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Abstract

A variational principle is introduced to provide a new formulation and resolution for several boundary value
problems with a variational structure. This principle allows one to deal with problems well beyond the
weakly compact structure. As a result, we study several super-critical semilinear Elliptic problems.

Résumé

Un principe variationnel est introduit pour fournir une nouvelle formulation et résolution de nombreux
problèmes aux limites avec structure variationnelle. Ce principe permet de considérer des problèmes bien au
delà de la structure faiblement compact. Ainsi nous étudions de nombreux probèmes elliptiques semilinéaires
super-critiques.
2010 Mathematics Subject Classification: 35J15, 58E30.
Key words: Variational principles, supercritical Elliptic problems.

1 Introduction

Let V be a real Banach space and V ∗ its topological dual and let 〈., .〉 be the pairing between V and V ∗.
Let Ψ : V → R ∪ {+∞} be a proper convex and lower semi continuous function and let K be a convex and
weakly closed subset of V. Assume that Ψ is Gâteaux differentiable on K and denote by DΨ the Gâteaux
derivative of Ψ. Let Φ ∈ C1(V,R) and consider the following problem,

Find u0 ∈ K such that DΨ(u0) = DΦ(u0). (1)

The restriction of Ψ to K is denoted by ΨK and defined by

ΨK(u) =

{
Ψ(u), u ∈ K,
+∞, u 6∈ K.

To find a solution for (1), we shall consider the critical points of the functional I : V → R ∪ {+∞} defined
by

I(u) := ΨK(u)− Φ(u).

According to Szulkin [16] we have the following definition for critical points of I (see also the appendix).
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Definition 1.1. A point u ∈ V is said to be a critical point of I if I(u) ∈ R and it satisfies the inequality

ΨK(v)−ΨK(u) ≥ 〈DΦ(u), v − u〉, ∀v ∈ V. (2)

Note that a function u satisfying (2) is indeed a solution of the inclusion DΦ(u) ∈ ∂ΨK(u). Therefore, it
is not necessarily a solution of (1) unless D = V. There is a well developed theory to find critical points of
functionals of the form I. We refer the interested reader to [16, 13]. Here is our main result in this paper.

Theorem 1.2 (Variational Principle). Let Ψ : V → R∪{+∞} be a proper convex and lower semi continuous
function and let K be a convex and weakly closed subset of V. Assume that Ψ is Gâteaux differentiable on K
and Φ ∈ C1(V,R). If the following two assertions hold:

(i) The functional I : V → R ∪ {+∞} defined by I(u) = ΨK(u)− Φ(u) has a critical point u0 ∈ V, and;

(ii) there exists v0 ∈ K such that DΨ(v0) = DΦ(u0).

Then u0 ∈ K is a solution of (1), that is,

DΨ(u0) = DΦ(u0).

The above theorem has many interesting applications in partial differential equations . We shall briefly
recall some of them and refer the interested reader to [12] where some more general versions of Theorem 1.2
are established and several applications in the fixed point theory and PDEs are provided. It is also worth
noting that Theorem 1.2 extends some of variational principles established by the author in [10, 11].
We shall now proceed with some applications.

1.1 A concave-convex nonlinearity

We consider the problem {
−∆u = |u|p−2u+ µ|u|q−2u, x ∈ Ω
u = 0, x ∈ ∂Ω

(3)

where Ω ⊂ Rn is a bounded domain with C1-boundary and 1 < q ≤ 2 < p. This problem was studied by
Ambrosetti and etc. in [1] and Bartsch and Willem in [3]. Our plan is to show that for positive µ and p
bigger that the critical exponent 2∗ = 2n/(n− 2), problem (3) has a strong solution in H2(Ω).
Let V = H2(Ω) ∩H1

0 (Ω), and let I : V → R be the Euler-Lagrange functional corresponding to (4),

I(u) =
1

2

∫
Ω

|∇u|2 dx− 1

p

∫
Ω

|u|p dx− µ

q

∫
Ω

|u|q dx.

