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Abstract

Reaction—diffusion equations are a trusted modeling framework for the dynamics
of biological populations in space and time, and their traveling wave solutions are in-
terpreted as the density of an invasive species that spreads at constant speed. Even
though certain species can significantly alter their abiotic environment for their benefit,
and even though some of these so-called “ecosystem engineers” are among the most
destructive invasive species, most models neglect this feedback. Here, we extend earlier
work that studied traveling waves of ecosystem engineers with a logistic growth func-
tion to study the existence of traveling waves in the presence of a strong Allee effect.
Our model consists of suitable and unsuitable habitat, each a semi-infinite interval,
separated by a moving interface. The speed of this boundary depends on the engi-

neering activity of the species. On each of the intervals, we have a reaction—diffusion
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equation for the population density, and at the interface, we have matching conditions
for density and flux. We use phase-plane analysis to detect and classify several qual-
itatively different types of traveling waves, most of which have previously not been
described. We give conditions for their existence for different biological scenarios of
how individuals alter their abiotic environment. As an intermediate step, we study
the existence of traveling waves in a so-called ‘moving habitat model’, which can be
interpreted as a model for the effects of climate change on the spatial dynamics of

populations.
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1 Introduction

Models for the spread of invasive species have been studied for nearly a century now, starting
with the work by Kolmogorov, Petrovsky and Piskunov [28] and Fisher [17]. For an excellent
review, see [31]. Most of these models consider the landscape through which the species
spreads as independent and unaffected by the presence of the species. However, many
species, and in particular many invasive species, actively alter some physical attributes of
the landscape through which they spread [9]. Those species are known as ecosystem engineers
[25, 26]; see also [22]. Usually, the engineering activity is beneficial to the species, but not
always. Some species who can only survive after engineering are referred to as obligate
engineers. Examples include burrowing fauna [60] and coastal redwoods [10]. Few models
exist for the population dynamics of ecosystem engineers (see [10] and references therein),
and only one that models their spread through a landscape explicitly [36]. Our work is
closely related to [36], but we consider a strong Allee effect in the population dynamics.
An Allee effect is defined as a positive relationship between population density and per-
capita growth rate [7]. It describes the effect that the presence of conspecifics can be benefi-
cial for per-capita reproduction, at least at low enough densities. At high densities, per-capita
reproduction usually decreases from competition with conspecifics. Typical mechanisms for
an Allee effect are mate search and group defense [7]. A strong Allee effect occurs when the
population is not viable below a certain threshold density. This is the case that we consider.
In contrast, the authors in [36] considered a logistically growing population, where there is
no Allee effect. Typically, population dynamics models with Allee effect are much harder
to study because they exhibit bistability, so that the linearization at the zero state does
not give information about the existence and stability of a positive state. In the context of
mathematical models for species spread, explicit formulas for the speed of spread are often
available when there is no Allee effect [31] but practically never when there is an Allee effect,

the exception being the work by Hadeler and Rothe [20], which we will use and expand here.



The standard modeling framework for biological invasions are reaction—diffusion equa-
tions that track the density u = u(¢, z) of the invading species in space x and time ¢ [31]. In

one spatial dimension, they read

up = Dug, + f(u), x € (—o00,00), t>0, (1.1)

where D is the diffusion coefficient and f = f(u) the population growth term, which may or
may not include an Allee effect. Traveling waves are special solutions of this equation of the
form u(t,z) = U(x — ct), where U is the wave profile and ¢ the wave speed. As asymptotic
boundary conditions, U connects two steady states, i.e., two zeros of f. For example, in the
original Fisher equation with logistic growth function f(u) = u(1 — u), monotone traveling
waves connecting the state 1 to the state 0 exist for all speeds ¢ > 2,/Df(0) [17]. In
contrast, with the Allee growth function f(u) = u(1 — u)(u — a), a monotone traveling wave
connecting those two states exists only for the speed v/2D(0.5 — a) [20]. In particular, while
traveling waves with a logistic growth function always have positive speed, i.e., the species
invades empty habitat, traveling waves with Allee growth function can have negative speeds,
i.e., the species retreats.

Many generalizations of (1.1) exist. The two most relevant to our work are the extensions
to free boundary problems by Du and coworkers [12], and by Lutscher and coworkers [36].
In the first case, the authors divide the landscape into a bounded invaded part (where
the population is present) and its unbounded non-invaded complement (where it is not).
They model the population density on the (bounded) invaded portion by a reaction-diffusion
equation as above and the movement of the boundary between the invaded and non-invaded
parts of the landscape by a Stefan-like condition [12]. This condition was originally derived
for the melting of ice on the surface of a lake and relates the speed of the boundary to the

gradient in the density via heat transfer considerations [51]; see also [48]. Their approach



has since been expanded to a variety of different scenarios [6, 13, 14, 15, 16]. In contrast,
the approach in [36] divides the landscape into an engineered (where population growth is
possible) and non-engineered part (where it is not). They model the population density
in each part by a reaction—diffusion equation as in (1.1), but the growth function in the
non-engineered part is negative, indicating population decline. The matching conditions of
population density and flux between the engineered and non-engineered parts were derived in
a slightly different context from random walks in [39]. From the same mechanistic basis, the
authors in [36] derived conditions for the movement of the boundary between the engineered
and non-engineered parts based on three scenarios of how the engineering process takes place
(see next section). They then study the existence of traveling waves when there is no Allee
effect; here we study traveling waves with strong Allee effect.

In the next section, we present the model and define all the necessary terms. The model is
a two-sided free boundary problem with non-standard matching conditions at the boundary.
Then we split the analysis in two parts. In Section 3, we consider traveling waves with a
given speed. We call these forced waves. They do not (necessarily) satisfy the equation
for the speed of the free boundary, but they are an important intermediate step to study
the existence of traveling waves to the free boundary problem. They arise as equations in
their own right when studying externally forced systems, such as moving-habitat models,
where the forcing corresponds to the optimal temperature zones for a species moving due
to climate change [37]. We show that there is a great variety of qualitatively different wave
forms, much larger than in [36], where the growth function did not have an Allee effect, and
much larger than in [20], where the landscape was homogeneous. In Section 4, we use the
results from the preceding section to study traveling waves of the free boundary problem; we
refer to these as free traveling waves. Most of our methods involve geometric considerations
of phase-plane equations for the traveling waves. We summarize our results in various tables

since there are many cases to consider. We present most but not all of the proofs here; we



omit those that follow by the same ideas as for other proofs. More details can be found in

[2].

2 The Model

Our model here is essentially the same as the model in [36], but with a bistable growth
function instead of the monostable growth function used there. Hence, we keep the model
description brief and refer to [36] for details. We let u(t, z) denote the density of the species
at time ¢ > 0 in location x € R. We have two habitat types: engineered and non-engineered.
The engineered habitat is suitable for population growth, but the non-engineered habitat
is not. The engineering activity moves the boundary between these two types of habitat.
We denote by = L(t) the location of the interface between engineered and non-engineered
habitat at time ¢, and choose the region (—oo, L(t)) as the engineered habitat, and (L(t), +o0)
as the non-engineered habitat.

Movement and demographics in the engineered habitat are modeled by
up = Dy, + f(U), (tv SC) € (07 OO) X (_007 L(t>)7 (21)
where Dy > 0 is the diffusion coefficient and f is the (net) growth function

flu)=r (u ;lk°> (1 . %) u (2.2)

with rate r > 0, carrying capacity k; > 0, and Allee threshold 0 < kg < k;. Movement and

mortality in the non-engineered habitat are modeled by

Uy = Dottyy — mu, (t,z) € (0,00) x (L(t), 00), (2.3)



where Dy > 0 is the diffusion coefficient and m > 0 is the death rate.

At the interface between the two habitat types, an individual moves to the engineered
habitat with probability a;, to the non-engineered habitat with probability as, and stays
at the boundary with remaining probability & = 1 — (a3 4+ a2). The resulting matching

condition for the density at the interface is

asDyu(t, L(t)”) = a1 Dyu(t, L(t)T), (2.4)

where superscripts £+ denote one-sided limits [39]. The matching conditions for the popula-
tion fluxes at the interface reflect the fact that no individuals are added or removed at the

interface. As in [37], conservation of mass leads to
Diug(t, L(t)”) + L' (t)u(t, L(t)”) = Doug(t, L(t)") + L' (t)u(t, L(t)"). (2.5)
We have three different scenarios for the movement of the interface due to the engineering

activity; please see [36] for the detailed derivations.

