points, do not join, use a *
plot( u , v , '*')              %  (iv)

pause

% label the points
text( 1 , .7 ,  ' plot 1 ')     %  (xiii)
text( 3 , .7 ,  ' plot 2 ')
text( 6.5 , .7 , ' plot 3 ')
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text(4, .5,  'plot 1 is y = sqr(x1) against x1')
text(4, .3,  'plot 2 is y = sqr(x1) against x2')
text(4, .1,  'plot 3 is z = sqr(x3) against x4')

% title  (xi)
title('plotting a vector of values against a vector of indices') 

% xlabel, long lines; (xii) , sect. I.4.ii
xlabel(' x1 = [0 : .25 : 1] ; x2 = 5*x1 ; x3 = ...
[0 : .01 : 1]  ; x4 = 10*x3 ')

Example 3. Plotting the rows of a matrix M. When working with matrix models, we 
often wish to plot the vectors obtained from the rows of the matrix. For example, 
each row might represent the evolution of a "state" of the system with the column
value representing the "time". Examples of this type are given in section III.3. 
Sometimes, as in example 5 below, we have vectors of the same length which can
be put together to form a matrix M. Instead of writing the plot command for the 
individual vectors, we can simply plot the matrix M against the indices. Another 
advantage is that we can easily pull out selected columns from the matrix, as is 
done in example 5, and then plot the rows of this submatrix.

Suppose that the number of columns in our matrix M is cols. Then to plot the rows
of M as lines on a graph, with the x-values being the column indices, we first 
define the domain vector which is precisely the vector of column indices:

>> indices = [1 : cols]   

Then we type the plot command which has exactly the same format as for vector:

>> plot( indices , M)

The matrix plot and labelling was done via Program 2. Notice how the first row 
vector, [-1 3 2 .5], of the matrix defined in the program, is plotted as one line.  
The Roman numerals in parentheses refer to the numbers in the summary above. 
If you are reading about plotting for the first time, you need only consider the 
variable indices and the command plot.

Program 2

% [plot_mat.m]

% fix the range of the axes so as to leave some space at
% the top (vii)
axis([ 1 4 -4.55 5.5]) 

hold                        % hold the axes for later plotting (ix)
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% define the matrix
M = [-1 3 2 .5 ; 0 1 2  3.5 ; -4 5 4 3]   

indices = [1 : 4] 

% plot M against indices using a dashed line (vi).

plot( indices , M , '--')    

% plot the vector [2] against the vector [3], i.e. plot the
% point (3,2), using a plus sign (iv).
plot( [3 ] , [2] , '+')

% put a title on the graph (xi).
title(' Plotting the rows of a matrix against the column indices ')
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% label the x-axis (xii)
xlabel(' indices = [1 : 4] ')

The following examples illustrate how MATLAB can be used to do matrix 
calculations and then plot the outcome. The plotting of user defined functions is 
discussed in section II.7.vi. Examples of plotting in connection with matrix power 
models are given in section III.3.

Example 4. Plotting complex numbers.

The function "comp_drw" does the following:

1. Finds and orders the eigenvalues of a square matrix; it returns the eigenvalues 
as the value of the function.
2. Plots the eigenvalues in the x-y plane using the same length on both the real 
and imaginary axis.
3. Draws a circle through the eigenvalue of maximum absolute values. 
4. Has an option for drawing lines from the origin to the eigenvalues.
5. Has an option for printing out the value of the maximum eigenvalue.

Numbers in parentheses refer to the summary. The various operations on complex
numbers are discussed in section II.3.v.

Program 3

% [comp_drw.m] 

function  eigenvalues = comp_drw(A)

clg                                   % clear previous graphs (x)

eigenvalues = eig(A);

eigenvalues = (eigenvalues).'        % true transpose; sect. III.1

% sort eigenvalues by decreasing magnitude.
eigenvalues = sort(eigenvalues);            % sorts by increasing order
eigenvalues = rot90(rot90(eigenvalues));    % by decreasing order

% calculate and display absolute values
absolute = abs(eigenvalues);
disp('vector of absolute values'), disp(absolute)

% calculate and display arguments in radians and degrees
angl_rad = angle(eigenvalues);
angl_deg = (180/pi)*angl_rad;
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pause                              % push RETURN; section I.3.ii 

% plot complex numbers
re = real(eigenvalues);
im =imag(eigenvalues);

axis('equal')                  % same scale (viii)
hold                           % hold plot (ix)

r = absolute(1);               % maximum absolute value
r1 = (1.15)*r;                 % leave some space outside of points

axis( [-r1 r1 -r1 r1 ])        % set range of MATLAB axes (vii)

plot( re, im, '*')  % put "*" at each point, do not connect (iv)

% plot x and y axes (iii)

plot( [-r1 r1], [0 0] ) , plot( [0 0], [-r1 r1])

% optional connect eigenvalues to origin (sections I.4.3, II.8.iii)
lines = input(' connect origin to origin? y or n:  ', 's');

if lines == 'y'                  
   for n = 1 : cols
      plot( [0, re(n)] , [0, im(n)] )     % connect (0,0) to (re,in)
   end
end

% plot circle by defining a domain vector corresponding to   x-values
% between - r and + r and against this plotting two value vectors 
% "circle_up" and "circle_lo" which correspond to points on the circle.

x =  [-r : .005: r];
circle_up =  ( r.^2 - x.^2).^(.5);     % upper half of circle
circle_lo = -( r.^2 - x.^2).^(.5);     % lower half of circle

plot(x, circle_up , x, circle_lo)

% optional printing of dominant eigenvalue (sections I.4.3,
% II.8.iii, summary xiv)
dom = input(' print dominant eigenvalue? y or n:  ', 's');

if dom == 'y'
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     r2 = 1.05*r;
     r3 = 1.1*r;
     text( .3, r3, 'dominant eigenvalue' )
     text( .3, r2,  num2str( eigenvalues(1) ) )  % maximum eigenvalue
end

% label graph (xii)
xlabel(' real parts ')
ylabel(' imaginary parts ')

pause                  % keeps on screen until RETURN is pressed.
disp( 'to put a title type: title(`  ` )  ')  % use ` for ' inside disp

hold off                        % (ix)

To illustrate the use of the function "comp_drw"  with the first option that connects
the eigenvalues to the origin, we find the fifth roots of i. This is a good test 
example because the eigenvalues are not symmetric about the x-axis.

The first step is to solve the equation z5 = i. We do this by rewriting the equation 
in the form z5 - i = 0 and then putting the coefficients, with 0 for missing terms, in
a vector:

>> poly = [1 0 0 0 0 -i]

Next we find the roots of this polynomial using roots(  ) (section II.7.ii).

>> vec = roots(poly)  

vec =
  -0.9511 + 0.3090i
  -0.5878 - 0.8090i
   0.5878 - 0.8090i
   0.9511 + 0.3090i
        0 + 1.0000i

To use "comp_drw" we need a square matrix whose eigenvalues are the elements 
of "vec". We use diag(  ) which produces a diagonal matrix whose diagonal 
elements are the elements of "vec".

>> B = diag(vec);              % section II.3.ii.

We are now ready to use "comp_drw" to find and plot the fifth roots of -i:
>> comp_drw(B)

eigenvalues in decreasing order
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{ 0.5878 - 0.8090i}  {0.9511 + 0.3090i}  {0 + 1.0000i}

{-0.5878 - 0.8090i}  {-0.9511 + 0.3090i}

vector of absolute values

    1.0000    1.0000    1.0000    1.0000    1.0000

vector of arguments in radians

   -0.9425    0.3142    1.5708   -2.1991    2.8274

vector of arguments in degrees

  -54.0000   18.0000   90.0000 -126.0000  162.0000

The resulting graph is shown in the diagram on the next page

----------------------------------------------------------------------------------------------

The other option for "comp_drw" is to print out the dominant eigenvalue. This is 
done for the "Leslie matrix" for the female population of Canada in 1981. This is a 
10 x 10 matrix and is discussed in section III.3, example 3. The plot of the ten 
eigenvalues is shown on the back cover.

Whereas the eigenvalues in the fifth roots of -1 example are not symmetric about 
the x-axis, that is the case for the Leslie matrix. This is an example of the Perron-
Froebenius theorem which says that for matrices which are not “cyclic” and where
there is “communication” between different portions of a matrix of non-negative 
elements, the eigenvalues will indeed be symmetric about the x-axis. Furthermore
the dominant eigenvalue will be real.

----------------------------------------------------------------------------------------------
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Example 5. Plotting moving averages; "closeups"

This program investigates what happens to the average value of the sum of a 
sequence of random numbers (section II.2.iv) as we increase the number of terms.
By the "law of averages" (or "law of large numbers"), the averages should 
converge, if the random number generator is a good one, to the value .5. 
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In particular rand4.m does the following:

1.  Generates a vector "vec" of random numbers where the number of elements is
an input quantity.
2.  Takes moving averages of the sum of the first n elements and stores these 
averages in a vector "vec_aver" .
3.  Computes the fraction of time that the averages were above y = .5 (the so-
called "arcsin law"). This part uses conditional vectors as discussed in section 
II.8.vii.
4.  Plots the averages against the value of the indices starting with the index 0; 
using the function shift_1 of program 5.
5.  Plots the lines y = .5, y = 0 and y = 1 by working with the functions ones(  ) 
and zeros(  ).
6.  Does a blowup of the last segment of the graph; see the inside from cover. The
number of elements is an input item. The range of the blowup is restricted to the 
interval [.4 , .6]. This part illustrates how we can extract part of an already plotted
matrix and do a new plot. We could continue to blowup sections of the orginal, 
eventually zooming in on one element!

Program 4

% [rand4.m]  
terms = input(' how many random numbers?  ');

vec = rand(1 , terms);              % generate random vector
vec_aver = zeros(size( vec ));      % dimensions the same as `vec'

total = 0;
for n = 1:terms                      % loop; section I.3.iii
        total = total + vec(n);      % keep adding a term
        vec_aver(n) = total/n;       % store averages in a  vector
end

% compute percentage of time that was spent above line y = 1/2
A = [vec_aver > .5];               % conditional vector, II.8.vii
fraction_above = (sum(A))/terms;

% plot
terms_2 = terms + 1;           % number ofcolumns of storage matrix
indices = [0 : terms];          % indices go 0 ... terms
expected_av = .5*ones(1 , terms_2);    % line y = .5
line_1 = ones(1, terms_2);             % line y = 1
line_0 = zeros(1, terms_2);            % line y = 0

% store  averages, y = .5 and y = 1 as rows of matrix M
M = zeros(4, terms_2);                 % dimensions of M
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M(1, 1) = .5;   % start curve at .5
M(1, [2 : terms_2] ) = vec_aver;       %store vec_aver
M(2, :) = line_1;
M(3, :) = expected_av;
M(4, :) = line_0;

plot(indices, shift_1(indices, M))      % program 5

title('average of first n terms vs. n ')

% insert texts and values
a = terms/2;
aver = vec_aver(terms)
text( a , .9 , 'last average is: ')
text( a , .82 , num2str(aver ) )

text( a , .7 , ' fraction of time averages above .5  is: ')
text( a , .62, num2str( fraction_above ) )

disp(' graph is printed to "rand_av.gra" ')
print -dps rand_av.gra            % (xv)

% closeup
closeup = input('where should the closeup start?  ');

% truncate "vec_aver' and "expected_av" (i.e. y = .5)
% store in a new matrix M1
indices2 = [closeup : terms];

vec_trunc = vec_aver(indices2 );          % last part of vec_aver
exp_trunc = expected_av( indices2 );       % last part of expected_aver
M1(1 , :)  = vec_trunc;
M1(2 , :)  = exp_trunc;

% fix vertical range between .4 and .6
axis([ closeup   terms_2   .4  .6 ])
hold

% plot the 2-row matrix M2 against indices 2

plot( indices2 , M1 )

title(' closeup of the plot of averages ')
print -dps close_up.gra                      % (xv)

To run "rand4.m" we need the following program which allows us to start the 
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index vector at 0 instead of 1

Program 5

% [shift_1.m]

% for an integer k and a matrix M the function pulls out
% column k+1 of the matrix

function v = shift_1(k , M)

v = M(: , k+1);

We now run the program is as follows:

>> rand4

how many random numbers?  500

number of random numbers:   
   500

the last average is:   0.5008

fraction of time averages above .5  :  0.0160

[Thus the averages are greater than .5 less than two percent of the time. 
Intuitively this may seem incorrect, but in fact it is predicted by the "arc-sine 
law".]

where should the closeup start?  400

The main graph and the blowup are shown on the next page and on the  inside 
cover. The latter indicates that the averages stayed between .49 and .50 for the 
last 100 sums, except for a crossover just at the end.
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SUMMARY

i.    To define a vector function "hart8(x)".

Create an m-file "hart8.m" which defines the function. Use pointwise MATLAB 
operators, (II.1).

To simply calculate the values of a function on a one-time basis just define the 
relationship in the main program.

For a polynomial defined by a vector of coefficients poly use the function 
coeff(poly, x).

ii.   To find the roots of a polynomial

Enter the coefficients in decreasing order in a vector:
poly = [1 - 3 -9  5] 
rac = roots( poly )

iii.  To find the roots of a defined function "hart8(x)".

Search for roots near various points, e.g. near 2.
root1 = fzero('hart8', 2)

iv.   To find the minimum (maximum) of "hart8" on [a,b].

x = [a : .001 : b]
y = hart8(x);
m1 = min(y)
m2 = max(y)

v.    To find the integral of "hart8" between a and b.

hart8_int = quad8('hart8' , a , b )

vi.    To plot the function "hart8" on an interval [a b].

x = [a : .001 : b];
plot( x , hart8(x) )

For axes, titles, printing etc. use the commands of section II.6.

vii.  To find a least squares polynomial fit of of order 3.

x_values = [2.1  4.3   6.1    9.4]
y_values = [6.7  1.2  -0.6   -3.1]
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poly3 = polyfit(x_values , y_values , 3)

To plot the polynomial over x = [a : .001 : b];
y = coeff(poly3,x)
plot(x,y)

viii.   To estimate values / Interpolation

x_values = [2.1  4.3   6.1    9.4]
y_values = [6.7  1.2  -0.6   -3.1]

x = 5.1  or x = [5.1 5.4 .5.7]
y = interp(x_values , y_values, x, 'spline')
y = interp(x_values , y_values, x, 'linear')
--

DETAILS AND EXAMPLES

i.  Defining the function. 

Functions (section I.3.iv) are defined via a program which starts with the word 
function. The function is then defined by using the MATLAB pointwise functions 
(section II.1)  .* ,  .^ , and  ./  . A very good habit is to use lots of parentheses. One
should always test functions with simple values; for complicated functions check 
steps by step. The reason for this is that even if you have made a mistake, what 
you have written may be valid MATLAB statements, but not the correct ones! So 
when you use your function  you will have answers, but not the ones you wanted! 
Put a semicolon at the end of each line, including the last line which defines the 
value of the function; otherwise the final answer will be printed out twice.

The following examples were chosen from my father's calculus book; W. Hart, 
Analytic Geometry and Calculus, 1957.

Example 1. This involves a simple polynomial. Note that to write 9x, we need only 
write 9*x, because 9 is a scalar. For powers we must use the pointwise power 
operator, so that for x3 we write (x).^3. Remember that MATLAB functions are 
vector functions and that we are operating pointwise on them.

Program 1a

% [hart5.m]      Hart, p. 122

% f(x) = x^3 - 3x^2 - 9x + 5

function  y = hart5(x)          % indicate function

y = (x).^3 -3*(x).^2 - 9*x + 5;   % pointwise powers: .^
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                                % suppress printing with ;

Since "hart5(x)" is a vector function, it can be used to calculate values of the 
polynomial over a range of values:

>> x = [0: .2 : 1]

   0    0.2000    0.4000    0.6000    0.8000    1.0000

>> hart5(x)

  5.0000    3.0880    0.9840   -1.2640   -3.6080   -6.0000

To display more decimal places, we would have first entered:

>> format long

If you want to find the roots, integral etc. of "hart5.x" then, as we shall see in the 
next subsections, you need to create a a function m-file as above. However if you 
just want to calculate values on a one-time basis, you can do the calculations 
directly.