For r > 0, define the convex set K(r) by

K(r) =
{
u ∈ H2(Ω) ∩H1

0 (Ω); ‖u‖H2(Ω) ≤ r
}
.

We have the following result

Theorem 1.3. Assume that 1 < q < 2 < p < p∗ where p∗ = (2n − 4)/(n − 4) for n > 4 and p∗ = ∞ for
n ≤ 4. Then there exists µ∗ > 0 such that for each µ ∈ (0, µ∗) problem (3) has a non-trivial solution. Indeed,
for each µ ∈ (0, µ∗), there exist positive numbers r1, r2 ∈ R with r1 < r2 such that for each r ∈ [r1, r2] the
problem (3) has a solution u ∈ K(r) with I(u) < 0.

Proof. We apply Theorem 1.2, where

Ψ(u) =
1

2

∫
Ω

|∇u|2 dx, Φ(u) =
1

p

∫
Ω

|u|p dx+
µ

q

∫
Ω

|u|q dx,

and K := K(r) for some r > 0 to be determined. Note that the Sobolev space H2(Ω) is compactly embedded
in Lt(Ω) for t < t∗ where t∗ = 2n/(n−4) for n > 4, and t∗ = +∞ for n ≤ 4. It then follows that the function
Φ is continuously differentiable for p < p∗. By standard methods, there exists u0 ∈ K(r) such that

I(u0) = min
u∈K(r)

I(u).
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Since 1 < q < 2 < p and µ > 0, it is easily seen that I(u0) < 0 and therefore u0 6≡ 0 is a critical point of I
restricted to K(r). To verify condition (ii) in Theorem 1.2, we show that there exists v0 ∈ K(r) such that
−∆v0 = |u0|p−2u0 + µ|u0|q−2u0. The existence of such v0 follows by standard arguments. We show that
v0 ∈ K(r) for r small. It follows from the Elliptic regularity theory (see Theorem 8.12 in [8]) that

‖v0‖H2(Ω) ≤ C
(∥∥|u0|p−2u0

∥∥
L2(Ω)

+ µ
∥∥|u0|q−2u0

∥∥
L2(Ω)

)
= C

(∥∥u0

∥∥p−1

L2(p−1)(Ω)
+ µ

∥∥u0

∥∥q−1

L2(q−1)(Ω)

)
,

where C is a constant depending on Ω. Since 2(q − 1) < 2(p− 1) < t∗, we obtain that

‖v0‖H2(Ω) ≤ C1

(∥∥u0

∥∥p−1

H2(Ω)
+ µ

∥∥u0

∥∥q−1

H2(Ω)

)
≤ C1(rp−1 + µrq−1).

where C1 is a constant in terms of p, q and Ω. Choose µ∗ > 0 small enough such that for each µ ∈ (0, µ∗),
there exist positive numbers r1, r2 ∈ R with r1 < r2 such that C1(rp−1 + µrq−1) ≤ r for all r ∈ [r1, r2]. It
then follows that v0 ∈ K(r) provided µ ∈ (0, µ∗) and r ∈ [r1, r2].

1.2 Non-homogeneous semilinear Elliptic equations

Here we shall consider the problem{
−∆u = |u|p−2u+ f(x), x ∈ Ω,
u = 0, x ∈ ∂Ω.

(4)

where Ω is on open bounded domain in Rn with C1-boundary. Problem (4) was treated in [2, 15] for p
less than the critical exponent 2∗. As an application of Theorem 1.2 together with Elliptic regularity theory
we shall show that problem (4) has a solution for p beyond the critical Sobolev exponent. In this case,
the standard variational methods fail to work. Note that our approach can be applied to more general
nonlinearities (see [12]). We have the following theorem.

Theorem 1.4. Let 2 < p < p∗ where p∗ = (2n− 4)/(n− 4) for n > 4 and p∗ = ∞ for n ≤ 4. There exists
λ > 0 such that for ‖f‖L2(Ω) < λ, problem (4) has a solution u ∈ H2(Ω).

Proof. Let V = H2(Ω) ∩H1
0 (Ω), and let I : V → R be the Euler-Lagrange functional corresponding to (4),

I(u) =
1

2

∫
Ω

|∇u|2 dx− 1

p

∫
Ω

|u|p dx−
∫

Ω

fu dx.