Scenario 1: Individuals at the interface transform the neighbouring non-engineered habitat
and thereby move the boundary. The movement of the boundary is proportional to

the density of the species at the boundary, i.e.,

L'(t) = 2Dynoult, L(t) ), (2.6)

where 7 is a proportionality constant. If & =1 — (a3 + a2) > 0, then L'(¢) > 0 and
the boundary is expanding. If a = 0, i.e. no individual stays at the boundary, then

L'(t) = 0 and the boundary does not move.

Scenario 2: If the engineered structure requires maintenance, a certain population density



is required for the boundary to expand; otherwise it will retract. The expression is

L'(t) = 2Dyna(ult, L(t)") — 1), (2.7)

where @ is the threshold density, and D, and 7 are as in Scenario 1.

Scenario 3: If individuals leave the engineered habitat and move the boundary due to

pressure from higher density behind them, one arrives at the Stefan-type condition

L'(t) = —20Dyua(t, L()"). (2.8)

The three scenarios can be combined in a single equation as

L'(t) = B(u, u, , 2.9
0= Blw)| (2.9)

where B can be one of the expressions (2.6), (2.7) or (2.8). Note that only scenario 2 allows
L'(t) <0.

After nondimensionalization, our system becomes

Up = Ugy + u(u —a)(1 —u), x < L(t), t>0,
Uy = Dy, — mu, x> L(t), t>0,
Q anu(t, L(t)") = ag Du(t, L(t)"), t >0, (2.10)
(ux + L’(t)u) = (Dux + L’(t)u) t >0,
(L(t)~) (tL(H)F)
L'(t) = B(u, uy), t>0.



where B is the scaled version of (2.6),(2.7) or (2.8), that is,

L'(t) = mau(t, L(t)7), (2.11)
L'(t) = mo (u(t, L)) — @), (2.12)
L'(t) = —nouy(t, L(t)"). (2.13)

The nondimensional parameters are

D2 k’o - m Dl
D.=— = — = — =2k — = 2nk;. 2.14
D17 a klv m 7"7 T 1n " ) 12 nr1 ( )

We drop the tilde to simplify notation. All parameters are non-negative and 0 < a < 1
as well as 0 < a1 + s < 1. Since movement in favorable habitat is typically slower than
in unfavorable habitat [8], we can assume that D; < D,. Since individuals typically prefer
engineered over non-engineered habitat, we can also assume that a; > as. Therefore, we

assume that

D
it L I (2.15)

A= = .
OélDQ alD

We studied the existence of solutions to the above system in [3]. Here, we consider

solutions in the form of traveling waves, i.e.,

u(t,x) =U(x —ct) =U(z), L(t)=Ilo+ ct, (2.16)

with asymptotic conditions U(—oc) = 1 and U(oco) = 0. Without loss of generality, we may



assume that [y = 0. Therefore, a traveling wave solution of our model satisfies

(—cU' =U" + f(U), 2 <0, (2.17)
—cU' = DU" — mU, 2> 0, (2.18)
U'(07) +cU(07) = DU (0F) + cU(0™), (2.19)
axU(07) = ay DU(07), (2.20)
U(—o0) =1, (2.21)
U(oo) =0, (2.22)
c=BU0O),U'(07)), (2.23)

where f(U) = U(U —a)(1 — U), and B is one of the expressions (2.11), (2.12) or (2.13).
We study the existence of traveling waves in two steps. First, we consider speed c as
a parameter and determine the range of ¢ for which the reduced model (2.17)-(2.22) has
traveling waves. We refer to these as forced traveling waves. Then we consider the feedback
from the dynamics to the speed via the moving boundary condition. We determine when
and under what conditions the speed can be in the range that we obtained in the first step.

We refer to the resulting solutions as free traveling waves.

3 Forced Traveling Waves

The reduced model (2.17)—(2.22), with speed ¢ as a parameter, is an interesting system to
study in its own right. It generalizes the model by Hadeler and Rothe for traveling waves in
a reaction—diffusion equation with Allee effect on the entire real line; see section 6 in [20]. In
fact, we shall use their results below. In their model, the habitat is homogeneous, whereas
in our model, it consists of the two types with correspondingly different movement and
demography. As the interface between the two habitat types shifts at speed ¢, our model

becomes one of forced waves [4]. Such forced waves emerge from the study of so-called

10



moving-habitat models that describe the geographic shift in optimal temperature conditions
due to climate change [38]. There are two kinds of moving habitat models: those with one
interface [32] that separates the favorable from the unfavorable habitat, and those with two
[37]; see [57] for a recent review. A typical result for a single-interface model is that if the
unfavorable habitat expands too quickly, then the species in the shrinking favorable habitat
cannot persist. These models have been studied without Allee effect [32] and with weak Allee
effect [5]. In contrast, in our model the favorable habitat can expand with the activity of
the ecosystem engineer, and we consider a strong Allee effect. For the two-interface model,
the existence of traveling pulses under certain conditions has been shown without [47] and
with [33] Allee effect.

We formulate the forced-wave problem (2.17)—(2.22) with parameter ¢ as an equivalent

phase-plane problem. The proof of the following lemma is essentially the same as in [36].

Lemma 3.1. Solutions of (2.17)—(2.22) with speed ¢ are equivalent to solutions of
U=v, V=—f{U)-cV, (3.1)
where f(U) =UU —1)(1 = U), with
U(—o0) =1, V(—o0)=0, (3.2)

and

V(0) = bU(0), (3.3)

c [ c? %
b—A<§— Z+Dm>—c and A—alD. (3.4)

The steady states of the phase-plane equations (3.1) are (0,0), (1,0), and (a,0). Hence,

where

by (3.2) and (3.3), our forced traveling waves are solutions in the phase plane that connect

11



the steady state (1,0) with the straight line V' = bU. In other words, we are looking for
intersections of an unstable manifold of (1, 0) with the line V' = bU. We call such a connection
a traveling wave orbit (TWO).

Hadeler and Rothe [20] studied traveling waves on the whole real line, hence, their bound-
ary conditions were given at +o0o. They found two critical values of speed, ¢y and ¢,,. At
¢ = ¢p, a unique monotone traveling waves exists, connecting 1 with 0. This solution corre-
sponds to a heteroclinic orbit of (3.1), connecting (0,0) and (1,0). In addition, ¢ = ¢,, is
the minimal speed for the existence of a monotone decreasing traveling connecting 1 to a.
This solution corresponds to a heteroclinic orbit of (3.1), connecting (1,0) and (a,0). The

explicit formulas for these critical values are

coi=V2 <% - a) , =2y f"(a) =2+/a(l —a), co:= (13/—;), (3.5)

Ca, for 0<a§%,

C1, for s <a<l1.

To find the required TWO in our system, we study the properties of the function b(-) that

defines the boundary condition of (3.3) and the qualitative behaviour of the steady states.
Lemma 3.2. For 0 < A <1, the expression b = b(c) in (3.4) has the following properties:
i) lim._, b(c) = —o0.

ii) b is monotone decreasing in c.

A2
Cy 1= —\/I_AD2m<0. (3.6)

Proof. Parts i) and part ii) follow directly from the definition in (3.4). To prove part i),

i11) b changes sign at

we set b(c) = 0 and simplify to find ¢2(1 — A) = A?Dym. For 0 < A < 1, this equation has

12



real roots, among which the negative one is c,. For ¢ > ¢,, we have b < 0. O

The eigenvalues of the Jacobian at the steady states of (3.1) are given by

A (e) = (—c +4/c% — 4f’(z’)) , for i=0,qa,l (3.7)

DN —

The steady states (0,0) and (1,0) are saddle points. Depending on the value of ¢, (a,0)
can be an unstable node (¢ < —24/f'(a)), an unstable focus (—2/f'(a) < ¢ < 0), a center
(c = 0), a stable focus (0 < ¢ < 2y/f(a)), or a stable node (¢ > 2,/f'(a)).