>> x = [0: .2 : 1]
>> y = (x).^3 -3*(x).^2 - 9*x + 5;   % pointwise powers: .^

------------------------------------------------------------------------------------------------
A useful tool when working with polynomials

In section 7 we will see how to find  a polynomial  that “fits”  a  data set. The 
problem is that the estimating polynomial will be returned as a vector of 
coefficients. But to evaluate the polynomlal at a given point, we need to have a 
function whose coefficients are precisely the elements of the vector.  Instead of 
recopying the coefficients, it is simpler---in addition to avoiding copying errors--- 
to write a short program that automatically creates the desired function.

The idea is as follows:

Suppose that we have the cubic x^3 -3x^2 -9x + 5. The vector of coefficients
is [1 -3 -9  5] and the length of the vector is 4. If we reverse the proceedure and 
start with the vector [1 -3 -9  5], then we see that the length of the vector = 4. 
This means that the highest power of the polynomial will be (4-1) = 3 and the 
coefficent of  the x^3 term will be the first term of the vector, namely 1. The 
second term will involve x^2 and the coefficient will be the second element of the
vector, namely -3, etc.
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Program 1b

% [coeff.m]
% define a function of x using the coefficents as stored  vector.
% the function is thus defined in terms of the two variables vector and  x.

function y = coeff(vector,x)

l = length(vector);   

y = 0;
for k = 1:l
y = y + vector(k)*(x).^(l-k);
end

This how we would use coeff.m in the above example with "hart5(x)"

>> x = [0: .2 : 1]
>> vector_hart5 = = [1 -3 -9  5];
>> y = coeff(vector_hart5 , x)

Example 2. The second function involves a combination of polynomials (-5x and 
2x) and the product of two transcendental functions. Both exp(  ) and sin(  ) are 
predefined MATLAB pointwise functions so we do not have to worry about them.

Program 2

% [hart8.m]       Hart, p. 283

% f(x) = [e^(-.5x) * sin(2x)]

function y = hart8(x)

A = exp( -.5*x ) ;            % do in parts; first term
B = sin( 2*x ) ;              % second term
y = (A).*B ;                  % pointwise multiplication

Example 3. This involves a ratio with the numerator having both the sine function 
and a polynomial and the denominator having a polynomial. Since sin(  ) is 
already a pointwise function we do not have to worry about it. We do the 
numerator and denominator separately and then divide using the pointwise 
division operator ./ . Since this function is rather complicated, both the numerator 
and denominator should be checked individually.
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Program 3

% [hart2.m]   Hart, p. 251, ex. 32

% f(x) = [{sin(3x)}^2 ] / [4x^2 - x]

function y = hart2(x)

num = ( sin(3*x) ).^2 ;             % do square pointwise; 
den = 4(x.^2) - x ;                 
y = (num)./den ;                    % do division pointwise

ii.  The roots of a polynomial.

To find the roots of a polynomial, we create a vector whose entries are the 
coefficients of the powers in decreasing order; do not forget 0 for missing powers. 
We then use the function roots( polynomial )

In example 1 we had:

hart5(x) = [x^3 - 3*x^2 - 9*x + 5] 

and so we write:

>> poly = [1 - 3 -9 5]

then:

>> rac = roots(poly)

    4.6913
   -2.1801
    0.4889
 
iii.  Roots of a defined function.

Finding the roots of a defined function requires that the function be defined and 
that a starting point for the search be given. Thus for the function "hart8" we 
might start at 2 (doing a plot first may be helpful; see the graph below). The 
command is:

>> root1 = fzero( 'hart8' ,  2 )

    1.5708              %  root at pi/2

If we had started at 1 we would have obtained the same root:
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>> r2 = fzero( 'hart8' , 1 )

    1.5708

If we start at .5:

>> r3 = fzero( 'hart8', .5 )

 -5.4807e-018           %  root at 0

[Note: For complicated functions such as "hart2" in example 3, the algorithm does
not work very well.]

iv.  Maximum and minimum of a function. 

For nice functions with continuous derivatives the function values at the local 
maxima and minima can be found using the functions max(  ) and min(  ). The 
smaller that we make the steps in the domain vector, the more precise will be the 
answer.

>> x = [-1 : .001 : 5];     % do not forget the ;

>> length(x)     % vector; use length( ) instead of size( )

        6001

>> y = hart8(x);

>> max8 = max( y )

    0.6964

>> min8 = min( y )

   -1.5275

To see more decimal places we use format long

>> format long

>> max8

   0.69644479848592

>> min8
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  -1.52749846885105

We can also find the values of x at which the maximum and minimum occur. This 
is an interesting example of the uses of conditional vectors and is discussed in 
section II.8.ix. There the maximum is found to occur at element 1664 of x and the 
minimum at element 93. We find x and y at these elements:

>> x(1664)

   0.66300000000000

>> y(1664)

   0.69644479848592       % this is max8 as given above

>> x(93)

  -0.90800000000000

>> y(93)

  -1.52749846885105       % this is min8 as given above

[Note: MATLAB has a built-in function fmin(  ) which gives the value of x at which 
the minimum occurs. Unfortunately, in the UNIX version that I used this function 
did not work properly!

>> fmin8 = fmin( 'hart8' , -1 , 5 )

   2.23371853388113

This is where the minimum is supposed to be, whereas above we saw that it is at 
-0.908. We find the value of "hart8" at this point:

>> hart8(fmin8)

  -0.31753574300154

So MATLAB has found a value greater than 0 (see the graph below)! To see what 
has happened, we again use the function min(   ), but this time we limit ourselves 
to positive values of x:

>> x1 = [0 : .001 :5];    % interval [0 , 1]

>> y1 = hart8(x1);
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>> min( y1 )

  -0.31753568446987

Thus MATLAB has only found the minimum on [0  , 5]. See also the discussion in 
Section II.8, Example 12]

See also example 7c of Section II.8.vii where the conditional conditional vectors of
the form:

b =[ abs(v - a) < .0001]

are used. Here v is a vector and a is a number and we want to find out how many 
elements of v are within .0001 of a.

v.  Numerical integration of a function. 

MATLAB has two functions for numerical integration:  quad(  ) and quad8(  ). 

>> quad('hart8', -1, 5 )

  -0.46158331057559

>> quad8('hart8', -1, 5 )

  -0.46158379374149

Instead of the integral, we may wish to find the area under the curve. To do this 
we need to work with the absolute value of "hart8.m" and so we define a function 
"hart8abs"

Program 4

% [hart8abs.m]    % absolute value of hart8

function y = hart8abs(x)

y = abs( hart8(x) );     % work with absolute value function

We check this function out by finding the maximum and minimum:

>> max( hart8abs(x) )

   1.52749846885105     
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This last value is -min8, as given above.

>> min( hart8abs(x) )

     0

We now find the integral using both quad(  ) and quad8(  ):

>> quad( 'hart8abs', -1 , 5 )

Recursion level limit reached in quad.  Singularity likely.

MATLAB has indicated that there may be some problems. This is probably due to 
the non-differentiability of "hart8abs" wherever "hart8" crosses the x-axis.

The answer was found to be:

   2.11673639164145

If we use quad8(  ) there are no problems.

>> quad8( 'hart8abs', -1 , 5 )

   2.11673472997670

vi.  Plotting. 

Plotting user defined functions is just a special case of plotting a value vector 
against a domain vector as discussed in section II.6.i. In that section we used the 
domain vector

>> x1 = [0 : .25 : 1]

and then defined the value vector:

>> y1 = sqrt(x1)

To plot we simply wrote:

>> plot( x1 , y1 )

We do exactly the same thing for user defined functions. To make sure that the 
graph is smooth we use small steps.

Example 4. Suppose that we want to plot "hart8" over the interval [-1 , 5]. We 
define:
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>>   x = [-1 : .01 : 5];

and then, making sure that we suppress printing:

>>  y = hart8(x);

To plot we enter:

>>  plot( x , y )

We can even avoid the step of defining y and simply write:

>>  plot( x  ,  hart8(x) )

If we want to fix the axes so as to leave some space at the top of the graph, we 
can either first do the basic plot and obtain a rough estimate of the maximum and
minimum of "hart8" on the interval [-1 , 5] or find the maximum and minimum as 
in iv. above. Using the axis(  ) command (section II.6.viii) we make [1.5 , 5.5] the 
x-range of values and [-2 , 1] the y-range. We also draw the x and y axes between
these same limits (section II.6.iii,iv) and we add a title (section II.6.xi). The 
sequence of commands is:

>>  axis( [ -1.5  5.5   -2  1 ] )     % section II.6.viii

>>  hold             % section II.6.ix

>>  plot( x  ,  hart8(x) )

>>  plot( [-1.5  5.5]  [0  0] )          % x-axis; sect. II.6.iii

>>  plot( [0  0]  [-1  2] )             % y-axis; sect. II.6.iv

>>  title(' f(x) = exp(-5x) * sin(2x) ' )   % sect. II.6.xi

The graph of  "hart8", produced by the above commands, is shown in the diagram
on the next page. For a more complicated plot, involving several functions, 
marked points and text, see program 5.

[Note: For functions with vertical asymptotes or removable singularities, such as 
"hart2", MATLAB runs into difficulties. I was not able to obtain a satisfactory graph
of "hart2" over the entire range. In some cases, a change in the step size, coarser 
or finer, will help as may plotting in segments]
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vii.  Curve fitting.

We know that 2 points determine a line, 3 points a conic (ellipse, parabola, 
hyperbola) and in general (weird cases excepted) n+1 points in the plane 
determine a polynomial of degree n. If however we have a medium or large size 
set of data points and we want a line or low-order polynomial to  "fit" the data 
then we use a least squares polynomial fit. In general we will have two vectors 
x_values and y_values which correspond to the ordered pairs (x,y) of data points. 
If we want the polynomial of order n that provides the best least squares fit then 
the command is:

>> polyn = polyfit(x_values, y_values, n)

Here  polyn  is the vector of coefficients of the polynomial of order n

If the number of data points is n+1 then the polynomial will pass through all the 
points. (If the degree of the polynomial is equal to or larger than the number of 
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data points then some of the coefficients will be 0 and in fact the approximations 
will generally not be as good).

Example 5.  Six points were chosen on the curve of hart8(x). For simplicity the x 
values were taken to be the integers 0, 1, 3, 4, 5, 6, but with a jump of 2 in the 
middle. From the complexity of the function we can suspect ahead of time that 6 
points will not give a very good fit. Note how the computed polynomials are used 
directly (via the function coeff) to obtain the y values over the plotting  domain. 
Because the leading coefficients are very small, simply copying the coefficients 
from a 4 place output would result in errors. Program 5 is reproduced here will all 
the details; it involves superimposing the picked points; multiple curves, 
interpolation points, titles and text. The second part of the program, involving 
interpolations, is discussed in Example 6.

Program 5

% [fit_plot.m]
% Shows curve fitting and interpolation,
% uses hart8.m

clf   % clear the previous graphics, clg in older versions

% first plot  hart8(x) for an extended range.

x  = [-.5: .01 : 6.5];
y = hart8(x);
plot(x, y)

hold       % holds the plot

% now determine values of hart8 at  0, 1, 3, 4, 5, 6
% note that 2 is missing
x_values = [0 1 3 4 5 6];
y_values  = hart8(x_values);

l= length(x_values);
for j = 1 : l 
    u = x_values(j); % read from vector
    v = y_values(j);% read from vector
    plot(u,v, '*')
end

% now calculate and plot 3th degree polynomial approximation

vector_coeff3 = polyfit(x, y, 3);     % vector_coeff3 is the vector of coefficients of
                                                      %  the approximating polynomial of degree 3
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disp('3rd degree approximating polynonial:'), disp(vector_coeff3)

%  The function coeff(vector, x) was created as program 1b above.
%  With vector = vector_coeff3  and  the domain vector for the plot chosen
%  above as x  = [-.5: .01 : 6.5] we can  obtain y3, the corresponding set of
%  values determined by the approximating polynomial of degree 3.
% We now use it to obtain the  polynomial function whose coefficients are given:

y3 = coeff(vector_coeff3, x);       

plot(x , y3, '-.')
 
% Now we do exactly the same thing for the approximating polynomials of degree
% 4 and 5.

% Calculate and plot 4th degree polynomial approximation.
vector_coeff4 = polyfit(x, y, 4);
disp('4th degree polynonial:'), disp(vector_coeff4)

y4 = coeff(vector_coeff4, x);

plot(x , y4, '--')

% Calculate and plot 5th degree polynomial approximation
vector_coeff5 = polyfit(x, y, 5);
disp('5th degree polynomial: '), disp(vector_coeff5)

y5 = coeff(vector_coeff5, x);

plot(x , y5, ':')

title(' Curve fitting using values from f(x) = hart8(x)   -  Interpolation ')

xlabel(' solid line = hart8(x) * = chosen values    -. = 3rd degree  -- = 4th 
degree  .. 5th degree ')

% For the purpose of comparison, we are going to calculate, display and plot  the 
% values of hart8 and  the approximating polynomials at the point x =4.5

v0 = hart8(4.5);
v3 = coeff(vector_coeff3, 4.5);
v4 = coeff(vector_coeff4, 4.5);
v5 =coeff(vector_coeff5, 4.5);

disp('hart8(4.5)') , disp(v0)
disp('poly3(4.5)') , disp(v3)



SECTION II.7 NUMERICAL ANALYSIS

disp('poly4(4.5)') , disp(v4)
disp('poly5(4.5)') , disp(v5)

plot(4.5, v0, '+')
plot(4.5, v3, 'x')
plot(4.5, v4, 'x')
plot(4.5, v5, 'x')

The polynomials obtained are:

3rd degree polynonial:
    0.0148   -0.1402    0.3156   -0.0337

4th degree polynonial:
   -0.0161    0.2081   -0.8404    1.0376   -0.0203

5th degree polynomial: 
    0.0098   -0.1631    0.9565   -2.2827    1.7471    0.1536

The plot is given on the next page:
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viii.   Estimating values / Interpolation 

Example 6. One reason that we want approximating polynomials is so that we can 
estimate values at points other than those for which the values are given. If we 
evaluate our 3 approximating polynomials at 4.5 and compare the values 
obtained with the true values, we obtain---see the second part of program 5---the 
following:

hart8(4.5)  =    0.0434

poly3(4.5)  =   -0.0998

poly4(4.5)  =   -0.0081
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poly5(4.5)  =    0.1431

Because the fit is not very good in this example, we have---by accident---that the 
3rd degree polynomial gives a better fit than the higher order polynomials.

Instead of first calculating polynomials MATLAB has an interpolation function 
interp1 which uses the given data to estimate values. There are two options that 
available with interp1. In both cases we start with two vectors x_values, y_values 
(as in polynomial approximation) and approximate values are given at x where x 
is either a single point or a vector of points.

a. Linear interpolation. Here pairs of points are connected with straight lines and 
values are computed using similar triangles. MATLAB will not extraplate using this 
method. This was the classical method before the advent of computers and any 
engineer of a certain age can verify that much time in school was spent 
interpolating log tables.

>> approx_linear = interp1(x_values, y_values, x, 'linear') 

b. Spline interpolation. Here different cubic polynomials are used to connect pairs 
of adjoining points. The polynomials are picked so that they match up "smoothly".

>> approx_spline = interp1(x_values, y_values, x, 'spline') 

Example 7. In example 6 we used the polynomials of example 5 to estimate the 
value of hart8(4.5). Here are the estimates using interp1.

hart8(4.5)             =    0.0434

linear estimate at 4.5 =    0.0446

spline estimate at 4.5 =    0.0852

Again by accident, the best estimate corresponds to drawing a line between the 
values at 4 and 5.

For illustrative purposes the number of points was kept small in these examples. 
For a large number of points we can expect the higher order polynomials to give 
the best fit and the spline estimate to be the best estimator. However strange 
things can happen and a set of points that vary rather wildly is a sign that one 
should proceed with caution.
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SUMMARY

A word of caution about a possible confusion.
The relational symbols (I) and logical operators (ii) appear in two contexts. 