We apply Theorem 1.2, where

Ψ(u) =
1

2

∫
Ω

|∇u|2 dx, Φ(u) =
1

p

∫
Ω

|u|p dx+

∫
Ω

fu dx,

and
K := K(r) =

{
u ∈ H2(Ω) ∩H1

0 (Ω); ‖u‖H2(Ω) ≤ r
}
,

for some r > 0 to be determined. By standard methods, there exists u0 ∈ K(r) such that

I(u0) = min
u∈K(r)

I(u).

To verify condition (ii) in Theorem 1.2, one needs to show that there exists v0 ∈ K(r) such that −∆v0 =
|u0|p−2u0 + f(x). Existence of v0 ∈ H2(Ω) is standard. The fact that v0 ∈ K(r) for ‖f‖L2(Ω) small, follows
by the Elliptic regularity theory and the argument made in the proof of Theorem 1.3.
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1.3 Super critical Neumann problems

We shall consider the existence of positive solutions of the Neumann problem
−∆u+ u = a(x)|u|p−2u, x ∈ B1

u > 0, x ∈ B1,
∂u
∂ν = 0, x ∈ ∂B1,

(5)

where B1 is the unit ball centered at the origin in RN , N ≥ 3, p > 2. and a is a radial function, i.e.,
a(x) = a(r) where r = |x|.

Theorem 1.5. Assume that a ∈ L∞(0, 1) is increasing, not constant and a(r) > 0 a.e. in [0, 1]. Then
problem (5) admits at least one radially increasing positive solution.

Sketch of the proof. Let V = Lp(Ω)∩H1
r (Ω), where H1

r is the set of radial functions in H1(Ω). We apply
Theorem 1.2, where

Ψ(u) =

∫
Ω

|∇u|2 + u2

2
dx, Φ(u) =

1

p

∫
Ω

a(x)|u|p dx,

and
K =

{
u ∈ V : u(r) ≥ 0, u(r) ≤ u(s),∀r, s ∈ [0, 1], r ≤ s

}
.

It can be easily deduced that that V ∩ K is continuously embedded in L∞(Ω) from which one can apply
Theorem 3.3 to show that I = Ψ − Φ restricted to K has a critical point u0 ∈ K of mountain pass
type (See [5] for a detailed argument). It is also established in [5] that there exists v0 ∈ K satisfying
−∆v0 + v0 = a(|x|)|u0|p−2u0. Thus, by Theorem 1.2, u0 is a non-negative and nontrivial solution of (5). It
also follows from the maximum principle that u0 is indeed positive. �

We remark that finding radially increasing solutions of problems of type (5) has been the subject of many
studies in recent years starting the works of [4, 9, 14].

2 Proof of the variational principle.

In this section we shall prove Theorem 1.2. We first recall some important definitions and results from
convex analysis.

Let V be a real Banach space and V ∗ its topological dual and let 〈., .〉 be the pairing between V and
V ∗. Let Ψ : V → R ∪ {∞} be a proper convex function. The subdifferential ∂Ψ of Ψ is defined to be the
following set-valued operator: if u ∈ Dom(Ψ) = {v ∈ V ; Ψ(v) <∞}, set

∂Ψ(u) =
{
u∗ ∈ V ∗; 〈u∗, v − u〉+ Ψ(u) ≤ Ψ(v) for all v ∈ V

}
and if u 6∈ Dom(Ψ), set ∂Ψ(u) = ∅. If Ψ is Gâteaux differentiable at u, denote by DΨ(u) the derivative of
Ψ at u. In this case ∂Ψ(u) = {DΨ(u)}.
The Fenchel dual of an arbitrary function Ψ is denoted by Ψ∗, that is function on V ∗ and is defined by

Ψ∗(u∗) = sup{〈u∗, u〉 −Ψ(u);u ∈ V }.

Clearly Ψ∗ : V ∗ → R ∪ {+∞} is convex and weakly lower semi-continuous. The following standard result is
crucial in the subsequent analysis (see [7] for a proof).