We denote the unstable manifold of the point (1,0) by M = M(c) and study how it
depends on parameter c¢. The manifold consists of two parts: one that leaves (1,0) into the
first quadrant and one that leaves into the fourth quadrant. The latter connects with the
stable manifold of (0,0) to form a heteroclinic connection if an only if ¢ = ¢y (see above).
When ¢ < ¢, it leaves the fourth quadrant into the third quadrant; when ¢ > ¢, it leaves
into the first quadrant. If it leaves into the first quadrant, it may return into the fourth

quadrant and oscillate around (a, 0) if that point is a spiral.

Lemma 3.3. The unstable manifold of (1,0), M(c), changes monotonically with respect to

¢, in the following sense:

i) The part of M(c) leaving (1,0) into the first quadrant moves downward as ¢ increases:

M(c) lies above M (") in the first quadrant if ¢ < .

ii) The part of M(c) in the forth quadrant between (1,0) and its first intersection with the
positive part of U-azxis or negative part of V-axis moves upward as ¢ increases: M(c")
lies above M (') in the forth quadrant if ¢ < ', at least until the first intersection with

the azes.

Proof. The unstable manifold M of (1,0) is tangent to the line V' = A\ (U — 1) at (1,0).

dxft

-1 < 0. Hence, for ¢ < ", M(c") lies below M (c’)

From the expression in (3.7), we see that

13
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Figure 1: Illustration of Lemma 3.3. As c increases, the unstable manifold of (1,0) moves
downward in the first quadrant (plot (a)), and upward in the fourth quadrant (plot (b)).

in the first quadrant near (1,0). We show that there is no intersection between M (¢’) and
M (c") in the first quadrant. To the contrary, assume (U, V) is the point with the smallest
value of U > 1 and V > 0, where the two unstable manifolds M(c/) and M (c") intersect.

The slope of the vector field at that point is

av vV —f(0)=cV  fO)
T % = ¢ (3.8)

Since ¢ < ¢, the slope of M(c’) is steeper than that of M(c¢”) at the intersection point. But
this implies that for U < U, M(c”) lies above M(c’). This contradicts the above observation
based on the linearization near (1,0). Hence, there is no such intersection. Similar reasoning
can be applied in the fourth quadrant to prove part ii). The statement of the lemma is

illustrated in Figure 1. (I
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3.1 Classifying Forced Traveling Waves

Hadeler and Rothe describe seven different types of traveling fronts in their system, some
monotone, some oscillating, but only one that connects 1 to zero; see Theorem 13 in [20]. We
are only interested in those forced waves that connect 1 with zero, but we find the following

four qualitatively different types in our system.

Definition 3.4. i) If the TWO 1is entirely in the fourth quadrant, we say that the wave
is of type I (TW-1).

ii) If the TWO begins and ends in the fourth quadrant but crosses into the first quadrant

in between, we say that the wave is of type II (TW-II).

iii) If the TWO begins in the fourth quadrant and ends in the first, we say that the wave

is of type 11 (TW-III).

i) If the TWO is entirely in the first quadrant, we say that the wave is of type IV (TW-
V).

We illustrate the different possible qualitative shapes of TW-I in Figure 2 and the three
other types in Figure 3. Clearly, TW-I and TW-II require the slope of the boundary line
V' = bU to be non-positive, i.e., ¢ < ¢,; see (3.6), while TW-IIT and TW-IV require b to be
positive, i.e., ¢ > ¢,. At ¢ = ¢, the slope of the boundary line is zero so that the intersection
of the unstable manifold M and the boundary line occurs on the U-axis. This can happen
in two ways. If ¢, < ¢o, then M(c,) lies below M(cp) (Lemma 3.3), which is the heteroclinic
orbit between (1,0) and (0,0). In particular, M (c,) does not intersect the U-axis, except at
(1,0); see Figure 2e. If ¢, > ¢ then there are two intersections of M (c,) and the U-axis,
one at (1,0) and one at (U,,0) for some 0 < U, < a; see Figure 2g. When the intersection

occurs at (1,0), the resulting traveling wave is equal to the constant U = 1 for z < 0; see

15
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Figure 2: The four qualitatively different possible TW-I. Left column: the TWO in the phase
plane (green) and the boundary line (blue). Right column: the corresponding profile of the
forced wave in engineered habitat (green) and non engineered habitat (blue). The red dot
indicates the interface.
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Figure 2f. At c. = co, there is a heteroclinic orbits connecting (1,0) with (0,0) so that the
only admissible intersection of M and the U-axis is at (1,0).

More than one traveling wave of the same type (except for TW-IV) may exist for a given
speed. It is also possible that we have traveling waves of different types for the same speed;

see Figure 4.

3.2 Speed Range for the Existence of Forced Waves

Looking at the different TWOs in Figures 2 and 3, it is clear that in addition to the speed
parameter (c), the Allee threshold parameter (a) plays a crucial role in determining which
TWOs are possible because the two together determine the behavior near (a,0). Hence, we
organize our results on the existence of traveling waves according to these two parameters.
Following [20], we divide the a—c plane based on the behavior of the part of the unstable
manifold M = M (c) that enters the fourth quadrant; see Figure 5.

In region 1 (blue), M leaves the fourth quadrant through the negative vertical axis.
Hence, according to Definition 3.4, only TW-I may appear here. In region 2 (red), M is a
heteroclinic connection from the saddle at (1,0) to the stable focus at (a,0). TW-I and TW-
IT may exist here. In region 3 (gray), M leaves the fourth quadrant through the horizontal
axis and approaches the part of M that enters the first quadrant. Only TW-I and TW-III
may appear here. In regions 0 (green) and 4 (yellow), M is a heteroclinic connection from
the saddle at (1,0) to the stable node at (a,0). Only TW-I may exist in these regions, but
we will show below that no TW-I can exist in region 0. All of these regions only indicate
where certain waves are possible. To show when they actually occur, we determine certain
threshold values of the speed and then discuss each wave type separately. We begin with an

upper limit for the existence of waves.

Theorem 3.5. There exists a threshold value of speed above which there is no traveling wave

of any type; for any speed below the threshold, there exists at least one traveling wave of some

17
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Figure 3: Illustration of TW-II (plots (a) and (b)), TW-III (plots (¢)—(f)) and TW-IV (plots
(g) and (h)). Set-up and colors as in Fig 2.
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Figure 4: Ilustration of multiple traveling waves coexisting at the same speed. In (a) we
have two TW-I; in (b), we have two TW-I and seven TW-II; in (c), we have one TW-IV
and two TW-III.
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type.

Proof. We need to show that for all speeds ¢ above some threshold there is no intersection
between the boundary line, V' = b(c)U, and the unstable manifold, M (c). For ¢ = ¢o, we
have a heteroclinic connection between (1,0) and (0,0). The slope of the heteroclinic at (0, 0)
is given by the eigenvalue A\ (¢o); see 3.7. The boundary line at this speed, V' = b(c)U,
may be above or below this connection. Accordingly, we divide our proof into the following

cases.

Case 1: b(cy) < Ay (o), i.e. the boundary line is below the tangent line to the heteroclinic
when ¢ = ¢y. In this case, the boundary line and the heteroclinic intersect only at (0,0).
Necessarily, we have ¢, < ¢ as b(cy) < 0. By Lemmas 3.2 and 3.3, we know that as ¢
increases, M(c) and V' = b(c)U move in opposite directions in the fourth quadrant. Hence,
they will not intersect for ¢ > ¢o. However, as in Lemma 3.6 in [36], the part of M(c) that
enters the fourth quadrant will exit it through the negative V-axis for all ¢ < ¢y. Hence, it
must intersect the boundary line as long as ¢ > c¢,. Hence, we have a TW-I for ¢, < ¢ < ¢.
On the other hand, as the slope of the boundary line becomes positive for ¢ < ¢,, the
boundary line will intersect the part of M (c) that enters the first quadrant so that a TW-IV

appears; see also Theorem 3.14. Therefore, our threshold value here is ¢g.

Case 2: b(cy) > Ay (c), i.e. the boundary line is above the tangent line to the heteroclinic
when ¢ = ¢g. In this case, it may be possible to have ¢q < ¢, as b(cy) may be positive. Hence,

we divide our proof for this case into the following sub-cases:

Case 2.1: ¢, < ¢p. Similar to Case 1, we can show that at least one of TW-I or TW-IV
exists for ¢ < ¢g. Next, we choose ¢ > ¢y such that b(¢) < A;(co). The unstable manifold
M (¢) lies above the heteroclinic connection, and exits the fourth quadrant through the U-axis

between 0 and a. Therefore, there is no intersection between the boundary line V' = b(¢)U
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Figure 6: The unstable manifold M and the boundary line are tangent at the maximal speed
¢* (orange curve and line). Darker gray curves and lines correspond to the unstable manifold
and the boundary line for smaller values of ¢; lighter ones to higher values of c.

and M (¢). Hence, by continuity of the phase plane with respect to ¢, there is a maximal
speed above which there is no traveling wave solution. For speeds less than this maximal

speed and greater than ¢y, we may have TW-II in addition to TW-I.