Context 1. In parts iii through vii, we are interested in applying a criteria and if the
criteria is met we do something. Typically this occurs in a program with 
conditional statements (iii).  Typically we might have something such as:
    if ( condition )  %  note the (  ) 

Context 2. In parts viii through x we want to determine which elements of a vector
(matrix) satisfy certain conditions. This is done by placing a 1 or a 0 in a vector 
(matrix) of the same dimensions depending on whether or not the condition is 
satisfied. Typically we might have something such as:
         [a condition b]   %  note the [   ] 
                   
-------------------------------------------------------------------------------------

i.     Relational symbols.

equality:   ==;

[Do not confuse with the assignment operator =;  e.g.  a = 2]

not equal:   ~=     
     ex.  if (integer ~= 2)

inequalities:   <   <=   >   >=

The relational symbols apply to vectors and matrices of the same dimension and 
can be used in conditional loops and conditional vectors.

ii.    Logical operators.

notice the  (  ) enclosing the logical statement

"and"   &          if ( (x < 6)  &   (x ~= 4) )
"or"      |           if ( (x < 6)  |   (x == 10) )
"not"   ~          if ( (x < 6)  &  ~(x == 4) )

[note: the outer parentheses are optional, but highly recommended.]

[note: statements such as (6 < x < 8) will give a wrong answer!]
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iii.   Conditional " if - elseif - else - end " loops.

if                 x > 0
                              x = x/sum(x)

elseif     +++
                              .....
elseif     ++++
                              .....
else
                              .....
end        [Octave will accept this, but prefers endwhile]

The short forms if - else - end and if - end are also valid.

iv.   Breaking completely out of a program / error messages

Place return at the point that you want to quit the program

To break and print a message: error(' matrix not square ')

v.    "while-loops".

while               +++++
                             .....
end

vi.   Breaking out of for-loops and while-loops.

break

vii.  Conditional vectors and matrices. 

To replace the elements of a vector or matrix by 1 where a condition is satisfied 
and 0 where the condition is not satisfied. If u, v, w are vectors and A, B, C are 
matrices then we can determine conditional vectors and matrices in ways such as 
the following: Note the use of [   ]  and not (  ) as in ii above

conditional_vector1 = [ v < 3 ]
conditional_vector2 = [ v == 3 ]
conditional_vector3 = [ abs(v-3) < .1 ]
conditional_vector4 = [ abs(v-3) < eps]    % eps = "smallest" number
conditional_vector5 = [ (u < v) & (v < w) ]
conditional_matrix1 = [ (A >= 2) | (B == 5)]
conditional_matrix2 = [ (A == B) & (B > 4) | (B < C)]
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viii. Testing conditional vectors and matrices with any(  ), all(  ).

      any( x1 )
      all( x1 )

ix.   Finding indices of a vector that satisfy certain conditions and obtaining the 
values as a new vector.

      e = find( x1 )    [x1 is the conditional vector]
      x2 = x1( e  )     [x2 = elements of x1 that satisfy the condition]

x.   Four programs to illustrate the use of four programming techniques to do the 
same problem.

DETAILS AND EXAMPLES

i. & ii.   Relational symbols and logical operators.

Equality of two elements is indicated by  ==.

If a and b are two vectors (or matrices) of the same dimension then a == b means
that all corresponding elements of a and b are equal. See the example in section 
iii for an illustration of this.

A common mistake is to confuse the relational symbol  == with the assignment 
operator =. For example if we write:

if (integer == 2)       %  note the (  ) 

we are checking to see if the variable "integer" is equal to the value 2. But when 
we write

integer = 2

we are assigning the value 2 to the variable "integer"

Non-equality  is indicated by  ~=  
ex.  if (integer ~= 2)

Inequalities are indicated by  < ,  <= , > ,  >= 

If a and b are two vectors (or matrices) of the same dimension then a < b means 
that every element of a is less than the corresponding element of b.
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Statements involving the relational symbols can be combined via logical operators
as illustrated in the following statements:

      "and"   &          if ( (x < 6)  &   (x ~= 4) )
      "or"    |          if ( (x < 6)  |   (x == 10) )
      "not"   ~          if ( (x < 6)  &  ~(x == 4) )

Note that the first and third conditions are logically equivalent. In the first we use 
the "not-equal" relational symbol ~=, whereas in the third we take the negation  
~  of the equality relationship.

Statements such as:

(6 < x < 8)       [i.e. 6 < x and x < 8]

x == (4  |  7)    [i.e. x = 4 or x = 7]

where we try to combine two inequalities at once will give the wrong answer; try 
these statements with a = [0:10].
We must write

if (  (x < 6) & (x < 8)  );   if ( (x == 4) | (x == 7) )

The outer parentheses are optional, but highly recommended. The use of lots of 
parentheses helps to avoid logical errors. For simple statements such as:

if (integer == 2) , one could leave out the parentheses, but even in these simple 
cases they often show the statement more clearly.

iii.   Conditional if - elseif - else - end loops.

In simple cases a if - end loop or a if - else - end loop is sufficient and there will 
not be a elseif statement.

To illustrate we test the relationship between three numbers. First we use a simple
if - end loop to print a statement only if we have equality. Then we use a if - else - 
end to have the program also print a statement even if we do not have equality.

Example 1a

% [equal1.m]

a = 1
b = 3
c = 4
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disp(' part 1')
if  (a == b) 
   disp('a equal b')      % print out only if equal
end

disp('part 2')
if (a < c)
   disp('a is less than c')       % print out if smaller
else
   disp('a is not less than c')   % print out if not smaller
end

We now run the program:

>> equal1

   part 1
   empty       % no equality so nothing was printed

   part 2
   a is less than c

In Example 1a we tested the relationship between numbers. We can do the same 
thing for vectors and matrices.

Example 1b.

% [equal2.m]
% testing == and < with vectors

a = [1 2]
b = [3 4]
c = [1 4]

% equality of vectors means that all elments are equal
if (a == b)
   disp('vector a equal vector b')
else
   disp('vector a is not equal to vector b')
end

% less than for vectors means that all elments are less than
if (a < b)
   disp('vector a is less than vector b')
else
   disp('vector a is not less than vector b')



SECTION II.8 LOGICAL OPERATORS

end

if (a < c)
   disp('vector a is less than vector c')
else
   disp('vector a is not less than vector c')
end

% we run the program and obtain the following:

vector a is not equal to vector b
vector a is less than vector b
vector a is not less than vector c

Example 2. To illustrate the use of elseif we consider the vector [1 2 5 8 9] and let 
y = x(n). The following program examines the values of y and does the following:

1. We use the condition ( y/2 == floor(y/2) )  to test if y is even. Since this is the 
first condition it is preceeded by if. Whenever y is even this fact is printed out via 
disp(state1). Note the use of == to check equality.

2. Next we use the condition ( y <= 3) to check if y is less than or equal to 3. 
Since this is neither the first nor the last condition we preceed it by elseif

3. We use the combination of two conditions, (4 < y) & (y  < 7), to check if y is 
strictly greater than 4 and strictly less than 7. We again preceed the test 
statement with elseif.

4. Finally we take care of all other possibilities with else. 

To end the if - elseif - else loop we write end.

Note the double loop. The outer one is the "for-loop" and the inner one is for the 
conditional statements. 

Program 2

% [logic1.m]

x = [1 2 5 8 9]

state1 = 'even';
state2 = 'less than or equal to 3';
state3 = 'greater than 4 and less than 7';
state4 = 'none of above';
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for n = 1:5
              y = x(n);    
              disp('integer is:  '), disp(y)
          if       ( y/2 == floor(y/2) )  
                        disp(state1)
          elseif   (  y <= 3 )
                        disp(state2)
          elseif  ( (4 < y) & (y < 7) )
                        disp(state3)
          else
                         disp(state4)
          end                         % end of conditional statements
end                                   % end of for-loop

We run the program:

>> logic1

x =
     1     2     5     8     9

integer is:     1
  less than or equal to 3 
 
integer is:     2
  even
 
integer is:     5
  greater than 4 and less than 7 

integer is:     8
  even
 
integer is:     9
  none of the above 

iv.   Breaking completely out of a program. 

Example 3. Sometimes, we want to terminate a program when a certain condition 
is met. To do this, we simply type return. This is illustrated in the following 
program where we keep taking powers of a matrix until all the elements are less 
than or equal to .1 . We know ahead of time that this will eventually happen since 
the row sums are less than 1 and so we pick an arbitrarily large number (in this 
case 100) and loop this number of times. 

The same problem is solved by different techniques in examples 5, 12 and 13.
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Program 3

% [return1.m]

P = [.2 .6; .4 .3]

% loop 100 times. 100 is large enough to ensure that we break
for n = 1:100    
         if ( max(max(P^n)) <= .1 )
               disp('first index when power < .1 is: '), disp(n)
               disp('P^n = '), disp(P^n)
               return
         end
end

To find the index we type return1

>> return1

P =

    0.2000    0.6000
    0.4000    0.3000

first index when power < .1 is:   7

P^n = 

    0.0558    0.0758
    0.0505    0.0685

Example 4. Sometimes we want to check that conditions are met before the main 
part of a program proceeds. In case the condition is not met we issue an error
statement in the form:
                error(' condition is not met ' ). 
If the condition is not met, then MATLAB will print the error message and break 
out of the program This is illustrated in the program "checksiz.m" which forms 
part of the complete version of program 1 of section III.1.

Program 4

% [checksiz.m]
function y =checksiz(A)

[rows, cols] = size(A);
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if ( cols ~= (rows + 1)  )
   error( ' columns ~= rows + 1 ')     % returns to with message
end

disp('  ')
disp('number of rows is: '),  disp(rows)

We test this program first on a matrix which does not satisfy the condition and 
then on one that does. Notice the use of rand( ) to quickly generate matrices for 
testing.

>> A = rand(3,3)
>> checksiz(A)

Error using  checksiz
columns ~= rows + 1

>> B = rand(3,4);
>> checksiz(B)
  number of rows is:  3

v.  "while-loops".

Sometimes, we want to continue a sequence of calculations until a certain 
condition is met. For such situations, "while-loops" are very useful. This involves 
the opening statement while  and the closing statement end.

Example 5. The problem is the same as in example 3; we want to find the first 
power of a matrix such that all the elements are less than .1 . In example, we 
used a "for-loop" together with a conditional "if-loop". When the condition was 
satisfied, we broke out of the program with return.

With "while-loops" we do away with both loops; as soon as the condition is no-
longer satisfied the rest of the program is executed. When using "while" loops, it is
important to make sure that we start off correctly. For example, in the present 
example we have to give the initial value n = 1. If we had had P^1 > .1 then the 
"while-loop" would never have been executed. In addition to example 3 this 
problem is solved by different techniques in examples 12 and 13.

Program 5
% [while2.m] 

P = [.2 .7; .4 .3]

n = 1;
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while     (max(max(P^n)) > .1)
                  n = n + 1;
end

disp('last index when power > .1 : '), disp(n-1)
disp(P^(n-1))

disp('first index when power <= .1 : '), disp(n)
disp(P^n)

The program is run: 

>> while2

P =

    0.2000    0.7000
    0.4000    0.3000

last index when power > .1 :    7

    0.0806    0.1173
    0.0670    0.0973

first index when power <= .1 :   8

    0.0630    0.0916
    0.0523    0.0761

In program 5 there was only one condition in the while statement. The program 
[while6.m] in section xii illustrates a "while-loop" with two conditions.

vi.  Breaking out of for-loops and while-loops.

To break completely out of a program, we use return (see iv above), but 
sometimes we only want to break out of a "for-loop" or a "while-loop". To do this 
we use break, usually in connection with a conditional statement. The command 
break is associated with an if (or elseif, or else) statement:

if        +++++
                 break
elseif   +++++
                 

Note that the break command only applies to the innermost loop containing the 
expression break. This is illustrated in the following program:
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Example 6. We start with the matrix P which has all the elements in row j equal to 
j. We then do the following:

1. We leave even rows alone by means of break, which causes the program to 
leave the inner column loop

2. We replace the elements in the third row by the sum of the 3 + 2*column.

3. We replace the elements of rows 1 and 5 by zeros.

Program 6

% [break1.m]

% generate intial matrix with elements of row j equal j
P = zeros(5,3);  % predefine matrix; II.4.vii,x
for j = 1:5
   P(j, :) = j*ones(1,3);
end

disp('original matrix'), disp(P)

for m = 1 : 5            % rows
    for n = 1:3          % columns
        if  (f loor(m/2) == m/2)  % row index is even
          % break out of columns loop and goes to next row 
            break
        elseif  (m == 3 )   % row 3
             P(m,n) = 3 + 2*n;  % assign the value 3 + 2*n                          else
             P(m,n) = 0;  % assign the value 0 in rows 1 & 5
        end    % end for conditional statement
    end        % end of "for-loop" for columns
end            % end of "for-loop" for rows

disp('transformed matrix'), disp(P)

The result of the program is:

>> break1

original matrix

     1     1     1
     2     2     2
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     3     3     3
     4     4     4
     5     5     5

transformed matrix

     0     0     0
     2     2     2
     5     7     9
     4     4     4
     0     0     0

vii.  Conditional vectors and matrices.

In its simplest form a conditional vector (matrix) is  defined in terms of another 
vector a (matrix B) and a condition involving one of the numerical relations. The 
conditional vector will be of the same size and its elements will be 1 or 0 
depending upon whether or not a specified condition is satisfied.

Example 7a. Suppose that we have the vector:

>> a  = [1 : 5]

  1     2     3     4     5

We want to test the elements to see if they are less than 3. The logical statement 
is:

a < 3 

Note that since MATLAB works with matrix operators we use the relational 
symbols with the entire vector a and not with the individual elements of a, i.e. we 
do not write:  a(k) <  3

To  define the conditional vector we simply put the conditional statement inside 
the vector brackets [    ]:

>> conditional_vector1 = [a < 3]

MATLAB replaces the elements of B by 1 where the elements are less than 3 (i.e. 
for the values 1 and 2) and replaces the elements by 0 when this condition is not 
satisfied:

conditional_vector1 =
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  1     1     0     0     0

Example 7a involved a conditional vector, but the one works with a matrix in 
exactly the same way:

Example 7b. We generate a random 5 x 6 matrix (not shown) and then we form 
the conditional matrix cond_B which has a 1 where ever the random elements are 
less than .5 (in simulation this would correspond to tossing a coin and seeing if we
have a head). We then add up the columns using sum(  ) and this tells us how 
many 1s we had in each column:

>> B = rand(5,6);
>> cond_B = [B <= .5]

cond_B =

     1     1     0     1     0     0
     1     0     0     0     1     0
     0     0     1     0     0     1
     0     1     1     0     1     1
     0     1     1     0     0     0

>> sum(cond_B)

     2     3     3     1     2     2

Example 7c. Conditional vectors can also involve more complicated examples. 
Suppose we generate a random vector of length 4:

>> a = rand(1,4)

    0.2190    0.0470    0.6789    0.6793

If a were too large to examine visually we might want to know how many of the 
elements of a were within .0001 of the value .2190. To find out we use a 
conditional vector involving the function abs( ):

>> d = [abs(a-.2190) <= .0001]

     1     0     0     0

The number of elements satisfying the condition is given by the sum of the 1s:

total = sum(d)

    1
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Notice how we tested for numbers within .01 of .2190. Suppose we had used eps 
which is the smallest non-zero number that MATLAB can work with (eps depends 
upon the version and system):

>> e = [abs(a-.2190) < eps]

     0     0     0     0

The trouble is that when a was displayed only 4 decimals were given and the first 
element was not exactly .2190. Depending upon the situation one might want to 
approach a problem such as this in a way similar to that described in Section 
II.7.iv.

So far the examples have involved the comparison of a vector or matrix with a 
number. We can also compare vectors (matrices) with vectors (matrices) of the 
same size.

Example 8a

a = [1 2]
b = [3 4]
c = [1 4]

v1 = [a < b]
v2 = [ a < c]
v3  = [b == c]

v1 =      1     1
v3 =      0     1
v4 =      0     1

[Note: do not confuse the above which involves conditional vectors with 
statements such as " a < b " that one finds in linear algebra texts. In algebra a < 
b means that all the elements of a are less than the corresponding element of b].