Proposition 2.1. Let Ψ : V → R ∪ {+∞} be convex and lower-semi continuous. then Ψ∗∗ = Ψ and the
following holds:

Ψ(u) + Ψ∗(u∗) = 〈u, u∗〉 ⇐⇒ u∗ ∈ ∂Ψ(u) ⇐⇒ u ∈ ∂Ψ∗(u∗).

Proof of Theorem 1.2. Since u0 is a critical point of I(u) = ΨK(u)− Φ(u), it follows from Definition
1.1 that

ΨK(v)−ΨK(u0) ≥ 〈DΦ(u0), v − u0〉, ∀v ∈ V. (6)
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It follows from (i) and (ii) in the theorem that u0, v0 ∈ K and DΨ(v0) = DΦ(u0). Thus, it follows from
inequality (6) with v = v0 that

Ψ(v0)−Ψ(u0) ≥ 〈DΨ(v0), v0 − u0〉. (7)

Since Ψ is Gâteaux differentiable at v0 ∈ K, it follows that ∂Ψ(v0) = {DΨ(v0)} which together with the
convexity of Ψ one obtains that

Ψ(u0)−Ψ(v0) ≥ 〈DΨ(v0), u0 − v0〉. (8)

It follows from (7) and (8) that

Ψ(v0)−Ψ(u0) = 〈DΨ(v0), v0 − u0〉. (9)

We now claim that DΨ(v0) = DΨ(u0) from which the desired result follows,

DΨ(u0) = DΨ(v0) = DΦ(u0).

Proof of the claim: Let w∗ = DΨ(v0). Since Ψ is convex and lower semi continuous it follows from
Proposition 2.1 that

Ψ(v0) + Ψ∗(w∗) = 〈w∗, v0〉. (10)

It now follows from (9) and (10) that

〈w∗, u0〉 −Ψ(u0) = 〈w∗, v0〉 −Ψ(v0) = Ψ∗(w∗),

from which one obtains
Ψ(u0) + Ψ∗(w∗) = 〈w∗, u0〉.

This indeed implies that w∗ ∈ ∂Ψ(u0) by virtue of Proposition 2.1. Since Ψ is Gâteaux differentiable at u0

we have that ∂Ψ(u0) = {DΨ(u0)}. Therefore,

DΨ(u0) = w∗ = DΨ(v0),

as claimed. �

3 Appendix

We shall now recall some notations and results for the minimax principles of lower semi-continuous functions
used throughout the paper.

Definition 3.1. Let V be a real Banach space, Φ ∈ C1(V,R) and Ψ : V → (−∞,+∞] be proper (i.e.
Dom(Ψ) 6= ∅), convex and lower semi-continuous. A point u ∈ V is said to be a critical point of

I := Ψ− Φ (11)

if u ∈ Dom(Ψ) and if it satisfies the inequality

< DΦ(u), u− v > +Ψ(v)−Ψ(u) ≥ 0, ∀v ∈ V. (12)

Definition 3.2. We say that I satisfies the Palais-Smale compactness condition (PS) if every sequence {un}
such that I(un)→ c ∈ R, and

< DΦ(un), un − v > +Ψ(v)−Ψ(un) ≥ −εn‖v − un‖, ∀v ∈ V,

where εn → 0, then {un} possesses a convergent subsequence.

The following is proved in [16].

Theorem 3.3. (Mountain Pass Theorem). Suppose that I : V → (−∞,+∞] is of the form (11) and satisfies
the Palais-Smale condition and the Mountain Pass Geometry (MPG):
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1. I(0) = 0. and there exists e ∈ V such that I(e) ≤ 0.

2. there exists some ρ such that 0 < ρ < ‖e‖ and for every u ∈ V with ‖u‖ = ρ one has I(u) > 0.

Then I has a critical value c ≥ ρ which is characterized by

c = inf
g∈Γ

sup
t∈[0,1]

I[g(t)],

where Γ = {g ∈ C([0, 1], V ) : g(0) = 0, g(1) = e}.
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