Case 2.2: ¢, > ¢y. For all ¢ > ¢y, we have b(c) < b(cp), so that the part of M(c) that
enters the fourth quadrant exits to the first quadrant. Therefore, we obtain the existence of
a maximal speed as in Case 2.1. For speeds between ¢, and the maximal speed, we obtain
TW-I and may have TW-II as well. For ¢y < ¢ < ¢,, we have TW-III and TW-IV. Finally
for ¢ < ¢y we only have TW-1V; see Figure 5 for illustration.

O

We can characterize the threshold speed as the speed for which the unstable manifold
at (1,0) is tangent to the boundary line; see Fig 6. As c increases, the boundary line
moves downward whereas the portion of the unstable manifold between (1,0) and its first
intersection with the U axis moves upward. Hence, they cannot intersect for any larger
speed. We call this maximal speed c¢*. We may or may not have a TWO for c¢*, as the

following consideration shows.
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Corollary 3.6. i) If
a (a 1
>o— (4 (= - .
Dm_2A(A+(2 a)), (3.9)

then c¢* = cq is the supremum of speeds for which a TWO exists.

i) If (3.9) does not hold, then ¢* is the mazimum of speeds for which a TWO exists.

Proof. Tnequality (3.9) is equivalent to b(cy) < Ay (co) = —v/2/2. As seen in the proof of
Theorem 3.5, in this case, the threshold value for the existence of a traveling wave is ¢* = c¢y.
However, as the boundary line V' = b(cy)U only intersects M (cy) at (0,0), there exists no
TWO at ¢ = ¢o. If (3.9) does not hold, our threshold value satisfies ¢* > ¢y. Hence, the
tangency point has a positive U-coordinate and the TWO connecting (1,0) and the boundary

line corresponds to a TW-I at c*. O

Unfortunately, there is no explicit formula for ¢* when ¢* > ¢y, but it can be bounded by

Cm as defined in (3.5).
Lemma 3.7. We have ¢y < ¢* < ¢,,.

Proof. When ¢ < ¢g, we have either a TW-I1 or TW-IV (see proof of Theorem 3.5). Hence, the
lower bound is clear. By part i) of Theorem 13 in [20], there exists a heteroclinic connection
between the steady states (1,0) and (a, 0) for ¢ > ¢,,. This heteroclinic connection is tangent
to V= A (c)(U — a) at (a,0) [55]. If we compare the slope of the boundary line and this

tangent line, we see

b(c) = —c— % (\/W—c) < —c< % (—c+ Ve —4a(l —a)) = A (c),

for all ¢ > ¢,,. This implies that there cannot be any intersection between the boundary line

and the heteroclinic connection for ¢ > ¢,,. Hence, we must have ¢* < ¢,,. O

We now consider the effect of parameter a. For 0 < a < 1/2, we have ¢y > 0. By Lemma

3.7, we know that ¢* > ¢y. Therefore, in this case, we always have ¢* > 0. However, for
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a > 1/2, the situation is not as straightforward, because there is a homoclinic connection of

(1,0) that contains (a,0) in its interior when ¢ = 0.

Lemma 3.8. Let 1/2 < a < 1. If the boundary line V- = b(0)U lies below the homoclinic
connection of (1,0) at ¢ = 0 (resp. is tangent to it), then ¢* < 0 (resp. ¢* = 0). Otherwise

c > 0.

Proof. As seen in Lemmas 3.2 and 3.3, as ¢ increases, the boundary line V = b(c)U and
the unstable manifold M (c) move in different directions. Hence, knowing the location of
the boundary line and the unstable manifold, which is part of the homoclinic connection at
¢ = 0, will determine the sign of ¢*. If at ¢ = 0 the boundary line is tangent to the homoclinic
connection, then, as ¢ increases, the boundary line moves downward and the part of M(c)
in the fourth quadrant moves upward. Therefore, there will be no intersection for ¢ > 0 and
so ¢* = (. Similarly, if the boundary line lies below the homoclinic connection at ¢ = 0, then
there is no intersection for ¢ > 0. Therefore, the tangency condition for ¢* must happen for
some negative value of c. It turns out that one can find the parameter relation for which

¢* = 0, however, the expressions are long; details can be found in Lemma 3.3.10 in [2] O

Remark 3.9. We defined the maximal speed ¢* such that for ¢ > c*, there exists no traveling
wave solution of any type. In fact, we shall see that ¢* is the maximal speed for TW-I, while
other types have different maximal speeds. Using similar arguments to those above, one can
show that the maximal speed for TW-II, c**, say, satisfies 0 < ¢** < c*. We will prove below

that the maximal speed for TW-III and TW-1V is c,.

3.2.1 Forced waves of type I

Theorem 3.10. For 0 < a <1 and c, < ¢ < c*, there exists at least one forced wave of type
I'in (3.1)<(3.3). When ¢* > ¢y, we have a TW-I at ¢ = ¢* as well. When ¢y > c., the TW-1

1s unique for ¢, < ¢ < ¢p.
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Proof. The proof of existence is similar to the proofs of Theorem 3.5 and Corollary 3.6. It
remains to prove uniqueness for ¢, < ¢ < ¢g, when ¢y > ¢,. We assume that there is more
than one intersection between the boundary line V' = b(c)U and the unstable manifold M (c)
in the fourth quadrant, for ¢, < ¢ < ¢y. Then, at one of these intersections, the slope of the
unstable manifold must be less than that of the boundary line (negative and steeper). We
show that such an intersection point does not exist in the fourth quadrant when ¢, < ¢ < ¢.
We split the proof into two cases according to whether the boundary line V' = b(c)U is above
or below the the tangent line to the heteroclinic connection at (0, 0).
Case 1: b(c) > A\j(cp). In this case, for ¢ < ¢, there exists only one intersection between
the boundary line V' = b(c)U and the heteroclinic connection of (1,0) and (0,0) at some
point (U, V) with U > 0. There can not be any intersection between the boundary line
and the unstable manifold M(c) for 0 < U < U because the boundary line is above the
heteroclinic connection, while the unstable manifold is below it for ¢ < ¢q.

On the other hand, by its definition in (3.4), we have b(c) < —c for all c. At U = a, we
have f(U) = 0, and hence dV/dU = —c. So, at any point (U, V') in the fourth quadrant with

a < U <1, we have

v () fU)
w_—c+_—v_—c+w>—c>b(c). (3.10)

as f(U) > 0 for a < U < 1. Hence, for a < U < 1, the slope of the unstable manifold is
greater than that of the boundary line.

When U > a, the slope of the vector field, and hence the slope of the unstable manifold,
is bigger than the slope of the boundary line for all points (U, V) with a < U < U < 1 and
V < 0, due to the above argument.

When U < a, we need to check the slope of the vector field where U < U < a. When

0 < U < a, the heteroclinic is decreasing and concave up and f(U) < 0. In addition, for
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Vo < Vi <0 and for fixed 0 < U < a, we have

f) Lf(U)] LF(O)] f(U)
V2__C+V2>_C+V1_ v

(3.11)

Hence, for fixed U, if we decrease V < 0, the slope of the vector field increases. Now we

study the vector field in the region with U < U < a. At (U, V), we have

av

— ) 12
dU (@, v) > b(e) (3.12)

At any point (U;, V}) on the heteroclinic connection with U < U; < a and so V; < V, we

have
dVv

—_— > b(c), 3.13
a0 | (¢) (3.13)
because the heteroclinic connection is concave up. At any point (U, V5) on the boundary

line with V4 < V; < V, we have
av
dU (U1,Va)

> b(c), (3.14)
because of (3.11). Hence, for U < U < a, the slope of the vector field is bigger than the
slope of the boundary line for ¢, < ¢ < ¢.