Example 8b

B =
     1     2
     3     4

C =
     2     2
     3     4
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>> E = [B == C]

E =
     0     1
     1     1

When creating conditional vectors (matrices) we can use both the relational 
symbols and the logical operators. This is illustrated in the following example.

Example 9a.

>> x = [1:7]

     1     2     3     4     5     6     7

>> x1 = [x < 7]

     1     1     1     1     1     1     0

>> x2 = [ (x < 7) &  (x == 2) ]

     0     1     0     0     0     0     0

>> x3 = [ (x < 7) &  ~(x == 2) ]

     1     0     1     1     1     1     0

>> x4 = [ (x < 7) &  ~( (x == 2) | (x == 4) ) ]

     1     0     1     0     1     1     0

>> x5 = [ (x < 7) &  ( ~(x == 2) & ~ (x == 4) ) ]

     1     0     1     0     1     1     0

Note that by De Morgan's (1806 -71) laws the two statements:

~( (x == 2) | (x == 4) )

and

( ~(x == 2)  &   ~ (x == 4) )

are equivalent, which is why x5 is identical to x4
Example 9b. Instead of a number we can do the same thing  with vectors:
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a =    [1     2]

b =    [3     4]

c =    [1     4]

>> e = [(a < b) & (b==c)]

e =      0     1

Conditional matrices are very useful when we want to count the number of 
elements in a matrix which satisfy a certain condition. This is because the sum of 
all the 1's that appear in the conditional matrix is precisely the same as the 
number of elements of the original matrix that satisfy the condition. 

Example 10. In the following program we generate a random vector of length 
1000. We then test each element to see if it lies in the interval [.2 , .3] . This 
condition determines the conditional vector d1 We then add up the elements of d1
using sum(  ).

Program 7
% [logic2.m]

d = rand(1 , 1000);                   % section II.2.iv

% create a conditional matrix
d1 = [ (.2 < d) & (d < .3)];           

counter = sum(d1);                    % add up the 1's

disp('number of elements of d between .2 and .3')
disp(counter)

disp('relative frequency of elements between .2 and .3')
disp('should be approximately .1')

disp(counter/1000)

The ouput of this program is:

>> logic2

number of elements of d between .2 and .3 
      109
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relative frequency of elements between .2 and .3
should be approximately .1
      0.1090

Example 11. We start with a 3 x 4 matrix:

D =

     0     0     7     4
     2    -1    -3     0
     0     5     0    -1

Suppose that we want to extract the negative entries of D and then count and 
order them. We first  put all the elements of D, in the order (1,1), (1,2), (1,3), 
(2,1), ...  into a row vector use a single :  ( section II.4.xi):

>> x = D( :)'   %  transpose via ' to obtain a row vector

0    2     0     0    -1     5     7    -3     0    4    0  -1

We now sort x in increasing order using sort(  ); see section II.5.ii :

>> y = sort(x)

 -3    -1    -1     0     0     0     0     0     2     4   5  7

Next, we create a conditional vector

>> z = [y < 0]

1     1     1     0     0     0     0     0     0     0     0   0

The number of negative elements is just the sum of the 1's:

>> num = sum(z)

     3

Extract the first three, negative, elements from y

>> y  = y(1 : num)

   -3    -1    -1

viii.  Testing conditional vectors and matrices with sum( ), any(   ), all(  ).



SECTION II.8 LOGICAL OPERATORS

We start with a vector and then obtain a conditional vector of 0's and 1's. To check
if any element satisfies the condition we take the sum of the conditional vector. If 
the sum is greater than 0, then at least one of the elements satisfied the 
condition:

% [chk_con.m]

x =  [1 2 3 4 5]
x1 = [(x < 3)]
disp(x1)

s = sum(x1)   % warning:  DO NOT use 'sum' as a variable; it is a built-in
                       %                  function

if  ( s > 0)
     disp('at least one element is less than 3')
end

>> chk_con    

   x1 =   1  1 0 0 0

   at least one element is less than 3

MATLAB has a function any(  ) which assigns the value 1 to a conditional vector if 
at least one value is equal to 1. 

>> any(x1) 

        1                         % there is at least one 1

The function all(  ) assigns the value 1 to a conditional vector only if all the values 
are equal to 1 (instead of all one could check that the sum of the elements of the 
conditional vector equals the length):

>> all(x1) 

        0                         % not all elements are  1

[Note: For some reason all assigns 1 to the empty vector!!!]

For matrices, any(  ) and all(  ) operate on each column of the matrix and treat the
column as a vector. The values 0 or 1 are assigned to each column and these are 
given in a vector:
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>> A =

      -1     4
       5     6

>>  A1 = [A <= 5]

         1     1
         1     0

>> any(A1)                  % operates on columns

         1     1

We now have a vector, namely any(A1) and so we can apply any() to this vector. If
any of the entries in the conditional matrix were equal to 1 then any(any(A1)) will 
give a 1; if all were 0, we would obtain a 0.

>> any(any( A1 ))                

          1

This same example could be done (Section II,5,i) using  sum(sum A1 )

The statement all(all( A1 )) will assign the value 1 to A1 if and only all the entries 
are 1:

>> all(A1)                     % operates on columns
   
 1     0

>> all(all( A1 ))             

    0

The following two examples and programs illustrate the use of any(any(  )) and 
all(all(  )) in connection with conditional matrices. In program 9 we keep raising 
the power of P while any of the elements are greater than .1 . In program 10 on 
the other hand, we break out of a for-loop using return as soon as all of the terms 
are less than or equal to .1 . 

Programs 9 and 10 should be compared with programs 5 and 3 respectively. Both 
programs 9 and 5 use while-loops, but whereas 9 uses any(any(  )), program 5 
uses max(max(  )). Similarly both programs 10 and 3 use a for-loop inside of which
is nested a conditional statement, the difference being that program 10 uses 
all(all(  )) whereas program 3 uses max(max(  )).
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Example 12 . 

Program 9

% [any_any.m]   

P = [.2 .7; .4 .3]
n = 1;

% keep going if any element of P^n > .1
while      any( any ([P^n  > .1] ) ) == 1 
               n = n + 1;
end

disp('last index when power > .1 : '), disp(n-1)
disp(P^(n-1))

disp('first index when power <= .1 : '), disp(n)
disp(P^n)

We run the program:

>> any_any

P =

    0.2000    0.7000
    0.4000    0.3000

last index when power > .1 :    7

    0.0806    0.1173
    0.0670    0.0973

first index when power <= .1 :    8

    0.0630    0.0916
    0.0523    0.0761

Example 13. 

Program 10

% [all_all.m]   
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P = [.2 .7; .4 .3]

% pick a large upper limit; will exit before end (we hope!)

for n = 1:1000   
        
    if  all ( all ([P^n <= .1] ) ) == 1  % max element <= .1
        disp('last index when power > .1 : '), disp(n-1)
        disp(P^(n-1))

        disp('first index when power <= .1 : '), disp(n)
        disp(P^n)

        return               % returns to MATLAB prompt
    end
end

When we run this program the answer is the same as the previous three times; 
see example 10 above and also program 3 and example 4.

ix.  Finding indices of elements of a vector that satisfy certain conditions.

We consider the integers between -3 and 3

>> x = [-3 : 3]

    -3    -2    -1     0     1     2     3

Next we form the conditional vector x2 determined by the condition that the 
element of x is even (floor of half the number = half the number)

>> x2 = [floor(x/2) == x/2]

     0     1     0     1     0     1     0

The function find(  ) gives the indices for which the conditional matrix has the 
entry 1.

>> even = find(x2)
 
    2     4     6

Now we "evaluate" the original vector x1 at the elements given by the entries 
even (see section II.4.iv). Note that x2 has the same dimensions as even:

>> x2 = x1( even  )   
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   x2 = [-2 0 2]

We can use the function find the x-values for which a function attains the 
maximum.

Example 12. In section II.7.iv we considered the maximum and minimum of the 
function "hart8". The first steps are repeated here for convenience:

>> x = [-1 : .001 : 5];            % use ; to avoid printing

>> length(x)                 % vector; use length( ) instead of size( )

        6001

>> y = hart8(x);

>> length(y)  

        6001                        % a check!

>> max8 = max( y )

    0.6964
>> min8 = min( y )

   -1.5275

We now form the conditional vector determined by the condition that y equals 
max8:

>> vec_max = [y  ==  max8];

>> length(vec_max)                    % a check!

        6001

>> find( vec_max )

        1664

This shows that the maximum is only reached at one point. 

We find the x and y values for this index:

>> x(1664)
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   0.66300000000000

>> y(1664)

   0.69644479848592                  % this is max8

We do the same for the minimum:

>> vec_min = [y == min8];

>> find( vec_min )

    93

>> x(93)

  -0.90800000000000

>> y(93)

  -1.52749846885105

>> min8

  -1.52749846885105

x.   Four programs to illustrate the use of four programming techniques to do the 
same problem.

We saw in examples 3, 5 , 12 and 13 how different programming techniques can 
be used to solve the same problem.

Here we give another example and solve it by four different techniques:

Problem: for j = 2,3,4, find the smallest power such that j raised to that power is 
greater than 100. Do not however go above 5 as a power.

Technique 1: "while-loop" with a double condition (no break).
Technique 2: double "for-loop" with a break.
Technique 3  "while-loop" with one condition and a break.
Technique 4: "while-loop" with no conditions (!) and a double break.

Technique 1: "while-loop" with a double condition (no break)
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% [while6.m]

% We wish to find the first power for which j^power > 100,
% but we do not wish to try values of power larger than 5.

% The inner while loop has two conditions
% This avoids the need for a "break".

% Note the "priming" values: value = 0; power = 1
% If we did not have values, the "while" statement could not
% be  evaluated.

store = [ ];

for  j = 2:4
    value = 0;     % need a starting value less than 100!
    power = 1;
while ( value <= 100 ) & (power <= 5)   % two conditions
          value = j^power;
          power = power + 1;
    end   % end of the while loop

    power = power - 1;  % reduce by 1 when we quit
    result = [j, power, j^power];
    store = [store; result];
end  % end of the for-loop

>> while6

%     j   power  (j)^power

     2     5    32    % stops at 5 as a power
     3     5   243
     4     4   256

Technique 2: double "for-loop" with a break.

% [for_br.m]

% Illustrates double "for-loop" with a "break" from the
% inner "for-loop".
% We wish to find the first power for which j^power > 100,
% but we do not wish to try above values of power larger than 5.
% Note that the variable "result" is defined after the inner
% "for-loop".
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store = [ ];

for  j = 2:4                  % loop 1
    for power = 1:5           % loop 2
         value = j^power;
         if value > 100
             break            % break
      end
    end   % end of the inner for loop

    result = [j, power, j^power];
    store = [store; result];

end  % end of the outer for-loop

>> for_br

     2     5    32
     3     5   243
     4     4   256

Technique 3  "while-loop" with one condition and a break.

% [while_br.m]

% Illustrates an outer "for-loop" with a "break" from an
% inner "while-loop".
% We wish to find the first power for which j^power > 100,
% but we do not wish to try values of power larger than 5.

% Note that the variable "result" is defined after the inner
% "for-loop" when we have found the correct power.

% Note the "priming" values: value = 0; power = 1
% If we did not have values, the "while" statement could not be
% evaluated.

store = [ ];

for  j = 2:4
    value = 0;     % need a starting value less than 100!
    power = 1;

    while value <= 100        % 1 condition
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          value = j^power;

         if power == 5   % don't do more than 5 times
           break              % break   
      else
          power = power + 1;
      end
    end   % end of the while loop

    result = [j, power, j^power];
    store = [store; result];
end  % end of the for-loop

>> while_br

     2     5    32
     3     5   243
     4     4   256

Technique 4: "while-loop" with no conditions (!) and a double break.

% [whil2_br.m]

% We have an outer "for-loop" and an inner "while-loop".
% Illustrates the use of a condition that is always satisfied,
% namely  1 == 1. The true conditions are placed inside a
% conditional statement containg two "break" commands.

% We wish to find the first power for which j^power > 100,
% but we do not wish to try above values of power larger than 5.

% Note that whereas in while_br.m , we needed two "priming" values:
% value = 0; power = 1; the first is no longer needed here.

store = [ ];

for  j = 2:4
    power = 1;

    while 1 == 1        % no conditions, since always true 

          value = j^power;

         if power == 5   % don't do more than 5 times
             break             % first break 
         elseif value > 100
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              break             % second break 
         else
          power = power + 1;
      end
    end   % end of the while loop

    result = [j, power, j^power];
    store =  [store; result];

end  % end of the for-loop

>> whil2_br

     2     5    32
     3     5   243
     4     4   256
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CHAPTER III

SPECIAL TOPICS

This chapter gives examples of MATLAB operations as applied to three topics: 
linear equations, eigenvalues and matrix power models. Section III.4 shows how to
use MATLAB to perform advanced linear algebra computations.
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In this section we explore different ways of solving equations and finding 
parametric solutions. We test how accurate MATLAB is and how long it takes 
MATLAB to solve large systems of equations. Subsection viii deals with linear 
independence and equations.

i. General systems.

Example 1. Suppose that we are given three equations:

       2x - 1y + 1z = 2
       1x + 1y - 1z = 7
       1x + 1y + 2z = 4

We write each of these equations in vector form:

>> eqn1 = [2  -1   1  2];    % suppress printing using " ; "
>> eqn2 = [1   1  -1  7];
>> eqn3 = [1   1   2  4];

Next, we create the augmented matrix whose rows are these vectors. To enter as 
separate rows use " ; " :

>> A = [eqn1 ; eqn2 ; eqn3]      % enter as rows using " ; "

     2    -1     1     2
     1     1    -1     7
     1     1     2     4

We solve by reducing A to reduced row echelon form using the command rref(  ) :

>> A1 = rref(A)

     1     0     0     3
     0     1     0     3
     0     0     1    -1
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We pull out the last column of A1. Here we use extraction using the command A1(:
, 4). Here the " 4 " represents column 4:

>> solution = A1( : , 4)

     3
     3
    -1

We now check the answer. First form the coefficient matrix COEFF by extraction 
from A using the command A(: , [1 : 3]). Here [1 : 3] indicates the last 3 columns 
of A and the semicolon ( : )  means let the indices range over all rows.

>> COEFF = A( : , [1 : 3])

     2    -1     1
     1     1    -1
     1     1     2

Next we multiply the coefficient matrix by the solution vector:

>> COEFF * soln

     2
     7
     4

This column vector should equal the vector of constants. We use the extraction  
command A( : , 4) to obtain the vector of constants. 

>> constants = A( : , 4)       % extract 4th column, all rows

     2
     7
     4

Therefore we have COEFF*solution = constants, as should be the case.

We can also think of the above solution set in terms of rank using rank(  ):

>> rank(A)

     3

>> rank(COEFF)
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     3

Since A is the augmented matrix of the system we can write:

rank(augmented matrix) = rank(coefficient matrix)

ii. An infinite number of parametric solutions.

Example 2. We work with the following system of equations in which eqn3 was 
simply taken as (eqn1 - eqn2) so as to make the rows of the augmented matrix 
linearly dependent:

>> eqn1 = [3  2  3  16];
>> eqn2 = [1 -1  2   4];
>> eqn3 = [2  3  1  12];

>> A = [eqn1 ; eqn2 ; eqn3]      % enter as rows using " ; "

     3     2     3    16
     1    -1     2     4
     2     3     1    12

>> A1 = rref(A)

    1.0000          0     1.4000     4.8000
         0     1.0000    -0.6000     0.8000
         0          0          0          0

To obtain an expression for the parametric solution, we first form a column vector 
from the last column of A1. We do this via extraction:

>> particular = A1(: , 4)     % extract 4th column, all rows

    4.8000
    0.8000
         0

Next form a vector called "parametric" from column 3:

>> parametric = A1(: , 3)

    1.4000
   -0.6000
         0
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If we set z = t = parameter, then the most general solution set is of the form:

x = 4.8 - 1.4t
y = 0.8 + 0.6t
z =   0 +   1t

We can write this in vector form by first taking the negative of parametric and 
then replacing the third element by 1:

>> parametric = - parametric

>> parametric(3) = 1                % redefine parametric(3)

parametric =
 
    -1.4000
     0.6000
         1

Therefore in vector form the most general solution can be written:

 solution = particular + t * (parametric)

We can use the MATLAB command  ,  to place "particular" and "parametric" as 
columns of a matrix:

>> solution= [particular , parametric] 

    4.8000    -1.4000
    0.8000     0.6000
         0         1

As in example 1, we can think of the solution set in terms of rank. Since the last 
row of A1 = rref(A) is 0, the rank of A is 2 as is the rank of the coefficient matrix. 
We can calculate these quantities directly using rank( ):

>> rank(A)

     2

>> COEFF = A(: , [1 : 3])         % pull out columns 1 to 3.

     3     2     3
     1    -1     2
     2     3     1
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>> rank(COEFF)

     2

As in example 1, we have:

rank(augmented matrix) = rank(coefficient matrix) 

Since the coefficient matrix is square in this example, we can speak of its 
determinant. Since the rank of the coefficient matrix is less than the number of 
rows, the determinant of the coefficient matrix must be 0. We check this via 
det(  ):

>> det(COEFF)

     0

iii. No solutions.

Example 3. We modify the set of equations in example 2, by taking A(3 , 4) = 13. 
The relationship for the original set was eqn3 = eqn1 - eqn2 . This will still hold for
the coefficient matrix, but not for the constants.

>> A(4 , 3) = 13               % replace element (4,3) by 13

A =

     3     2     3    16
     1    -1     2     4
     2     3     1    13

>> B3 = rref(A)

B3 =

    1.0000         0    1.4000         0
         0    1.0000   -0.6000         0
         0         0         0    1.0000

The transformed third equation now reads " 0 = 1 ". Since this is impossible, the 
original set had no solutions. 

As in examples 1 and 2, we can look at this problem in terms of rank:

>> rank(A)
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     3

>> rank(COEFF)

     2

rank(augmented matrix) > rank(coefficient matrix).

This is what always happens in the case of a system of equations with no 
solutions.

iv. Cramer's rule.

Example 4. We use the same equations as in example 1. We first copy COEFF - so 
as to be able to reuse it - and replace the first column by the vector "constants":

>> B1 = COEFF;                     % make a copy of COEFF!!
>> B1(: , 1) = constants

     2    -1     1
     7     1    -1
     4     1     2

We now find the determinants of B1 and COEFF and then divide to obtain the 
value of x:

>> det1 = det(B1)
    
    27

>> det_den = det(COEFF)
     
     9

>> x = (det1)/(det_den)  
     
     3

For large systems, Cramer's rule is very slow and for very large systems the 
computation of the determinants becomes impossible; see example 6.

v. Inverses.

Example 5. We use the equations of example 1. If the equations are written in the 
form:



SECTION III.1  LINEAR EQUATIONS

C*x = constant

then the solution vector is:

x = inv(C)*constant

>> soln_inv = inv(COEFF)*constants

     3
     3
    -1

     <esc>fpl<down>.5<tab>0<down>1<left>1<enter>
vi. Using the division operator; "LU decompositions"

Instead of using inv(COEFF) for the square matrix COEFF we can use the division 
operator (COEFF)\constants (section II.1), which obtains the solution via Gaussian 
elimination applied to the augmented matrix:

Example 6. We solve the system of example 1:

>> soln_div = (COEFF)\constants

     3
     3
    -1

Another way of solving equations involving square coefficient matrices is via "LU 
decompositions" (also called "LU factorizations"). By means of Gaussian 
elimination a square matrix is "decomposed" into lower and upper triangular 
matrices, such that the original matrix is the product of the two triangular 
matrices (see section II.1.i). The solution to the original equations is then found 
via reduction in two steps, first finding u = LOWER\constants and then finding 
UPPER\u:

>> [LOWER , UPPER] = lu(COEFF)

LOWER =

    1.0000         0         0
    0.5000    1.0000         0
    0.5000    1.0000    1.0000
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UPPER =

    2.0000   -1.0000    1.0000
         0    1.5000   -1.5000
         0         0    3.0000

>> soln_intermediate = LOWER\constants

soln_intermediate =

     2
     6
    -3

>> soln_LU = UPPER\soln_intermediate

soln_LU =

     3
     3
    -1

vii. Large systems of equations.

For small matrices it does not make any difference if one uses inv(A)*b  or A\b or 
Cramer's rule. The following example explores the accuracy and execution time of
the three methods.

Example 7. Large systems.

The program "sol3.m" does the following:

1.   Finds the complete solution set by both the inv(A)*b and  A\b methods.

They look the same, but how close are they really? Don't forget that MATLAB has 
calculated these products to a high degree of accuracy and perhaps the products 
do not agree at the higher decimal places. To check we first look at the P1*y1 and 
L1*y1 and then take the sum of these absolute differences:

2.  Checks the accuracy by calculating the vector of the absolute values of the 
differences between between COEFF*soln and the constants and then finding the 
sum of these absolute differences. The solution obtained by division is checked in 
the same way. In addition the program checks the maximum difference and the 
sum of the absolute values of the difference of the two solutions.
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3.  Finds x1, the first variable by Cramer's rule.

4.  It calculates the computation time for the first two methods and estimates the 
total time for Cramer's rule. This is done via the time function t1 = clock, t2 = 
clock and the elapsed time function etime(t2 , t1 ) discussed in section II.3:

      t1 = clock  % start
         ..... execution .....
      t2 = clock
      elapsed_time = etime(t2 , t1)          

Program 1

% [sol3.m] 
% for n non-homogeneous equations in n unknowns.

function soln = sol3(A)

disp(' number of equations = unknowns: '), disp(rows)

COEFF = A(:, [1: rows]);    % pull out coefficient matrix
const = A(:, cols);         % pull out last column

% solution by inverse, timing, check
t1 = clock;
soln_1 = inv(COEFF)*const;
t2 = clock;
e1 = etime(t2 , t1);
disp(e1)

% check soln_1 via sum of absolute differences
diff1 = sum(abs( COEFF * soln_1 - const ));
disp( diff1 )

% solution by "divison",
t3 = clock;
soln_2 = (COEFF)\const;
t4 = clock;
e2 = etime(t4 , t3);
disp(e2)

% check soln_2 via sum of absolute differences
diff2 = sum(abs( COEFF * soln_2 - const ));
disp( diff2 )
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% check the difference in the two solutions, both maximum
% and sum of absolute differences.
diff = abs( soln_2 - soln_1 );
disp(max(diff))
disp( sum( diff ))

% Find the first variable x1 by Cramer's method
% timing is done for the determinant of the coefficient
% matrix and then for the numerator for x1 + division time
% and this is used to estimate the total time by Cramer's
% method.
M1 = COEFF;     % make a copy so as not to destroy

% determinant of denominator
t5 = clock;
det_den = det(M1);
t6 = clock;
e3 = etime(t6 , t5);
disp(det_den)
disp(e3)

% find x1 = first variable
t7 = clock;
M1(:,1) = const;
det_num = det(M1);
x1 = (det_num)/(det_den);
t8 = clock;
e4 = etime(t8 , t7);
disp(e4)

% estimate total time by Cramer's method
total = e3 + (rows * e4);  
% number of variables = rows
disp(total)

% check solution x1 against solution for first variable from
% soln_2
disp('first variable x1 is: '), disp(x1)
z1 = soln_2(1);
d = abs( x1 - z1);
disp(d)

To generate examples for use with sol3 we use the command:

A = rand(n, n+1) ;  
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which produces an n x (n+1) augmented matrix with coefficients picked at 
random between 0 and 1 (see section II.2, iv). 

We start by giving MATLAB a real workout; 1000 equations in 1000 unknowns:

>> A = rand(1000,1001);        % do not forget the semicolon 

>> sol3(A) ;                   % do not forget the semicolon

number of equations = unknowns: 

        1000

inverse method

total time in seconds to read matrices and solve by inv(COEFF)*const 

  629.7649  {seconds = 10 minutes and thirty seconds}

check solution by sum of absolute differences

for inverse method sum of absolute differnces =  

   5.3102e-10
 
augmented matrix method

total time in seconds to read matrices and solve by (COEFF)\const 

  345.8351   {seconds = 5 minutes and forty-six seconds}

check solution by sum of absolute differences

for "division" method sum of absolute differnces =  

   8.5478e-11

maximum difference between solutions:  

   4.1278e-13

sum of differences:  

   4.8734e-11

Cramer`s rule
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determinant of coefficient matrix is:
   Inf  { = "infinity"}

time in seconds to calculate the determinant of denominator

  281.5857   {seconds = 4 minutes and 41 seconds}

time in seconds to substitute constants in first column, find determinant of 
numerator and divide:

  304.4050    {seconds = 5 minutes and 4 seconds}

estimated total time in seconds by Cramer`s method

   3.0469e+05   { seconds = 84 hours !!!}

first variable x1 is: 

   NaN     {"not a number"}

difference in solution for the first variable obtained by
Cramer`s rule versus "division" is: 

   NaN

We see that both the reduction and inverse methods are incredibly accurate. We 
also note that reducing to row echelon form takes only half the time of the inverse
methods. The determinant, involving 1000! products of 1000 terms each, is just 
too much for MATLAB.

We try smaller systems with the results indicated in the following table. In each 
case we have non-homogeneous equations with the same number of equations as
variables. The last three columns give the time in seconds. In all cases the 
accuracy was extremely high.

variables  inverse       reduction     Cramer

100        0.3570        0.1030        8.0939
200        4.1337        0.7817        160.7606
500        58.6381       28.4732       1.8978e+04
1000       629.7649      345.8351      fails

The table illustrates how quickly computation time increases with the number of 
variables. Row reduction always takes about half the time of the inverse method, 
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but there is no precise relationship. Cramer's method works up to 500 variables, 
but is very slow.

In case you were wondering:

for 100 variables:

determinant of coefficient matrix is: -4.8352e+24

time in seconds to calculate the determinant of denominator:     0.1238

viii. Linear independence.

Example 6. We take three vectors:

>> v1 = [ 2    1    0];
>> v2 = [-3    4    5];
>> v3 = [13  -10  -15];

Are these linearly independent or linearly dependent? To answer this question, we 
form the equation:

x*v1 + y*v2 + z*v3 = 0

and solve by reduction to row echelon form.

When we write out the above vector equation in non-vector form and then form 
the augmented matrix the vectors v1, v2 and v3 will appear as columns. We can 
thus form the augmented matrix by using the (real) transpose operator ' and 
entering v1', v2', v3' and z in a vector separated by commas. To obtain the 3 x 1 
vector of zeros on the right we use the command zeros(3 , 1).:

>> z = zeros(3 , 1) ;

>> M = [v1', v2', v3', z] % separate by , to form columns

     2    -3    13     0
     1     4   -10     0
     0     5   -15     0

>> M1 = rref(M)

     1     0     2     0
     0     1    -3     0
     0     0     0     0
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As in example 2 there will be an infinite number of solutions. In particular since 
there is a solution other than 0, 0, 0 the vectors are not linearly independent.

Since the vectors are not linearly indepedent, they are linearly dependent, i.e. 
some non-zero linear combination gives 0.

We can write the solution in vector form as in example 2. Because the constants 
are all 0, only the parametric vector is needed

>> parametric = M1(: , 3);
>> parametric = -parametric
>> parametric(3) = 1;
 
    
     -2
      3
      1

Thus one non-zero solution is x = -2, y = 3, z = 1. This in turn means that:

-2*v1 + 3*v2 + v3 = 0. 

Or 
v3 = 2*v1 - 3*v2 

We check our answers:

>> 2*v1 - 3*v2

    13   -10   15

>> v3

    13   -10   -15
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SUMMARY

i.   Finding and checking right (column) eigenvectors
ii.  Finding and checking left (row) eigenvectors
iii. Spectral decompositions.
---

DETAILS AND EXAMPLES

i. Finding and checking right (column) eigenvectors. 

We start with a 3 x 3 matrix of positive elements generated randomly using the 
function rand(  ) discussed in section II.2.iv.

>> P = rand(3)

    0.2623    0.8458    0.3424
    0.0146    0.2609    0.5263
    0.7956    0.4665    0.1368

To show more decimal places we could type

>> format long

First we find just the eigenvalues which include a conjugate pair.

>> eig_val = eig(P)

   1.1640          
  -0.2520 - 0.3646i
  -0.2520 + 0.3646i

Notice that the largest eigenvalue is real; this always happens when the elements 
of P are positive.

To place the eigenvalues in a row vector, we use the true transpose .' (see section 
II.3.i).

>> eig_val = (eig_val).' 

   1.1640    {-0.2520 - 0.3646i}   {-0.2520 + 0.3646i}

We use the save command to save the variables P and eig_val and in high 
precision form to a file "eig1.mat" for future use (section I.4.iv):

>> save eig1                    % no extension
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To reload them at a later date and find out what variables were stored in eig1 we 
would use load and whos

We find the magnitudes of the eigenvalues (section III.3.v):

>> absol_val = abs( eig_val )

    1.1640    0.4432    0.4432

Now we sort the eigenvalues by decreasing order using sort(  ); see section II.5.

>> eig_val = sort( eig_val )

{-0.2520 - 0.3646i} { -0.2520 + 0.3646i}   1.1640          

MATLAB orders by increasing order, but we want the largest first, so we rotate the 
vector twice (we could have used flipud(  ) or fliplr(  ), but which one we use 
depends upon whether we have a row or column vector:

>> eig_val = rot90( rot90( eig_val ))

   1.1640  {-0.2520 + 0.3646i}  {-0.2520 - 0.3646i}

Used alone eig(P) only gives the eigenvalues. To obtain the right (column) 
eigenvectors, as well as the eigenvalues, we use the two-valued form of eig(  ). 
The first matrix contains the right eigenvector as columns and the second matrix 
contains the eigenvalues as its diagonal elements:

>> [EIG_VEC, EIG_VAL1] = eig(P)

EIG_VEC =

   0.6281      -0.0521 + 0.4994i     -0.0521 - 0.4994i
   0.3993      -0.4524 - 0.3198i     -0.4524 + 0.3198i
   0.6678       0.6639 - 0.0156i      0.6639 + 0.0156i

Note that columns 2 and 3 are complex. These correspond to the complex 
eigenvalues.

EIG_VAL1 =

   1.1640                  0                  0          
        0            -0.2520 + 0.3646i        0          
        0                  0            -0.2520 - 0.3646i
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We can once again obtain the eigenvalues as a column vector and then, as a row 
vector

>> eigen1 = diag(EIG_VAL1);     % section II.3.ii

>> eigen1= (eigen1).'

   1.1640    { -0.2520 + 0.3646i}  {-0.2520 - 0.3646i}

In most linear algebra texts, the term eigenvector refers to a column vector y 
such that

P*y = L*y, 

where L is the corresponding eigenvalue. This is the type of eigenvector that 
MATLAB calculates, and it stores these eigenvectors as the columns of the matrix 
EIG_VEC. We pull out the first column:

>> y1 = EIG_VEC(: , 1)     % extraction; section II.4

    0.6281
    0.3993
    0.6678

>> L1 = eigen1(1)         % eigenvalue corrresponding to y1.

    1.1640

We now check:

>> P*y1

    0.7312
    0.4648
    0.7774

>> L1*y1

    0.7312
    0.4648
    0.7774

They look the same, but how close are they really? Do not forget that MATLAB has
calculated these products to a high degree of accuracy and perhaps the products 
do not agree at the higher decimal places. To check we first look at the vector of 
the absolute values of the differences between P1*y1 and L1*y1 and then take the
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sum of these absolute differences:

>> sum( abs( P*y1 - L1*y1 ) )

  8.3267e-016

Thus the difference between the calculated values P1*y1 and L1*y1 is small 
indeed.