In summary, independent of U, the slope of the unstable manifold M(c) is greater than
the slope of the boundary line V = b(c)U ay all points (U, V) with U < U and V < 0. So,
there cannot be any intersection point at which the slope of the manifold is smaller than the
slope of the boundary line. Therefore, the intersection between the boundary line V' = b(c)U
and the unstable manifold M(c) is unique for ¢, < ¢ < ¢p, when b(c) > A, (co).

Case 2: b(c) < A\j(co). For these values of ¢, the intersection between the boundary line
and M (c) must occur at some point below or on the tangent line V' = A\j(¢o)U. So, to show

that only one such intersection is possible for these values of ¢, we only need to show that

the slope of the vector field is bigger than A, (c) = —v/2/2 for all points below or on the
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tangent line V' = A\; (c¢o)U. Indeed, for the vector field, we have

v UU - a)(1 - U)
ST % . (3.15)

To estimate the right-hand side of (3.15), we first note that for any point below or on
the tangent line V = \; (co)U = —v/2/2U, we have

0>U/V>—V2. (3.16)

Now, the expression —(1 — U)(U — a) is an upward parabola, which, for 0 < U < 1, has a

maximum value of ¢ and minimum of —(a — 1)*/4. Hence, for 0 < a < 1, we have

“1/4<-(1-U)(U —a) < a. (3.17)

From (3.16) and (3.17), we find

U 63(1 —U) > —/2a. (3.18)

Finally, from (3.18) and equation for ¢y in (3.5), we find that

dv U(U —a)(1-U) V2

&S = >_Y< 1

a ~ v - (319)
for all ¢ < ¢y, as claimed. O

If ¢* > ¢y, then there exist at least two intersections between the unstable manifold of
(1,0) and the boundary line V' = bU for ¢y < ¢ < ¢*. Those correspond to two forced waves
that satisfy (3.1)—(3.3). If there are exactly two intersections, we have two TW-I; if there

are more than two, then two are TW-I and the others are TW-II.
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3.2.2 Forced waves of type II

The case of type-II waves turns out the be much more subtle, yet the ideas of the proof of
the following theorem are exactly the same geometric considerations as in the proof of type-I

waves. We therefore omit it.

Theorem 3.11. The conditions for the existence of forced traveling waves of type II in

(3.1)-(3.3) are as follows.
i) If b(co) < A (co), there exists no TW-II.
ii) If b(co) > Ag (co), we have the following three cases:

ii-a) for 0 < a < (1—+/2/3)/2, there exists no TW-II.
ii-b) for (1 —+/2/3)/2 < a < 1/2, we have
i1-b-1) if there are at most three intersections between the line V= b(co)U and M(c)
for ¢ > ¢y, then there exists no TW-II for cy < c.

i1-b-2) if there are more than three intersections between the line V- = b(co)U and
M(c) for some ¢ > ¢y, then there exists a mazimal speed ¢** < ¢* such that

for each cy < ¢ < c¢** there exists at least one TW-II.
ii-c) for 1/2 < a <1, we have
it-c-1) if there are at most three intersections between the line V= b(0)U and M(c)
for ¢ > 0, then there exists no TW-II for ¢ > cg.

ii-c-2) if there are more than three intersections between the line V. = b(0)U and
M(c) for some ¢ > cg, then there exists a mazimal speed ¢ < c¢* such that

for each 0 < ¢ < ¢**, there exists at least one TW-II.
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3.2.3 Forced waves of type III

By their definition, TW-III (and IV) can only occur for a limited range of speeds. Specifically,
since they require b(c) > 0, they must have ¢ < ¢.(< 0). Since a TW-III starts into the
fourth quadrant, it has to lie above the heteroclinic for ¢y and hence, it requires ¢ > ¢y. In
particular, we require ¢y < 0 which implies 1/2 < a < 1. We show that TW-III do exist for
the entire range in which they can possibly exist. We begin with some observations about
the position of the unstable manifold, M(c), in the first quadrant in relation to the straight

line that results from the linearization, i.e., V = \{ (c)(U — 1).

Lemma 3.12. i) The part of the unstable manifold M (c) that enters the first quadrant,

either directly or after passing through the fourth quadrant, always lies above the line

V=M ()(U —1).

i) For c < cy, the boundary line V- = b(c)U intersects the linearization V = \{ (¢)(U — 1)

at some U > 1.

Proof. The part of the unstable manifold M(c) that enters the first quadrant directly is
tangent to the linearization V' = A (¢)(U — 1) at (1,0). The inner product between the

normal to the linearization and the vector field is

(AL D) - (Vi=eV = f(U)) = (U = 1) (=(\{)* = eA{ + U(U —a))

since V- = A\ (c)(U — 1). We claim that the last expression is positive. Indeed, from the

definition (3.7), we find that (Af)* = —cAT + (1 — a). Since U > 1, we have

AP+ —UU—-a) < (AP +edf —(1—a)=0.

Therefore, the angle between the normal to the line V' = A{ (¢)(U — 1) and the vector field

is acute. Hence, the part of the unstable manifold that enters directly to the first quadrant
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cannot intersect the line; it will stay above it for all ¢. Since solutions of the ODE in the
phase plane cannot intersect, this fact also proves that the part of M (c) that starts into the
fourth quadrant and then enters the first quadrant is above the line V' = \{ (¢)(U — 1).

To prove part ii), we will show that the slope of the boundary line is less than that of
the linearization, i.e., b(c) < A{(c). From the corresponding definitions in (3.4) and (3.7),

this inequality is equivalent to

2 +4(1—a)+ AVt +4Dm. (3.20)

But equation (3.20) is obvious for all ¢ including ¢ < ¢,. Therefore, there is an intersection

between the boundary line V' = b(c)U and the line V = \{ (¢)(U — 1). O

Theorem 3.13. Let 1/2 < a < 1 such that ¢y < c.. Then there exists a TW-III for all

Co < €< Cy.

Proof. For ¢y < ¢ < ¢, we have b(c) > 0 and the part of M(c) that enters the fourth
quadrant remains above the heteroclinic connection corresponding for ¢y. Since, ¢ < 0 the
steady state (a, 0) is unstable. The unstable manifold enters the first quadrant between (0, 0)
and (a,0). It stays above the line V' = A\{(¢)(U — 1) and therefore, by Lemma 3.12 has to

intersect the boundary line. Hence, we have a TW-III. O

3.2.4 Forced waves of type IV

TW-IV are the only traveling waves that result from the part of the unstable manifold that
leaves (1,0) directly into the first quadrant. This part of M(c) does not depend on the
stability of (a,0), and its behaviour is similar for all values of c¢. Hence, as long as the

boundary line is in the first quadrant, we obtain a TW-IV.

Theorem 3.14. For 0 < a < 1 and for all ¢ < c, there exists a unique TW-1V.
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Proof. By part i) of Lemma 3.12, the part of the unstable manifold M (c) that goes directly
into the first quadrant cannot cross the linearization V' = \{ (¢)(U —1) and will therefore stay
above it. By part i7) of the same lemma, the boundary line V' = b(c)U and the linearization
intersect for all ¢ < ¢,. Hence, M(c) must intersect the boundary line, which results in
a TW-IV. Following the direction of the vector field, similar to the proof of Lemma 3.12,
see that M(c) always stays above the boundary line after their intersection. Hence, the

intersection point is unique. O

We note that when 1/2 < a < 1 and ¢y < ¢, we have TW-III and TW-IV for all

Co < € < Cy.

4 Free Traveling Waves

We use the insights on the range of existence of forced traveling waves to consider the
existence of free traveling waves, i.e., solutions to system (2.17)—(2.23), where the speed is
related to the state variable through the boundary condition. Specifically, we need to show
that there exists at least one value of ¢ in the corresponding range of speeds for forced waves,
(2.17)—(2.22), that satisfies the equation for the speed of the wave, (2.23), as well. We discuss
this for each of the scenarios of the movement of the boundary individually. For free waves,
we keep the same classification of types [-IV as for forced waves.

As seen in the previous section, the relative position of the boundary line at ¢y and
the tangent line at (0,0) to M(cy), determines the behaviour of the system. In formulas,

depending on whether b(cy) < A\ (o), which is equivalent to
D> 9 a [ a n (1 )
m=sA\aT9 YY)
or b(co) > A (o). different waves with different speeds may appear.
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4.1 Scenario 1

In the first scenario, condition (2.23) is (2.11), or, in dimensionless terms,

c=malU(07). (4.1)

Since 1y, «, and density U(0~) are positive, we look for a positive speed in the corresponding
range for each type of free wave such that (4.1) is satisfied. Only TW-I and TW-II are
possible according to Section 3.2.