MATLAB gives us one set of eigenvectors, but if we multiply an eigenvector by a 
constant, we will still have an eigenvector. In certain cases we can normalize the 
eigenvectors so as to meet certain conditions. In this example y1 has strictly 
positive elements (this is because P is strictly positive) and so we can normalize 
y1 so that the sum of the elements is 1. We do this by finding sum(y1) and then 
dividing y1 by this sum:

>> y1 = y1/sum(y1)      % keep the same variable name: y1

    0.3705
    0.2355
    0.3939

We check the answer:

>> sum(y1)

     1

ii. Finding and checking left (row) eigenvectors. 

As stated above in most linear algebra textbooks the term "eigenvector" refers to 
right (column) eigenvectors. But in certain applications (see part iii below and 
section III.3) we are interested in left (row) eigenvectors x which satisfy:

 x*P = L*x

It is easy to check that the left eigenvectors of P, are just the transposes of the 
right eigenvectors of the transpose of P (and not simply the transposes of the 
right eigenvectors) i.e. if y satisfies:

 P'*y = L*y

then if we put x =y', then x is a left eigenvalue as above.

Thus what we do is use MATLAB to find the matrix of right eigenvectors of the 
transpose of P and then take the transpose of this matrix. The eigenvalues will be 
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the same for both the left and right eigenvectors.

When working with transposes of eigenvectors and eigenvalues we must use the 
true transpose operator  .'  and not the conjugate transpose operator  ' . As shown
in the examples of section II.3.i, if we start with a matrix M with complex elements
then the elements of M'  will be the transposes of the elements of M. However the 
elements of M.' will be the same as those of M.

>> P1 = (P).'          % take the true transpose of P

>> [LEFT_EIG_VEC, EIG_VAL2] =  eig(P1)    % gives as columns

LEFT_EIG_VEC =

  -0.4716    -0.3080 + 0.5506i    -0.3080 - 0.5506i
  -0.7110     0.5917 - 0.0358i     0.5917 + 0.0358i
  -0.5215    -0.0640 - 0.4965i    -0.0640 + 0.4965i

EIG_VAL2 =

   1.1640                  0                  0          
        0            -0.2520 + 0.3646i        0          
        0                  0            -0.2520 - 0.3646i

The eigenvalues are exactly the same as in EIG_VAL which we calculated when we
computed the right eigenvectors in subsection i.

To obtain the left (row) eigenvectors of P, we now take the true transpose of 
"LEFT_EIG_VEC":

>> LEFT_EIG_VEC = (LEFT_EIG_VEC).' 

LEFT_EIG_VEC =

  -0.4716             -0.7110              -0.5215          
  -0.3080 + 0.5506i    0.5917 - 0.0358i    -0.0640 - 0.4965i
  -0.3080 - 0.5506i    0.5917 + 0.0358i    -0.0640 + 0.4965i

It is the rows of this matrix which are the left eigenvectors of P.

As in subsection i, we put the eigenvalues in a row vector. We have to redo the 
calculation, because we want to make sure that the eigenvalues and eigenvectors
match up. Sometimes MATLAB places the eigenvalues in different positions when 
working with a matrix and its transpose:

>> eigen2 = diag(EIG_VAL2);         % section II.3.ii
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>> eigen2= (eigen2).'

   1.1640    { -0.2520 + 0.3646i}  {-0.2520 - 0.3646i}

We now check the third eigenvalue and the corresponding eigenvector to see if 
they satisfy the equality

x3*P = L3*x3 

To do this we pull out the third element of "eigen2" and the third row of 
LEFT_EIG_VEC

>> L3 = eigen(3)               % pull out the third eigenvalue

  -0.2520 - 0.3646i

>> x3 = LEFT_EIG_VEC(3 , :)    % 3rd row of matrix; sect. II.4

{-0.3080 - 0.5506i}  {0.5917 + 0.0358i}  {-0.0640 + 0.4965i}

As was the case for the right eigenvectors in subsection i, we look at the vector of 
absolute differences and then take the sum:

>> sum( abs( x3*P - L3*x3 ) )

  8.9227e-016

Once again the difference is negligible.

iii. Spectral decompositions.

 "Nice" matrices, e.g. matrices with distinct eigenvalues (this includes all strictly 
positive matrices), have is what is called a "spectral decomposition":

P = L1*Z1 + L2*Z2 + L3*Z3

The Zi have the property that Zi*Zj = 0 if i and j are distinct and Zi*Zi = Zi. 
Further Z1 + Z2 + Z3 = Identity.

Because of the property of the Zi, we also have that for any power n:

Pn = (L1)n * Z1 + (L2)n * Z2 + (L3)n * Z3.

Computing the spectral decomposition is done via the program "spectral.m" which
displays the ease with which many matrix calculations can be done automatically 
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via MATLAB. The program first finds the matrix X of left eigenvectors. The 
eigenvalues are sorted in decreasing order and the rows of X are then rearranged 
accordingly. The matrix of right eigenvectors is computed as inv(X). The ith 
spectral component is simply yi*xi where yi and xi are the right and left 
eigenvectors corresponding to the eigenvalue Li.

The components Zi are stored in a matrix STORAGE which can either be displayed,
or the submatrices can be pulled out using the function fetch(k, STORAGE) 
discussed in section II.4. The function spectral(  ) is really a two valued function; 
aside from STORAGE the eigenvalues are also stored in eig_val.

Program 1

% [SPECTRAL.M]

function [eig_val, STORAGE] = spectral(A)

[rows, cols] = size(A);

% find X = matrix of left row eigenvectors;
A1 = (A).'                                 % true transpose
[VEC , VAL] = eig(A1);
X = (VEC).';                               % want row vectors

% sort eigenvalues by decreasing magnitude and rearrange X.
eig_val = diag(VAL);                        % column vector
[eig_val, indices] = sort(eig_val);         % sort, sect. II.5
eig_val = rot90(rot90( eig_val ));          % decreasing order                           

indices = rot90(rot90( indices ));          % decreasing order
X = X(indices , :);                         % rearrange rows of X 

eig_val = (eig_val).';                      % eigenvalues as row vector

% Obtain right eigenvectors; Y is obtained from X as inverse
% so no problem with order.
Y = inv(X);

% now find components

for k = 1:cols
      y = Y(: , k);             % column k of Y = right eigenvector
      x = X(k , :);             % row k of X = left eigenvector
      val = eig_val(k);         % kth eigenvalue
      Z = y*x;                  % kth idempotent matrix
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% store this component matrix in columns (k-1)*cols + 1 to
% k*cols of "STORAGE"
% for complicated ranges do in steps;thus avoiding charabia
     lo = (k-1)*cols + 1; 
     up = k*cols;
     range = [lo:up];
     temp_STORAGE(: , range) = Z;

end                             % end of "for- loop"

STORAGE = temp_STORAGE;

As an example we apply the function "spectral" to the matrix P of subsection i:

>> [vec, STORE] = spectral(P)

The eigenvectors are in "vec" and the components are in "STORE".

Now we put the components back together again:

>> L1 = vec(1) , L2 = vec(2) , L3 = vec(3);

L1 = 1.1640

>> Z1 = fetch(1,STORE), Z2 = fetch(2,STORE), Z3 = fetch(3,STORE);

Z1 =
   0.3191 + 0.0000i   0.4810 + 0.0000i   0.3528 + 0.0000i
   0.2028 + 0.0000i   0.3058 + 0.0000i   0.2243 + 0.0000i
   0.3393 - 0.0000i   0.5115 - 0.0000i   0.3751 - 0.0000i

>> P1 = L1*Z1 + L2*Z2 +L3*Z3

   0.2623             0.8458 + 0.0000i   0.3424          
   0.0146 + 0.0000i   0.2609 + 0.0000i   0.5263 + 0.0000i
   0.7956 - 0.0000i   0.4665 - 0.0000i   0.1368 - 0.0000i

According to the definition of the spectral composition given above P1 should be 
the same as P. We check this out using the sum of the absolute values of the 
differences between P1 and P.

>> P

    0.2623    0.8458    0.3424
    0.0146    0.2609    0.5263
    0.7956    0.4665    0.1368
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>> sum(abs(P1-P))

  1.0e-015 * { 0.5295    0.9169    0.6884}

One of the uses of the spectral decomposition is to analyse the long term 
behaviour of powers of a matrix. If L1 is the dominant eigenvalue (which will be 
real and positive for positive matrices with distinct eigenvalues) and Z1 is the 
corresponding, spectral component then for "large" n we have approximately: 

Pn = (L1)n * Z1

This is illustrated with P, L1 and Z1 as above:

>> P^10

    1.4571    2.1971    1.6114
    0.9264    1.3964    1.0244
    1.5496    2.3360    1.7130

>> (L1)^10 * Z1

   1.4573 + 0.0000i   2.1970 + 0.0000i   1.6113 + 0.0000i
   0.9264 + 0.0000i   1.3966 + 0.0000i   1.0243 + 0.0000i
   1.5494 - 0.0000i   2.3359 - 0.0000i   1.7132 - 0.0000i
So even for the 10th power the approximation is fairly good.

The relationship between powers of the matrix and powers of the dominant 
eigenvalue becomes even more striking when we do a plot using semi-log axes for
then (L1)^n appears as a staight line. An example of this is given in section 
iii.3.example 2.
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Many matrix models can be written in one of two forms, depending upon whether 
we are working with column or row vectors:

i.     nk-1 * A = nk (row vector form)

      or equivalently

       n0 * Ak =  nk   where n0 is an initial vector

ii.    nk = A * nk-1  (column vector form) 
      or equivalently

       nk = Ak * n0   where n0 is an initial vector

Calculating the values, and plotting the graphs, for such models is particularly 
straightforward.

Example 1. The function stochast is for models of type i. It was designed 
especially to illustrate what happens to "stochastic matrices", which are square 
matrices whose rows all add to 1. (These are sometimes called Markov chains 
(1906); algebra books tend to define them with the column sums being 1, but the 
row definition is more natural and is the one adopted in virtually all books on the 
topic). The function stochast stores the intial vector n0 in the first column of a 
matrix M, and then the other vectors nk as columns of M. To plot M we use the 
function shift_1 discussed in section II.6, example 5. At the end the matrix M is 
kept as a matrix STORE which can either be displayed or, if too big, the column 
vectors can be pulled out of STORE using the function fetch discussed in section 
II.4, program 2.

To create stochastic matrices easily, we use the following function normaliz:

Program 1

% [normaliz.m]

function y = normaliz(A)   

b1 = sum(A.');                  % sum ( ) is for columns use transpose
b = (b1).'                      % use the true transpose .'

[rows, cols] = size(A);         % section II.3.ii

c = ones(1 , cols);

B = b*c;   
% B has same dimension as A; elements of row i all = sum of row i
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% of A

y = (A)./B;              % element by element division

The power calculations are done by the next function stochast.

Program 2

% [stochast.m]
% stochast.m works with left row vectors (do not have to add to 1)
% P is an mxm matrix, n_0 is a mx1 row vector; t = number of
% iterations
% The program finds the population vectors for t time periods
% and stores them in a matrix M which is returned as an
% m x (t + 1)  matrix STORE (which can be suppressed when calling
% via `;'. The graph of time vs the population at each time is
% then plotted. The value at time = 0 is the initial vector
% Total population is also computed at time = 0 and time = t.
% It is assumed that all numbers are real, so use ' for transpose.

function STORE = stochast(P, n_0, t)

% do computations and store
% Since the index 0 is not permitted, we put the transpose
% of the initial vector in column 1.
M(:,1) = (n_0)';   

for n = 1:t
       u = n_0 *P^n;             % u = population row vector at time n
       M(:,n + 1) = u';          % store u' as column n + 1 of matrix M
end

STORE = M;

% plot rows versus time;
index = [0 : t];                 % domain vector; sect. II.6

% matlab will not accept 0 as index in matrices, so use
% shift_1(k,M)  = column (k +1) of M. Section II.6, example 5
plot(index , shift_1(index, M) )

% label the graph 
title(' stochastic matrix, "population" in different classes
 versus time ')

To illustrate these programs we use the same matrix P as in section III.1.i. This 
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was saved in a file "eig1.mat". 

>> load eig1                    % no extension; sect. I.4.v

Now obtain a stochastic matrix using the function normaliz of program 1 above. To
check, we show more than the usual four decimal places:

>> format long                  % section I.5.ii

>> P2 = normaliz(P)

   0.18085444136721   0.58309924493029   0.23604631370250
   0.01816746059301   0.32539236171264   0.65644017769435
   0.56872601196630   0.33346231536217   0.09781167267153

We check the row sums

>> s1 = sum(P2')
   
1.00000000000000   1.00000000000000   1.00000000000000

>> format short                    % back to the short form

We now pick an initial row vector at random. Just to make everything even more 
random, we change the "seed" for the random number generator (section II.2.iv).

>> rand('seed', 78 )               % 78 is an arbitrary number

>> initial = rand( 1, 3);   

Normalize "initial" so that the sum of the elements is one.

>> initial = initial/(sum(initial))

    0.0055   0.7310   0.2635

>> sum(initial)

   1.000

>> save eig2                 % save old and new variables to "eig2.mat"

The initial vector n0 is taken to be equal to "initial". We are now ready to find and 
plot the vectors n1, n2, ... n7, using the function stochast.

>> STORE = stochast(P2, initial, 7)
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 the "initial" vector: 

    0.0055    0.7310    0.2635

 the total initial population was:  1.0000

 number of iterations was:  7

last value of population vector:  { 0.2535    0.3934    0.3531 }

 the total population at the end is:   1.0000

The vectors nk, for k = 0, ..., 7 have been put as column vectors in STORE. 
Because the intial vector is stored in column 1, nk has been stored in column k+1.
The first and last columns have already been printed out above by the program.

STORE =

Columns 1 through 7 

0.0055    0.1641    0.3240    0.2384    0.2498    0.2573  0.2527
0.7310    0.3289    0.3718    0.4113    0.3897    0.3927  0.3945
0.2635    0.5069    0.3043    0.3503    0.3605    0.3500  0.3527

Column 8 

0.2535
0.3934
0.3531

From the last columns we see that the vectors nk appear to converge to 
approximately: [0.2535 0.3934 0.3531].

To see what the limit is, we continue our calculations by taking a high power of P2:

>> POWER_40 = P2^40

   0.2536   0.3936   0.3528
   0.2536   0.3936   0.3528
   0.2536   0.3936   0.3528

We pull out the first row:

>> a = POWER_40(1 , :)
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   0.2536  0.3936   0.3528

which is what nk would be for large values of k.

The vector "a" turns out to be (approximately, because we only took the 40th 
power) a left eigenvector of P2 corresponding to the eigenvalue 1 (which is always
an eigenvalue for a stochastic matrix):

>> ei = eig(P2).'          

  {-0.1980 + 0.3184i}  {-0.1980 - 0.3184i}   1.0000          

To verify that a is approximately a left eigenvector i.e that a*P2 = 1*a we use, as 
in section III.2. the sum pf the absolute differences:

>>  sum(abs( a*P2 - 1*a ))

         1.1102e-016

The plot of the graph is shown in the figure on the next page
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Example 2. Human population population models; Leslie matrices

The following matrix is the "Leslie matrix" for the female population of the United 
States in 1965 (source: N. Keyfitz, Introduction to the Mathematicas of Population, 
1968, pp. 42, 56; for other matrix models see also H. Caswell, Matrix Population 
Models, 1989). The rows and columns correspond to the female population in age 
groups 0-15, 15-30, 30-45 respectively. The off diagonal numbers represent the 
survival rate from 0-15 to 15-30 and 15-30 to 30-45. The numbers in row 1 
represent the number of females born to females in each of the three groups.

    0.4271    0.8497    0.1273
    0.9924         0         0
         0    0.9826         0

The female population of the three groups in 1965, displayed as a row vector with 
the factor 10^6 omitted, is:
 
   29.4130   20.8860   18.0400

This model corresponds to the second type above, with an increase of the power 
by one being the same as fifteen real years.

The function popul_r was designed for models of type ii. The main difference from 
that of "stochast.m" in example 1 - aside from the change from rows to columns - 
is that the plot is done on semi-log axes (log10). Because of the importance of the
dominant eigenvalue L1, as discussed in the part iii of section III,3, the population 
of each class will have log(L1) as an asymptote on these axes. The graph shows 
both the line log(L1) * k and the population of each class. The function also 
computes the population at each time and stores the vectors in a matrix STORE 
for printing out or later retrieval.