We first study how the U-coordinate of the intersection of M with the boundary line
depends on the speed. To indicate the dependence of U(07) on ¢, and since there may be

more than one forced wave for a given speed, we write

Up(c) :=U(07) or Uy(c):=U;(07), i=1,..,k, (4.2)

where k is the number of traveling wave solutions at that speed.

Lemma 4.1. Consider a forced TW-I with 0 < a < 1. The functions Uy,(c), with i = 1,2,

have the fallowing properties:

i) If b(co) < Ao(co), then Uy(c) is a continuous, monotone decreasing function of ¢ on

c. < ¢ < co with limg », Up(c) = 0 and lime ., Up(c) = 1.

i) If b(co) > Ao(co), then for Uy, (c) and Uy, (c) with 0 < Uy, (c) < Up(c*) < Uy, (c) < 1,

we have the following properties:

ii-a) Uy, (c) is monotone decreasing on ¢, < ¢ < ¢*, lime, Uy, (¢) = 1 and lim, ».- Uy, (c)
U()(C*).
i1-b) If co > cx, then Uy, (c) is monotone increasing on c¢o < ¢ < c*. Furthermore,

limes e U, (€) = 0 and lim, sex Up, (c) = Up(c*).
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ii-c) If ¢ > co, then Uy,(c) is monotone increasing on ¢, < ¢ < ¢*. Furthermore

limes e, Un,(c) = Us,(cs) and lim, s« Up, (c) = Up(c*).

Proof. When b(cy) < Ao(co), we have ¢* = ¢y and a unique TW-I for all ¢ < ¢y (Theo-
rem 3.10). We find that Uy(c) is continuous w.r.t. ¢ since the boundary condition and the
vectorfield both are. We show that it is decreasing. From Lemma 3.3, we know that for
d < ' < ¢, the unstable manifold M(c”) lies above M(c) in the fourth quadrant before
their first intersection with the U- or V-axis. From Lemma 3.2, we know that db/dc < 0,
so that the boundary line V' = b(c)U lies above V' = b(¢”)U. This opposite movement of
the boundary line and the unstable manifold imply that their intersection point, Uy(c), is
monotone decreasing in c.

We next prove that lim, ., Up(c) = 0. Consider the heteroclinic connection of (1,0) and
(0,0) for ¢ = cy. The slope of the tangent line to this orbit at (0,0) is Ay (co) = —v/2/2.
By assumption, we have b(co) < Ay (co), and by Lemma 3.2, we have b(cy) < b(c) for all
¢ < ¢g. We pick a point (U, V) on the heteroclinic connection with U > 0 small and some
small € > 0. By continuity of the vector field and b(c) with respect to ¢, we can choose ¢
large enough such that M(c) passes through the e-neighborhood of (U, V), and at the same
time b(cy) < b(c) < Ay (co). Hence, the boundary line V' = b(c)V stays below the tangent
line V= X\; (co)U. For this choice of ¢, the unstable manifold M (c) must pass through the
e-neighborhood of (U, V) and intersect the tangent line V = X\; (co)U before V = b(c)U.
Therefore, the intersection of M (c) and V' = b(c)U must occur at some point with Up(c) < U.
Since U was arbitrary we can conclude that lim, o Un(c) = 0.

Finally, we show lim.\ ., Up(c) = 1. Since b(c,) = 0, the intersection of the boundary line
and the unstable manifold can only happen near (1,0) for ¢ close to c¢,. Hence, in the limit

as ¢ \y ¢4, we approximate Uy(c) by the intersection of the boundary line V = b(c)U and
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the linearization of M (c) near (1,0), given by the line V = A\ (c)(U — 1). We find

(o) ~ )

~ ———— forec, .
() —b) TS

By taking the right limit, we get

)

A
c\(Cx /\T(C) — b(C)

as we have b(c.) = 0. So we have proved i).
The proofs of parts i) and #4) follow similar ideas. Details can be found in the proof of

Lemma 3.4.2 in [2]. O

Not all cases in the above Lemma arise all the time. When 0 < a < 1/2, we have ¢y > 0
so that only parts i), #-a), and 4i-b) may arise. However, when 1/2 < a < 1 all three parts
of the Lemma arise.

We now use the results from Lemma 4.1 to study the existence of free traveling waves of
type L. To study when the free boundary condition (4.1) is satisfied, we consider intersections
of the line y; := ¢/amn; and the curve y, := Uy(c). The qualitatively different shapes of Uy(c)
are listed in Table 1; the proofs of the (non-) existence of waves are presented in several

lemmas. More detailed plots of Uy(c) with explicit parameter values can be found in [2].

Lemma 4.2. If0 < a < 1/2 and b(cy) < N\ (o), then there ezists a unique speed ¢ € (0, c*),

for which a free TW-I exists.

Proof. Here, we follow the proof of Theorem 3.7 in [36]. Since b(co) < Ag(cg), we have
c¢* = ¢y (Corollary 3.6). Since ¢ > 0, we have the existence of a unique forced wave of type
I for any ¢ € (0,¢y) (Section 3.2.1). It remains to show that this solution satisfies (4.1) for
a specific value of ¢ in this interval. At ¢ = 0, we have y; = 0 and y, = Uy(0) > 0. By part

i) of Lemma 4.1, we know that y, = Uy(c) is continuous and monotone decreasing on [0, c*|
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0<a<1/2 a=1/2 1/2<a<1

< A (co) unique TW-I no TW-I no TW-I
= ¢ c € (0,¢)

Uy©)
Uy(e)
Uy©)

o

C. ° CO C, CG ) C, o

* 0
Cx < cp <0 Co < ce <0
b(co) > Ay (co) TW-I TW-I if n small no TW-I no TW-I
> ¢ c € (0,c] <0 <0
- Z | | L L .

TW-I if  small TW-I if n small
>0 >0

~— | | P ]

C. Co © c é, 9 C'*

Table 1: Classification of the graphs of Uy, (c), i = 1,2, w.r.t. ¢ according to Lemma 4.1. The
red curves show Uy, (c); the orange ones show Uy, (c), when it exists. The results of Lemmas
4.2-4.5 regarding the existence, conditional existence, uniqueness, or non-existence of free
traveling waves of type 1 are indicated in each box.

34



and lim, ., Up(c) = 0. By the intermediate value theorem, there exists a unique intersection
between the line y; = ¢/m1a and the curve yo = Up(c), and so (4.1) has a unique solution in
(0, ¢o). This solution corresponds to free traveling wave of type I. This case is illustrated in

the first column, top row in Table 1. O

Lemma 4.3. If 0 < a < 1/2 and b(cy) > Ay (co), then there exists at least one speed

€ (0,c*], for which a free TW-I exists.

Proof. For this range of parameters, we have ¢y < ¢*. By Lemma 4.1, there are two inter-
section points, Uy, (c¢) and Uy, (c), with Uy, (¢*) = Uy, (c*) and Uy, (0) = 0; see first column,
bottom, in Table 1. Therefore, there is intersection between one of the curves yo = Uy, (c),
i = 1,2 and the line y; = ¢/n . However, if the line intersects Up,(c), there may be more

than one intersection, depending on the shape of the Up,(c) and the slope of the line. O
Lemma 4.4. For a = 1/2, we have cq = 0, which leads to the following two cases:

i) If b(co) < A (co), or equivalently Av/Dm > \/75, then there ezists no free TW-1.

ii) If b(co) > A (co), then at least one free TW-I exists for sufficiently small n; > 0.

Proof. When a = 1/2, we have ¢g = 0. When b(cy) < A\ (c), the boundary line is below the
tangent line to the heteroclinic connection at ¢y = 0. Hence, Uy(c) is monotone decreasing
on [c, 0] and Up(0) = 0. Therefore, the graph of Uy cannot intersect a stright line with
positive slope through the origin; see the second column, top plot in Table 1. This proves ).