Program 3

% [popul_r.m]
% popul_r.m works with right column vectors (conver1.m is rows)
% P is an mxm matrix, n_0 is a mx1 column vector; t = number of
% iterations.
% The program finds the population vectors for t time periods
% and stores them in a matrix M which is returned as an
% m x (t + 1)  matrix STORE (which can be suppressed when calling
% via `;'. The graph of time vs the population at each time is
% then plotted. The value at time = 0 is the initial vector
% Total population is also computed at time = 0 and time = t.
% The program also computes the dominant eigenvalue L1 and plots
% the straight line log10(L1)*time
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function STORE = popul_r(P,n_0, t)

M(:,1) = n_0;     % initial vector in column 1;

for n = 1:t
        u = P^n * n_0 ;       % u = column vector of `population' at n
        M(:,n + 1) = u ;      % store u as column n + 1 of matrix M
end

STORE = M;

% now find the largest eigenvalue and set up plot of L1*time
EIG_VAL = eig(P) 
L1 = max(max(EIG_VAL));   % first max on columns, then max of max!

% plot rows versus time;
index = [0 : t];
Z = (L1).^(index);   %  line with slope log10(L1) on log scale.

% matlab will not accept 0 as index in matrices, so use
% shift_1(k , M)  = column (k +1) of M

% make y axis log10 scale use 'semilogy'
% to plot the line log10(L1)*time repeat use 'index, Z)
semilogy(index, shift_1(index, M), index, Z )

% label the graph
title('population in different classes versus time')

% label the y axis
ylabel('log scale')

The data for the United States in 1965 was typed into a program called 
"usa_1965.m"; see section I.3.i. Note that the situation here is different from that 
of example 1. In that example we had created a matrix at random and then saved
the matrix in a  *.mat  file which we later called up using load. But here 
"usa_1965.m" is a simple ASCII file that we created ourselves. So to call it up we 
simply type the name; see sections I.3.i and I.4.iv,v

>> usa_1965               % call up data from file usa_1965.m

We call up popul_r and store results in STORE

>> STORE = popul_r(LESLIE, initial, 7)
 
 the total initial population was:   68.3390
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last value of population vector - displayed as a row vector is; 

  105.1696   86.4479   70.0180

 the total population at the end is:  261.6356

the dominant eigenvalue is   1.2093

STORE =

  Columns 1 through 7  (column 1 = initial population)

29.4130   32.6056   41.3407   48.8022   59.7511   71.8036 87.1100
20.8860   29.1895   32.3578   41.0265   48.4313   59.2970 71.2579
18.0400   20.5226   28.6816   31.7948   40.3126   47.5886 58.2652

  Column 8  ( = final population vector)

  105.1696
   86.4479
   70.0180

Example 3. In example 2, we found the population vectors for each of three age 
classes at various time points. There the indices were the time points, and at each
time point we had three values corresponding to the population in each of three 
classes.

In the present example, we do what might be called the "transpose" of problem 2.
We start with the female population in Canada in 1981. whose age was less than 
50 years. We divide this population into ten age classes, each class being five 
years in length. By proceeding as above, we then find the population in 1991, 
2006 and the asymptotic population (these correspond to n = 2, n = 5 and the 
right eigenvector corresponding to the maximum eigenvalue.)

We normalize the population for each of the four time points, so as to find the 
relative frequency of females in each of the ten age classes. For each year our 
value vector will be the vector of relative frequencies for that year. We then plot 
each of the four value vectors against the domain vector [1 : 10]  All the work is 
done with the program "canada81.m". 

The graph appears at the end of this section.

Program 4

% [canada81.m]
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% analysis of fraction of female population in first 10 age classes

% based on the 1981 Canadian census (volume N92-901 table 1),
% values have been rounded off. Population = value *10^5

% The age and year intervals are 5 years.  There are 10 age
% classes (only one child was born to a woman over 50 in 1981):

% only real values, including the dominant eigenvalue, so can use '
% for long data sets use ellipses and continue on the next line

n0 = [8.69, 8.65, 9.36, 11.33, 11.69, 10.93, 10.17, 8.07, ...
6.63, 6.21];

n0 = (n0)';            % need as column vector for powers

% first row vector of 10 terms; use ellipses (section I.4.ii)

fertility = [0, .003, .031, .1448, .2639, .2292, .1024, ...
 .0267, .0039, .0002];

% off diagonal terms vector of 9 elements
survival = [.9982, .9999, .9983, .9977, .9975, .9971, ...
.9959, .9936, .9898];

% form Leslie matrix
CAN_81 = zeros(10 , 10);        % determine shape

CAN_81(1 , : ) = fertility;     % first row

% off diagonal = survival
for n = 1 : 9;                 % start in row 2
   CAN_81(n+1 , n) = survival(n);
end

% population at t = 2 (10 years) and 5 (25 years)
n2 = (CAN_81)^2 * (n0);  
n5 = (CAN_81)^5 * (n0);  

% obtain as row vectors by taking transposes
n0 = (n0)';
n2 = (n2)';
n5 = (n5)';

% stable initial vector = right eigenvector corresponding to
% maximum eigenvalue
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[VEC, VAL] = eig(CAN_81);

% sort eigenvalues by decreasing magnitude and rearrange CAN_81
eig_val = diag(VAL);
[eig_val, indices] = sort(eig_val);   % sorts by increasing order
eig_val = rot90(rot90(eig_val));      % section III.2.ii        
indices = rot90(rot90(indices));
% rearrange the rows of VEC to match eigenvalues
VEC = VEC(indices , :);      
stable = VEC(: , 1);                  % pull out first column
stable = (stable)';

% relative frequencies obtained as row vectors
disp(' relative frequencies ')
y0 = (n0)/sum(n0)
y2 = (n2)/sum(n2)
y5 = (n5)/sum(n5)
y_stable = (stable)/sum(stable);

in = [1 : 10];
plot(in, y0, '-' ,  in,y2, ':', in, y5, '-.', in , y_stable, '--')
hold

title('Canada - fraction of female population in 5 year age groups, 0 -50')
xlabel('1981: ___ ; 1991: ...  ; 2006: -.-.  ; asymptotic: - - - ')
ylabel('relative frequencies')

The population (multiply by 100,000) and relative frequencies for 2005 are:

n2 = 

  Columns 1 through 7 

 8.7219    8.8149    8.6735    8.6344    9.3226   11.2757 11.6270

  Columns 8 through 10 

   10.8536   10.0635    7.9366

y2 =

  Columns 1 through 7 

0.0909    0.0919    0.0904    0.0900    0.0972    0.1175   0.1212
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  Columns 8 through 10 

    0.1131    0.1049    0.0827
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"I can't tell you what the Matrix is, no one can." -Lawrence Fishburne (Morpheus) 
to Keanu Reeves (Neo) in The Matrix (contributed by Greg Doyle)

SUMMARY

i. Norms and orthogonalization   

norm:   norm(v)
normalizing the columns of a matrix: norz_col(A) 
orthonormal vectors: dot(v1, v2), norm(v1) = norm(v2) = 1
orthogonalization (Gram-Schmidt): orth(A)
orthogonal (unitary) matrices

ii. Null spaces

null(A)

iii. Orthogonal transformations

Orthogonal transformations
QR-factorization: [Q,R] = qr(A)

iv. Eigenvalues and eigenvectors

Eigenvalues and eigenvectors: [EIG_VEC, EIG_VAL] = eig(A)
Characteristic polynomial: poly(A)
Cayley-Hamilton theorem
Linear independence: Section 3.1.viii
Spectral decomposition: Section 3.2

v. The similarity problem, diagonalization

"Nice" square matrices: 

P = EIG_VEC; D = EIG_VAL

A = P*D*inv(P); D =inv(P)*A*P

"Non-nice" square matrices: Jordan normal (cannonical) form

[V, J] = jordan(A); A = V*J*inv(V) ; J= inv(V)*A*V

Non-square matrices: Singular value decomposition

[U, S, V] = svd(A);  A = U*S*V'
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DETAILS AND EXAMPLES

[N.B. Nering = Nering, E. Linear Algebra and Matrix Theory, London:   Wiley, 1963.

i. Norms and orthogonalization   

The norm of a vector. The norm of a vector is given by  norm(v) = 
R( sum( (abs( ))^2). Here R( ) is the modern symbol for square root as defined in 
Section II.3.iii. The definition also holds for complex numbers. Matlab computes 
the norm as norm(v) = R( v * v' ) for row vectors; where ' is the conjugate 
transpose (Section II.3.i).

If divide each element of a vector by the norm then the new vector has norm 1. 
We say that the vector has been normalized.

Example 1

>> c = [ 1 2 3]

>> d =  norm(c)
 
      3.7417

>> e = c/d
  
      0.2673    0.5345    0.8018

>> norm(e)

     1

Often we need to normalize a set of vectors. Instead of working with each vector 
individually we can place them as the columns of a matrix and then use the 
following function:

% [norz_col.m]
% normalize the columns of a matrix (square or not)
% pull out the column vectors; find the norm, divide and replace!

 function   B = norz_col(A)

 [m,n] = size(A);
 B1 = zeros(m,n);      % storage matrix
 for k = 1:m
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      v =A(:,k);    % kth column
      n = norm(v);
      u = v/n;         % normalize
      B(:,k) = u;      % replace
  end

Example 2. Let

A1 =  [1     4             % [Nering, 224]
       4    -5]

>> B1 = norz_col(A1)

    0.2425    0.6247
    0.9701   -0.7809

%  we check
>> v3 = B1(:,1)     % pull out column 1, Section II.4,ii
>> v4 = B1(:,2)     % pull out column 2

v3 =    0.2425
        0.9701

v4  =   0.6247
       -0.7809

>>  norm(v3),  norm(v4)

             1   1

[Note: Do not confuse norz_col( ) with normalize( )] of Section III.3 where the sum 
of the elements of each row was made equal to 1].

Orthonormal vectors.  Vectors  v1 and v2 are called orthonormal if:

a.  dot(v1, v2) = 0     % dot is the dot (inner) product
b.  norm(v1) = norm(v2) = 1

For example in R2 the vectors v1 = (1,0) and v2 = (0,1) are orthonormal. In the 
same way we can talk about orthonormal families where any two vectors are 
orthonormal.

[note: The function dot( ) is strangely missing from MATLAB; it was defined as a 
function in Section II.3.i]
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Gram-Schmidt orthogonalization: If we have a set of linearly independent vectors 
(Section III.1.viii) which spans some space, i.e., whose linear combinations 
generate the same vectors as the original vectors, then this spanning set is called 
the basis for the space. For example (see under null spaces below) we might want
a basis for the set of solutions to a system of homogeneous linear equations. 
Knowing the basis means that we essentially know all the solutions. 

Often we wish to replace a basis, whose members need only be linearly 
independent, by a linearly independent set which is also orthonormal. The usual 
method for finding an orthonormal basis for a set of linearly independent vectors 
is called the Gram-Schmidt orthogonalization process. This can be done in 
MATLAB by placing the linearly independent vectors as the columns of a matrix 
and using the command orth( ).

To apply the Gram-Schmidt orthogonalization process to A1 above we first check 
that the columns are linearly independent:

>> rank(A1) 
  
      2

Since the rank equals the number of columns, the columns are linearly 
independent.

We  find the dot (inner) product between v1 and v2

>>  dot(v1,v2)    % Section II.3.i
  
      -0.6060

So  v1 and v2 are linearly independent, but not orthogonal.

Now we use the function orth( ) to find an orthonormal basis for the space 
spanned by v1, v2.

Example 3

>> GS1 = orth(A1)

    0.6247    0.7809
   -0.7809    0.6247

Suppose that we wanted to check that the columns of GS1 are indeed 
orthonormal. There are two ways of doing this. In the first we actually pull out the 
columns of GS1 and then check:



SECTION II.7  ADVANCED LINEAR ALGEBRA

>> v3 = GS1(: , 1)    % pull out the first column
>> v4 = GS1(: , 2)    % pull out the secondcolumn

>> norm(v3), norm(v4)   

         1     1

% check that orthogonal
>> dot(v3,v4)

   1.6653e-016     %  = 0

In the second method we think of GS1 as consisting of two column vectors v3, v4 
and then consider the transpose:

                 GS1     = [v1, v2]  
                 (GS1)'  = [v1'   
                              v2']  

If  v1 and v2 are orthonormal, then we should have:

                      GS1 * (GS1)'  = I

>> GS1 * (GS1)'
   
     1   0
     0   1

A square real matrix M with the property that M*M' = I is called an orthogonal 
matrix. Since the product is the identity we have that the transpose of of M is the 
same as the inverse of M. Since the entries are real, the transpose ' operator 
coincides with the true transpose (see Section II.3.i).

For square matrices with complex entries, matrices having the property that M*M' 
= I are called unitary matrices. In this case the operator ' is the conjugate 
transpose (see Section II.3.i).
 
In the above example the matrix had rank 2 and so we had that the columns were
linearly independent. Suppose we take A1 and add a column made up of numbers 
picked at random. Then we have a 2 x 3 matrix and the rank will still be 2.

Example 4

>> w = rand(1,2);   % pick a vector at random; Section II.2.iv
>> w = w';          % transpose
>> A2 = [A1,w]     % concatenate w with A1
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A2 =

    1    4    .6789
    4   -5    .6793

>> rank(A2)      

      2

Since the rank of A2 is 2, any orthonomal base for the space generated by the 
columns of A2 will consist of two vectors. As before we can find an orthonormal 
base for the space using orth( ):

>> orth(A2)

    0.6247    0.7809
   -0.7809    0.6247

Note that this is the same set of two vectors that we obtained from the command 
orth(A1). This is because the last column of A2 is linearly dependent on the first 
two columns (to find the relationship of the last column to the first two, just treat 
A2 as the augumented matrix corresponding to A1 and solve; see Section 
III.1.viii).

ii. Null spaces

Example 5

Consider the two homogeneous equations in 5 unknowns given by the matrix 
equation.

A3*s = 0;    s = [v w x y z]'

where:

>> A3 =     [ 2     0     5     0     1
              1     0     2     1     0
              1     1     0     0     0 ]

We reduce A3 using rref( ); see Section III.1.

>> R3 = rref(A3)

        1     0     0     5    -2
        0     1     0    -5     2
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        0     0     1    -2     1

From R3 we see that the rank of A3 is 3. Since there are 5 unknowns, the first 3 
variables v, w, x can be expressed in terms of the 5-3 = 2 other variables y and z 
(see Section III.1.ii, example 2). The set of all solutions of the equation A3*s = 0 is
called the null space of A3.

What we want is a basis, and in particuar an orthonormal basis, for the null space.
Because 3 of the variables can be expressed in terms of the other 2 variables, any
basis for the solution space will consist of 2 linearly independent vectors. To 
construct a basis we simply take [y z] = [1 0] and [y z] = [1 0]. These latter two 
vectors are linearly independent in R2 and since the other variables depend on y 
and z we are then assured that we have linearly independent vectors in R5. 

Because y and z are 0 and 1, the values for v, w and x are just the negatives of 
the elements of the last two rows of R3, i.e., (-5, 5, 2) for y = 1, z = 0 and (2, -2, 
-1) for y = 0, z = 1 (see Section III.1.ii, example 2). We use these values to create 
a basis {s1, s2} for the null space.

>> s1 = [-5  5  2  1  0]' ;  % transpose to make column vector
>> s2 = [ 2 -2 -1  0  1]' ;

To find an orthonormal basis we proceed as in the previous section and put s1 and
s2 into a matrix and then use orth( ), as in part i above:

>> S= [s1, s2]
  
   -5     2
    5    -2
    2    -1
    1     0
    0     1

% we check that we did not make a mistake and that S is indeed
% a solution of the equation A3*s = 0
>> A3* S

       0 0
       0 0
       0 0

%  find an orthonormal base usin orth( )   
>> BASE1 = orth(S)

   0.6742   -0.0000
  -0.6742   -0.0000
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  -0.2697    0.1826
  -0.1348   -0.3651
          0   -0.9129

% check that orthonormal. Note the order with 2 x 5 (BASE1)' first 
>> (BASE1)' * BASE1

   1.0000    0.0000
   0.0000    1.0000

The columns of BASE1 form an orthonormal basis for the null space of A3. 