When b(cy) < Ay (co), we have ¢* > 0. By Lemma 4.1, there are two branches for
the intersection point, say Uy, (c) and Up,(c) with Uy, (c*) = Uy, (c*) and Uy, (0) = 0, see
the second column, bottom plot in Table 1. Therefore, choosing 7; small enough, the line
y1 = ¢/ma will be steep enough to intersect Uy,(c), i = 1,2 at least once. This intersection

corresponds to a free TW-I. O
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When 1/2 < a < 1, we have ¢y < 0, so that the maximal speed for forced waves, c*,
can be negative (see Lemma 3.8). In that case, there is no free TW-I because it requires
a positive speed. Accordingly, existence, conditional existence, or non-existence of TW-I
in this case follows the same ideas as in the proofs of Lemmas 4.2-4.4. The results are
summarized in the following lemma without proof. The different cases are illustrated in the

rightmost column in Table 1.
Lemma 4.5. For1/2 <a <1,
i) if b(co) < Ay (o), then there exists no free TW-I.
ii) if b(co) > Ay (co) and ¢ <0, then there exists no no free TW-1.

ii1) if b(co) > Ay (co) and ¢* > 0, there exists at least one free TW-I for sufficiently small

M-

We can express the condition that 7, be sufficiently small for the existence of traveling

waves as follows.

Corollary 4.6. Let a =1/2 (resp. 1/2 <a < 1). If

c* > maly(c"), (4.3)

there is at least one (resp. two) speed(s) in (0,c*) for which a TW-I exists.

Proof. If condition (4.3) is satisfied, the line y = ¢/ma lies above the curves Uy, (c) at c*,

which in turn results in at least one intersection between the two and hence a free TW-1. O

The same geometric considerations in the phase plane as above apply to prove the exis-
tence of free TW-II in our system for speeds below the maximal speed, ¢**; see Remark 3.9.

We only summarize the results here.

36



Corollary 4.7. If a forced TW-II exists (see Theorem 3.11), it appears for ¢y < ¢ < ¢,
when 0 < a < 1/2, and for 0 < ¢ < ¢, when 1/2 < a < 1. Then, one can choose m
sufficiently small such that there exists at least one free TW-II with (4.1). Otherwise, there

exists no free TW-II for scenario 1.

4.2 Scenario 2

For this scenario, condition (2.23) for the speed of the traveling wave can be written as

c=ma(U(07) —a), (4.4)

where @ is threshold density at the front. Depending on @, the speed can be of any sign, and
hence the existence of all four types of free waves is possible, but only TW-I can appear for
any sign of c.

The boundary between advancing and retreating waves are standing waves with ¢ = 0.
We will see that there exist either one or two standing waves depending on the value of a.
Therefore, the relative value of @ with respect to these standing waves determines the sign
of the speed.

We begin by studying forced standing waves with ¢ = 0 (see [36]). These waves satisfy

U+ f(U)=0, z<0, (4.5)
U'(07) = =AVDmU(07), (4.6)

U(—o0) = 1. (4.7)

This system is conservative with energy function E(U,U’) = 1/2(U’)? + F(U). We use
this to show that the unstable manifold of (1,0) intersects the line V= —Av/DmU corre-

sponding to the boundary condition (4.6). In fact, the orbit that we are looking for satisfies
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(a) a =0.25 (b) a=0.5 (¢) a=0.7382

Figure 7: Visualization of Lemma 4.8. Depending on the slope of the boundary line V =
b(0)U (blue), there is a unique standing wave (a), either one or no standing waves in (b),
and two, one or no standing waves in (c). The black curve corresponds to the level curve of
E through (1,0); it contains M (0). The green portion corresponds to the standing wave for
z < 0. Parameter values are A =0.1, D=1, m = 1.

EU07),U'(07)) = E(1,0), which, via (4.6), is equivalent to

T(2) 5w+ Fue) = F), (48)

We show that (4.8) has at least one solution; each solution corresponds to a forced TW-I.

Lemma 4.8. i) For 0 < a < 1/2, there exists a unique value 0 < U(07) = Up(0) < 1

that satisfies condition (4.8).

ii) Fora=1/2, if AVDm < \/ii, then there exists a unique value 0 < U(07) = Up(0) < 1
that satisfies (4.8).

iii) For 1/2 < a < 1, if the boundary line V- = b(0)U at ¢ = 0 lies above the homoclinic
connection of (1,0) at ¢ = 0 (resp. is tangent to it), then there exist two values 0 <

Up,(0), U, (0) < 1, (resp. a unique value 0 < Uy(0) < 1) that satisfies (4.8).

Proof. We follow the idea in Section 3.2. For part i) (see Figure 7 (a)), when 0 < a < 1/2, we
have ¢y > 0. Hence, M (0) lies below the heteroclinic connection of (1,0) and (0, 0) at ¢y and

hits the negative part of the V—axis. On the other hand, as the boundary line V' = b(0)U,
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corresponding to (4.6), has a negative slope, there must be an intersection between M (0)
and V = b(0)U that satisfies (4.8). One can follow the proof of Theorem 3.10 and conclude
from the direction of the vector field that the intersection is unique.

For part ii) (see Figure 7 (b)), when a = 1/2, we have the heteroclinic connection
between (1,0) and (0,0) for ¢g = 0. To have a unique intersection point Uy(0) > 0 between
the heteroclinic connection and the boundary line V' = b(0)U, we follow the idea of Lemma
3.6 and choose parameters such that the slope of the boundary line is larger than the slope
of the heteroclinic connection at (0,0). This yields the condition —Av/Dm > \_/—%

For part #ii) (see Figure 7 (c)), we follow the proof of Lemma 3.8 (see also Lemma 3.3.10
in [2]). We denote the slope of line that passes through the origin and is tangent to the
homoclinic connection of (1,0) for ¢ = 0 as p (see the proof of Lemma 3.3.10 in [2]). Then,
if b(0) < p, there exists no intersection point between the boundary line and the homoclinic
connection satisfying (4.8), and hence no standing wave for (4.5)—(4.7). However, if (0) > u
(resp. b(0) = ), there exist(s) two (resp. one) intersection(s) between the boundary line and

the homoclinic connection satisfying (4.8), and hence two (resp. one) standing wave(s) for

(4.5)—(4.7). O

To study the existence of free TW-I with moving boundary condition (4.4), we study the
graph of Uy(c) — u with respect to ¢, which can be found by shifting the graphs in Table 1
downward @ units. The intersections of the graphs with the vertical axis in these two figures
correspond to U;(0) of the standing waves of (4.5)—(4.7), which satisfy (4.8). We summarize
the results in Table 2. We refer to Lemma 3.4.11 in [2] for the detailed statements. The
corresponding proofs rely on the same geometric considerations as in the preceding lemmas.

They are given in the appendix of [2].

Remark 4.9. The same ideas as for type-1 waves can be applied to type-1I waves. If a forced
TW-II exists (see Theorem 3.11 for the conditions), we have the following cases, depending

on the value of a:
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u=20 O<u< Uo(O) U= Uo((]) U()(O) <u< Uo(C*) u > Uo(C*>

b(co) < Ag(co) 3 \ Unique TWI Unique TWI Unique TWI Unique TWI
: if n small
= N s c € (0,¢) c=0 ¢ € (e, 0) ¢ € (¢, 0)

S

b(co) > Ag (co) = \ At least one TWI if | Unique TWI Unique TWI Unique TWI
‘ 0 <a < U(c) if 1 small
> c % & c € (0,c] c=0 ¢ € (¢, 0) ¢ € (¢, 0)

Unique TWT if
Uo(C*) <u< U()(Co)
ce (0,c%)

Table 2: Existence of free TW-I for the second scenario with 0 < a < 1/2.

for0 <a<1/2,if 0 <@ < Uy, (co), then one can choose m, such that there exists at

least one free TW-II with speed ¢ € (co, c**| with (4.4). Otherwise, there exists no free

TW-II in scenario 2.

for 1/2 <a <1, if 0 < a < U,(0), then one can choose 1m, such that there ezists at

least one free TW-II with speed ¢ € (0,c™] with (4.4). Otherwise, there exists no free

TW-II in scenario 2.

Remark 4.10. The situation of free TW-III in scenario 2 is more difficult. As seen in

Section 3.2.3, a forced TW-III appears for a specific range of parameters when ¢ € (cg, ¢s),

and, for a given speed, we may have more than one forced TW-III. One difficulty is that the

functions Uy, (c) for forced TW-III can have quite different shapes, so that the results are not

quite as sharp for TW-III as for TW-1. For certain choices of parameters, we can show the

existence of free TW-III. For example, if co < ¢y, then for w > 0, one can choose 1, such

that there exists at least one speed ¢ € (co,cx) for which a free TW-III exists in scenario.