Instead of preceeding as we just did using orth( ) we can use the MATLAB 
command null( ) to obtain an orthonormal basis for the null space.

 >>BASE2 = null(A3)

  -0.6594    0.1403
   0.6594   -0.1403
   0.2258   -0.2347
   0.2079    0.3291
   0.1900    0.8929

 % check
>> (BASE2)'*BASE2
   1.0000    0.0000
   0.0000    1.0000

Note that the columns of BASE2 are not the same as the columns of BASE1. Thus 
we have obtained two distinct orthonormal bases for the null space.

iii. Orthogonal transformations

Example 6

We start with two arbitrary matrices and then find  orthnormal bases

A4 =

     4     5    -1     2
     3    -7     4     6
     8     0    -3     5
     5     4     1     2

rank(A4)
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        4

BASE_A4 = null(A4)

    0.3746   -0.4650   -0.1776   -0.7822
    0.2810    0.8049   -0.4653   -0.2383
    0.7493    0.1431    0.6334    0.1300
    0.4683   -0.3398   -0.5922    0.5608

B4 =

    11    -5     4     2
    13    -2     0     4
     3     3     1    -2
     5     6     1     4

rank(B4)

        4

BASE_B4 = null(B4)

    0.6111   -0.4317    0.1043    0.6552
    0.7222   -0.0380   -0.1384   -0.6766
    0.1667    0.4093    0.8966   -0.0285
    0.2778    0.8029   -0.4075    0.3347

Since both A4 and B4 have rank 4, both BASE_A4 and BASE_B4 are orthonormal 
bases for R4. We want to know if there is a relationship between these bases. In 
particular we want to know if there is there a matrix O such that:

BASE_A4 = O*BASE_B4

If so the matrix O will represent an orthogonal transformation from one (real) 
basis to another.

If O exists then:

>> O = (BASE_A4)*inv(BASE_B4)

   -0.1014    0.8421   -0.2649   -0.4588
   -0.3804    0.3979   -0.0341    0.8342
    0.5473    0.3601    0.7477    0.1084
    0.7386    0.0537   -0.6080    0.2863
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To see what properties O has we find the transpose and then multiply:

O' =

   -0.1014   -0.3804    0.5473    0.7386
    0.8421    0.3979    0.3601    0.0537
   -0.2649   -0.0341    0.7477   -0.6080
   -0.4588    0.8342    0.1084    0.2863

O*O'

    1.0000    0.0000   -0.0000    0.0000
    0.0000    1.0000   -0.0000    0.0000
   -0.0000   -0.0000    1.0000   -0.0000
    0.0000    0.0000   -0.0000    1.0000

Since the matrix that we obtain is the identity matrix, O' is the inverse of O and 
furthermore the columns of O itself form an orthonormal basis.

The matrix O thus is an orthogonal matrix and represents an orthonomal 
transformation from the base obtained from B4 to the base obtained from A4. The
linear transformation whose matrix is O' = inv(O) goes in the other direction.

QR-factorizations. To illustrate these factorizations we the MATLAB function qr( ) 
with A4:

Example 7

>> [Q, R] = qr(A4)

Q =

   -0.3746    0.4650    0.1776   -0.7822
   -0.2810   -0.8049    0.4653   -0.2383
   -0.7493   -0.1431   -0.6334    0.1300
   -0.4683    0.3398    0.5922    0.5608

R =

  -10.6771   -1.7795    1.0302   -7.1181
         0    9.3184   -2.9154   -3.9349
         0         0    4.1760    1.1642
         0         0         0   -1.2227

If we multiply Q and R we find that:
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A4 = Q*R

The matrix R is an upper triangular matrix (see Section III.1.vi for the solution of 
equations by LU decompositions which involve both upper and lower triangular 
matrices).

What about the matrix Q?

>> Q*Q'

    1.0000    0.0000    0.0000   -0.0000
    0.0000    1.0000   -0.0000    0.0000
    0.0000   -0.0000    1.0000   -0.0000
   -0.0000    0.0000   -0.0000    1.0000

Since Q*Q' is the the identity matrix, Q is an orthogonal matrix and the discussion 
of the previous section holds, e.g., if we type:

>> E = Q*BASE_A4

then E will be an orthogonal matrix and its columns will forma a basis for R5.

iv. Eigenvalues, eigenvectors, spectral decomposition, linear independence.

Eigenvalues and eigenvectors are discussed in detail in Section III.2; spectral 
decompositions are discussed in detail in Section III.2.iii; linear independence is 
discussed in detail in Section III.1.viii. In the following we only consider right 
(column) eigenvectors.

Eigenvalues, eigenvectors

Example 8

A1 =  [1     4             % [Nering, 224]
       4    -5]

>> [EIG_VEC1, EIG_VAL1] = eig(A1)   % Section III.2. i

EIG_VEC1 =

   -0.8944    0.4472
   -0.4472   -0.8944

% the (right) eigenvectors are the columns of EIG_VEC1
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EIG_VAL1 =

     3     0
     0    -7

The eigenvalues appear as the diagonal elements of EIG_VAL1; so we pull them 
out into a column vector and then take the transpose. Since the eigenvalues are 
often complex, even when the original matrix was real, we use the true 
transpose .' instead of ' which gives the conjugate transpose (Section II.3.i).

>> eig_val1 = diag(EIG_VAL1);
>> eig_val1 = (eig_val1).'    
  
    3    -7

Characteristic polynomial

The characteristic polynomial can be obtained by the MATLAB command poly(A).

Example 9

>> p1 = poly(A1)
          
      1  4 - 21

The terms here represent the polynomial p1(x)= 1*x^2 + 4*x - 21 (note that p1 is
used here for both the polynomial and the vector of its coefficients; see Section 
II.7.i). We can check that eigenvalues are given by eig_val1 by substitution into 
p1. This can be done using the function coeff( ) defined in Section II.7.i.

>> coeff(p1 , eig_val1) 

     0     0

Instead of checking the eigenvalues that we obtained above using the function 
eig( ) we can solve the characteristic polynomial, using the function roots( ) 
discussed in Section II.7.ii

>> e1 = roots(p1)

    -7
     3

>> e1 = sort(e1')
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    -7     3

% place in decreasing order
>> e1 = fliplr(e1)     % reverse order; Section II.3.ii

     3    -7          

In some examples MATLAB does not give quite the answer when using
eig(A) and roots(poly(A)). This is due to fact that different methods are used.

Cayley-Hamilton Theorem

This theorem says that if we substitute a matrix into its characteristic 
polynomial---using matrix powers---then we obtain the zero matrix.

Since the function coeff( ) of Section II.7.i works with pointwise powers it cannot 
be used. However all we have to do is modify [coeff.m] by using ^ instead of .^ 
(i.e. no dot). We do, however, put in a check for the squareness of the matrix.

% [coeff2.m]
% for pointwise powers use [coeff.m] (Section II.7.i)

 function y = coeff2(poly , A)

 % check if square
 [m,n] = size(A);
 if m ~= n
     error('not square')       % Section II.8.iv
  end

 l = length(poly);

 y = zeros(m);
 for k = 1:l
      y = y + poly(k)*(A)^(l-k);  % matrix power
 end

Example 10. We apply coeff2 to A1 and p1

>> coeff2(p1 , A1)
 
         0  0
         0  0

Spectral decompositions
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The spectral decomposition of "nice" matrices (i.e. linearly independent 
eigenvectors; this occurs e.g. when we have distinct eigenvalues) is discussed in 
Section III.2.3 where the  code for the function spectral( ) is given.

Example 11

>> spectral(A1)

     term 1,  eigenvalue = 3
     component matrix

      0.8000    0.4000
      0.4000    0.2000

     term 2,  eigenvalue = -7
     component matrix

     0.2000   -0.4000
    -0.4000    0.8000

Since the eigenvalues of A1 are distinct we are automatically guaranteed that the 
eigenvalues are linearly independent (Section III.1.viii). We could verify this 
directly in this case using rank( ):

>> rank(A1)

     2

Since the rank equals the number of columns, the (column) eigenvectors are 
linearly independent.
  
v. The similarity problem, diagonalization

In general the similarity problem involves relating a matrix A to a matrix D which 
is simpler in form, hopefully a diagonal or nearly diagonal matrix. More specifically
given A we would like to find an invertible matrix P such that:

A = P*D*inv(P)

Whether this is possible, and what the form of P and D are depend upon how nice 
A is. We discuss three cases.

"Nice" square matrices. In this case we let:

P = EIG_VEC; D = EIG_VAL
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then the definition of eigenvectors and eigenvalues is:

A*P = P*D

If the eigenvectors, i.e. the columns of P, are linearly independent (a sufficient, 
but not necessary condition for this is that the eigenvalues be distinct) then inv(P)
will exist and we will have:

A = P*D*inv(P); D =inv(P)*A*P

Example 12.

A5 =

     3     2     2    -3
    -1     6     0     5
     4    -3     9     8
     8     0     6     1

>> [E_VEC5, E_VAL5] = eig(A5)

E_VEC5 =

  -0.0887   -0.4642 - 0.3537i    -0.4642 + 0.3537i    0.2420          
  -0.3309    0.2857 - 0.0695i     0.2857 + 0.0695i    0.9354          
  -0.8128    0.5706 + 0.1568i     0.5706 - 0.1568i   -0.0727          
  -0.4712   -0.4095 + 0.2348i    -0.4095 - 0.2348i    0.2474          

E_VAL5 =

  12.8534            0                  0                  0          
  0            -0.4585 + 3.7766i        0                  0          
  0                  0            -0.4585 - 3.7766i        0          
  0                  0                  0             7.0636          

Notice that the eigenvectors given by the second and third columns are complex, 
even though A5 is real. These complex eigenvalues correspond to the conjugate 
eigenvalues given as the second and third elements of the diagonal of E_VAL5

For simplicity, we designate the matrix of eigenvectors by P and the  matrix of 
eigenvalues by D. 

>> P = E_VEC5;
>> D = E_VAL5;
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We check the rank of P to see if it is invertible

>> rank(P)

     4

So we know that inv(P) exists.

We now check that A5 is similar to D

>> F5 = P*D*inv(P);
>> F5 - A5;

   1.0e-14 *
       {4 x 4 matrix} = 0

>> G5 = inv(P)*A5*P;
>> G5 - D

   1.0e-14 * 
       {4 x 4 matrix} = 0

Because of similarity we should have the relationship:

(A5)n =  P*(Dn)*inv(P);

>> H5 = P*(D^10)*inv(P);
>> H5 - (A5)^10

   1.0e-04 *
       {4 x 4 matrix} = 0

In fact since D is diagonal, any power of D can be obtained by taking the powers 
of the individual diagonal elements.

Because A5 and D are similar they should have the same determinants.

>> det(D)

  1.3140e+03 + 3.1368e-14i

>> abs(det(D))

        1314
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>> det(A5)

        1314

"Non-nice" square matrices: Jordan normal (cannonical) form

                [V, J] = jordan(A);

A = V*J*inv(V) ; J= inv(V)*A*V

Example 13

>> A6                            % Nering, p. 107

     1     0    -1     1     0
    -4     1    -3     2     1
    -2    -1     0     1     1
    -3    -1    -3     4     1
    -8    -2    -7     5     4

>> [E_VEC6, E_VAL6] = eig(A6);

% check the rank of the matrix of eigenvectors

>> rank(E_VEC6)

     3

So the eigenvectors are not linearly independent and no inverse exists.

% display the eigenvalues in a row vector

>> eigenvalues = sort(diag(E_VAL6).')

2.0000 - 0.0000i   2.0000 + 0.0000i   2.0000 - 0.0000i   

2.0000    2.0000 + 0.0000i

So the five eigenvalues of A6 are all equal to 2. We check this by finding the 
characteristic polynomial and then the roots.

>> poly(A6)

    1.0000  -10.0000   40.0000  -80.0000   80.0000  -32.0000
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% f(x)  = x^5 - 10*x^4 + 40*x^3 - 80*x^2 + 80*x - 32
%       = (x-2)^5

>> roots(poly(A6))

   2.0024          
   2.0007 + 0.0023i
   2.0007 - 0.0023i
   1.9981 + 0.0014i
   1.9981 - 0.0014i

Notice that accuracy is not as good by this second method; MATLAB is using a 
differenet proceedure

Now we find the Jordan canonical form using the MATLAB function jordan( ):

>> [V7, J7] = jordan(A6)

V7 =

     0    -1     2     0     1
     0    -6     0    -2     0
    -1    -3     0    -1     0
    -1    -4     1    -1     1
    -1   -11     0    -3     0

J7 =

     2     1     0     0     0
     0     2     1     0     0
     0     0     2     0     0
     0     0     0     2     1
     0     0     0     0     2

We see that J has the eigenvalues on the diagonal and three 1s on  the off-
diagonal.

We check that A6 is indeed similar to J6.

>> H6 = V6*J6*inv(V6)

>> H6 - A6

     0     0     0     0     0
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     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0

>> G6 = inv(V6)*A6*V6

>> G6 - J6

     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0

Non-square matrices: Singular value decomposition

       [U, S, V] = svd(A);  A = U*S*V'

Example 14.

We use transformed random numbers (Section II.2.iv) to generate a 2 x 5 random 
matrix with integer entries belonging to {-9, .. -1, 0, ... 9}.

>> A8 = -9 + floor(19*rand(2,5))    % floor - Section II.3.vi

    -3     6     0    -6     2
     4     8     7    -3     7

>> r8 = rank(A8)

     2

First we will find the singular value decomposition and verify the similarity 
properties and then we shall see where the matrix S comes from. Note carefully 
the dimensions of the matrices that we obtain.

>> [U8, S8, V8] = svd(A8)   %  svd( ) = singular value decomposition

U8 =          %  U8  = 2 x 2
    0.4472   -0.8944
    0.8944    0.4472

% S8 = 2 x 5, the same dimensions as A8
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% note how S8 is a "diagonal" matrix

S8 =        

   14.8661         0         0         0         0
       0      7.1414         0         0         0

V8 =          % V8 = 5 x 5

    0.1504    0.6262   -0.7650         0         0
    0.6618   -0.2505   -0.0749    0.5687   -0.4125
    0.4212    0.4384    0.4416   -0.5269   -0.3972
   -0.3610    0.5636    0.3904    0.6157   -0.1434
    0.4813    0.1879    0.2484    0.1408    0.8072

>> % check similarity

>> E8 = U8*S8*V8';

 E8 - A8

   1.0e-14 * {2 x 5 matrix} = 0

Both U8 and V8 are orthogonal matrices. We can check this:

>> U8*U8'
         
       1  0
       0  1

% similarly for V8*V8' we obtain the 5 x 5 identity matrix
        
So both U8 and V8 are invertible and we can obtain S8 from A8:

>> H8 = inv(U8)*A8*V8;

>> H8 - S8

   1.0e-14 * * {2 x 5 matrix} = 0

We now investigate what the 2 x 5 matrix S8 represents:

>> B8 = (A8)'*A8     
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    25    14    28     6    22
    14   100    56   -60    68
    28    56    49   -21    49
     6   -60   -21    45   -33
    22    68    49   -33    53

So B8 is a symmetric 5 x 5 matrix. Let us find the eigenvalues of B8.

>> eigenvalues8 = eig(B8);

% sort the eigenvalues in decreasing order:
>> eigenvalue8 = fliplr(sort(eigenvalues8))

        221.0000   51.0000    0.0000    0.0000   -0.0000

Notice that we have two strictly positive values with the rest being 0. This is the 
same situation as with the diagonal elements of S8. In fact the values are related:

>> s8 = r(eigenvalue8)              % r = sqrt

 14.8661   7.1414   0.0000    0.0000   0 + 0.0000i

So we see that diagonal elements of S8 are just the square roots of the 
eigenvalues of B8 = A8'*A8.