Tllustrations can be found in Section 3.4.2 in [2].
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Section 3.2.4 that there exists a forced TW-IV for all ¢ € (—o0,¢,). Similar to above, one
can show that the intersection point Uy(c) for this wave type is a continuous, single-hump
function of ¢ on (—o0,¢,], with lim, »., Up(c) = 1, and lime,_o Up,(c) = 1. Given that
shape, we cannot expect uniqueness of free TW-IV, but we obtain their existence (proved

similar to Section 4.1).

Lemma 4.11. For 0 < a <1 and u > 1, one can choose n; such that there exists at least

one speed ¢ € (—o0,¢,) for which we have a free TW-1V in scenario 2.

We can change our point of view and consider 4 and ¢ as two parameters to obtain free
from forced traveling waves. We did this already above when we chose ¢ = 0 and found
values of @ such that corresponding free waves existed. More generally, we can fix ¢, find a
corresponding forced wave (see previous section), and then choose @ so that condition (4.4)
is satisfied, which means that we have a free wave of the same type.

Finally, we saw that there can be more than one type of forced wave for a given speed
(Figure 4). We can also obtain more than one type of free wave for a given parameter set.
For example, Figure 8 shows the curves for Uy(c) for different types of waves in different
colors for @ = 0. Increasing @ # 0 will shift the graph down. By choosing 7, accordingly, the
line ¢/(ma) can intersect the curve at differently colored segments simultaneously. Hence,
we can get free waves of different types simultaneously, for example type I (red) and type

IIT (currant).

4.3 Scenario 3

In this scenario, B = —n,U’(07) and the equation for the speed of the traveling wave is

¢ = —nU'(07). (4.9)
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\E Figure 8: Different types of free traveling
. waves can exist simultaneously. The plot

: shows Up(c) for TW-I (red and orange), TW-

i III (currant) and TW-IV (yellow). One can

: shift the curve down by increasing #. Then a

C . — straight line through the origin can intersect
0 C. C the curve at differently colored sections.

Uy(©)

| ~

By the assumptions for scenario 3, we have U’(0~) < 0, so that the speed must be positive.
Therefore, only waves of type I and II may occur. We treat this scenario similar to scenario
1 in Section 4.1. Similar to Remark 4.2, we define Uj(c) := U'(07) = V(0~) to denote the
dependence of U'(07) to ¢ and use Uy (c) := Uj(07) for i = 1,..., k, when we want to denote
the k forced waves corresponding to the same speed c. We investigate the shape of the
functions U|(c) in the following lemma and summarize its findings and their implications for

the existence of free TW-I in Table 3.

Lemma 4.12. Consider a forced TW-I with 0 < a < 1 and different values of c¢. The

functions —Up (c), with i = 1,2, have the fallowing properties:

i) Ifb(co) < Ao(co), then —=Uj(c) is a continuous function of c on ¢, < ¢ < ¢, lim, e, Ul(c) =

0, and lim .. Uj(c) = 0.
i) If b(co) > Ao(c), then we have the following properties for —Uj (c) and —Up,(c):

ii-a) —Up, (c) is a continuous function on c, < ¢ < ¢, and lim ., Uy (c) = 0, and
lim, .- Ug, (c) = Up(c*).
ii-b) If co > c., then —Uy, (c) is monotone increasing on cy < ¢ < ¢*, and lima ., Uy, (c) =

0, and lim, ».- Uy, (c) = Ug(c*).
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it-c) If c. > co, then —Uy, (c) is monotone increasing on c, < ¢ < c*, andlima ., Uy, (c) =

0, and lim, ».- Uy, (c) = Ug(c*).

Proof. The proof of this lemma follows the ideas in the proof of Lemma 4.1. Details can be

found in the proof of Lemma 3.4.17 in [2] O

To obtain the existence of free TW-I from the preceding lemma, one can equivalently
prove the existence of at least one intersection between the line y = ¢/an; and the curves
for —U/(c). We consider the different cases with respect to the value of a as in Section 4.1.
Although the graphs of —U{(c) are not exactly the same as the analogous ones for Uy(c) in
the preceding sections, the steps to prove the existence of an intersection are very similar to
Section 4.1. Instead of listing all the cases, we simply indicate the result together with the
graphs of —U/(c) in Table 3. Detailed formulations of the results can be found in [2].

Again, the existence of free TW-II can be treated similarly to that of TW-I. We remark
without proof that if a forced TW-II exists (see Theorem 3.11 for the conditions), it appears
for cg < ¢ < ¢, when 0 < a < 1/2, and for 0 < ¢ < ¢**, when 1/2 < a < 1. Then, one can
choose 7, such that there exists at least one free TW-II in (4.9). Otherwise, there exists no

TW-II for the full system with scenario 3.

5 Conclusions

Classical models for the spatial spread of species are built on relatively simple assumptions
of a homogeneous environment whose ability to sustain the spreading species is unaffected by

the species itself. Those models support traveling waves of relatively simple shapes: typically
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0<a<1/2 a=1/2 1/2<a<1

b(co) < Ay (co) unique TWI no TWI no TWI

¢ = ¢ c€(0,¢)

’ C ° C0 C Ca ’ c, Com
Ce < g <0 Cop < ¢y <0

b(co) > Ag (co) TWI TWI if  small no TWI no TWI

¢ > ¢ c e (0,c ce (0, <0 <0

: ¢ C. C c* ° C, % c C. c*

o
o
o
(o]
*

TWI if n small
>0

TWI if n small
c*>0

Uy(e)

Uye)

E

c, Cy ° c*

C, - o

Table 3: Illustration of the different possible shapes of the function ys(c)

= —U|(c). When

there are two branches of Uj(c), they are indicated in different colors. A free traveling wave
of type I exists when —U((c) intersects the straight line y; = ¢/(nqcv).
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we observe monotone connections between spatially constant steady states [17, 21]. When
the population dynamics include a strong Allee effect, nonmonotone waves can occur, but
they connect two positive states rather than a positive and the zero state [20], hence we
do not interpret these as the spread of a new species. In systems of multiple populations,
their interactions can lead to more complex dynamics in the corresponding nonspatial model,
which become visible as oscillatory and chaotic patterns in the wake of an invasion in spatial
models [31].

In our work, we discovered and classified multiple novel shapes of traveling waves, based
on habitat heterogeneity and an Allee effect. These shapes result from one of two mecha-
nisms: in the case of forced waves, there is an external driver (e.g., climate change) that
moves the boundary between suitable and unsuitable habitat. This forced moving boundary;,
combined with the species’ behavioral response (e.g., movement choice) and the Allee effect,
lead to four types of traveling waves that can even coexist. This part of our work generalized
the work by Hadeler and Rothe [20] on a homogeneous environment to the case of moving-
habitat models. In the case of free waves, the species itself, through its engineering activity,
is the driver that moves the boundary between suitable and unsuitable habitat. This part of
our work extends previous work by Lutscher, Fink and Zhu [36], who considered a growth
function without Allee effect. Our work differs significantly from other recent attempts of
modeling species spread with a free boundary (e.g., [12, 13]) in that those authors consider
the population to be absent outside of the suitable habitat and use only the third scenario
for the movement of the boundary.

While we have shown the existence of a plethora of forced and free traveling waves, the
next important step is to consider their stability. This is particularly relevant in the case
when there are two or more coexisting waves. We would like to know which of these will
manifest for given initial conditions. While preliminary numerical simulations (not shown)

indicate that type-I waves are frequently observed (and therefore expected to be stable),
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there are subtle distinctions to be made. For example, when there are two TW-I for the
same speed, which of the two is stable? To fully answer this question is a massive future
challenge, in part because there are so many different scenarios and types of waves, and in
part because our understanding of the equations with the discontinuous condition at the
interface between the two types of habitat is still fairly limited.

Another formidable challenge is to search for evidence of such waves in nature. This
search is made complicated by the fact that we have, necessarily, idealized many aspects
in our model. Probably most importantly, we have an abrupt transition from suitable to
unsuitable habitat. We expect that this transition is more gradual in nature. What we then
need to look for are systems where the dispersal distance of individuals is relatively large to

the width of the transition zone between the twp environments.
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