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Abstract

We analyze the stationary Navier-Stokes equations with a damping term in dimension n through a
general minimax principle for which we first develop. Our minimax principle is broad enough and can
be used in various ways to deal with the Stationary Navier-stokes equations. We shall provide existence
results for linear and nonlinear dampings with no restriction on the damping constant.
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1 Introduction

In this paper we study the n−dimensional stationary Navier-Stokes equations with a damping term:
−∆u+ (u.∇)u+ µ|u|p−2u+∇P = f(x), ∀x ∈ Ω,

∇.u = 0, ∀x ∈ Ω,

u = 0, ∀x ∈ ∂Ω,

(1)

where Ω ⊂ Rn is bounded, p ≥ 1 and µ ∈ R. We address both linear and nonlinear dampings and we are
allowing µ to take both positive and negative values. Here u = (u1, u2, ..., un) is the velocity, P stand for
scalar pressure and f is the external force.

The existence of global weak solutions of the classical evolutionary Navier–Stokes equations without damping
were established by Leray [11] and Hopf [6]. Thereafter, the issue of uniqueness and regularity has received
a lot of attention. However, the uniqueness of weak solutions and the global existence of strong solutions
remain open so far.

Over the years, many authors turn to consider Navier-Stokes equations with damping term which in some
cases is very advantageous from the mathematical point of view, as it allows to obtain solutions more regular
than in the standard Navier-Stokes equations without damping. The damping comes from the resistance to
the motion of the flow, to which describes various physical phenomena such as porous media flow, drag or
friction effects, and some dissipative mechanisms (see [7, 23]).

Many authors obtained the long-time behavior of solutions for three dimensional evolutionary Navier–Stokes
equations with damping term µ|u|p−2u (µ > 0), (see [2, 8, 9, 10, 20, 25, 24, 26]). For instance, in [2], has
proved the existence of global weak solutions for p ≥ 2, the existence of global strong solutions for p ≥ 9

2 ,
and the uniqueness of strong solutions for 9

2 ≤ p ≤ 6 in the whole space, respectively. Due to this, the global
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attractor was studied in [22] and [21]. In [8], the L2 decay of weak solutions, the optimal upper bounds
of the higher-order derivative of the strong solution and asymptotic stability of the large solution were
studied. The regularity criterion of the three-dimensional Navier–Stokes equations with nonlinear damping
was studied in [26]. The author in [24] obtained the existence of strong solutions for p ≥ 4, the uniqueness of
strong-weak solutions for 2 ≤ p and established two regularity criteria as 2 ≤ p ≤ 4. The existence of weak
solutions for the generalized Navier–Stokes equations with damping was provided in [17]. In [15], by using
Fourier splitting method, the L2 decay of weak solutions for three dimensional Navier–Stokes equations with
damping was proved for p > 3.
For stationary Navier-Stokes equations with damping, the authors [13] obtained some partial results for ex-
istence and uniqueness of the weak solutions when µ > 0. Lately, a lot of work has been done on numerical
simulations of Navier-Stokes equations with damping (see [12, 14, 18, 19, 27]).

In this work, we first develop a minimax principle to deal with stationary Navier-Stokes equations with
damping (see [16] for a comprehensive review on variational principles on convex subsets). Consider the
Banach space

V = {u ∈ H1
0 (Ω) ∩ Lp(Ω) : ∇.u = 0},

equipped with the following norm
∥u∥ :=∥u∥H1

0 (Ω)+∥u∥Lp(Ω).

Let Λu be the operator Λu := (u.∇)u, and K be a convex and weakly closed subset of V . We shall define
M : K ×K → R as follows,

M(u, v) =
1

2

∫
Ω

|∇u|2 dx− 1

2

∫
Ω

|∇v|2 dx+

∫
Ω

(Λu− f(x)− 1

p
|u|p−2u)(u− v) dx, (2)

where f ∈ L2(Ω). Note that Λu−f(x)− 1
p |u|

p−2u and u−v are both vector functions in Rn. In the definition
of M , and also throughout the paper, the product of any two vectors is to be understood as the regular
inner product in Rn. The following variational principle on general convex sets K is a key component in our
arguments. It is also broad enough to deal with various other cases by choosing a convex set K accordingly.

Theorem 1.1 Let K be a convex and weakly closed subset of V . Assume that the following two assertions
hold:

(i) There exists ū ∈ K such that
M(ū, v) ≤ 0, ∀v ∈ K,

where M is defined in (2).

(ii) There exists v̄ ∈ K such that

−∆v̄ +∇P = f(x) + |ū|p−2ū− Λū,

in the weak sense, i.e.,∫
Ω

∇v̄.∇η dx =

∫
Ω

(f(x) + |ū|p−2ū− Λū)η dx, ∀η ∈ V.

Then ū ∈ K is a weak solution of the equation

−∆u+ Λu +∇P = f(x) + |u|p−2u .

It is worth noting that the primary consequence of this theorem centres on the choice of K, i.e., by choosing
an appropriate K, one is able to establish the existence of a solution enjoying all the properties induced by
the set K (see Remark 1.5 for an application where the problem (1) has some symmetry properties). Also,
condition (i) in Theorem 1.1 is most of the time guarantied due to the the well-known Ky Fan’s min-max
principle by Brezis-Nirenberg-Stampacchia [1]. We provide more details of how to apply the above theorem
in the sequel.
As an application of the above theorem we first prove the following result.
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Theorem 1.2 Let Ω be a bounded C2 domain in Rn and µ < 0. Then for f ∈ L2(Ω) small enough, the
following statements hold:

(i) For n ≤ 4 and p > 2, the Navier-Stokes equation (1) has a solution u ∈W 2,2(Ω).

(ii) For n = 5, 6 and 2 < p ≤ 2n− 4

n− 4
, the Navier-Stokes equation (1) has a solution u in W 2,2(Ω).

Furthermore, for n > 2, there exists a scalar function P : Ω → R and a constant C > 0 such that

∥∆u∥L2(Ω)+∥∇P∥L2(Ω) ≤ C
(
∥f∥L2(Ω)+∥u∥p−1

L2(p−1)(Ω)
+∥u∥W 1,2∗ (Ω)∥u∥Ln(Ω)

)
, (3)

where 2∗ = 2n/(n− 2).

When the constant µ in the damping term is non-negative we can cover higher values for p as shown in the
following theorem.

Theorem 1.3 Let Ω ⊂ Rn be a smooth bounded domain and µ > 0. Suppose that p ≥ 1 and f ∈ L2(Ω).
Then there exists u ∈ V such that the following holds:

(i) If n ≥ 2, then∫
Ω

∇u.∇η dx+ µ

∫
Ω

|u|p−2u η +

∫
Ω

Λu η dx =

∫
Ω

f(x)η dx, ∀η ∈ C1
c (Ω), with ∇.η = 0.

(ii) If n ≤ 4 or p ≥ 4, then∫
Ω

∇u.∇η dx+ µ

∫
Ω

|u|p−2u η dx+

∫
Ω

Λu η dx =

∫
Ω

f(x)η dx, ∀η ∈ V.

We would like to remark that the solution we are getting in part (i) of the above theorem is weaker than
the one we are getting in part (ii). This is due to the fact that all the test functions η in part (i) are coming
from C1

c (Ω) on contrary to part (ii) where the test functions η live in a less regular space H1
0 (Ω) ∩ Lp(Ω).

We shall also deal with the linear damping term where p = 2 for positive and negative values of µ. To state
our result we first recall the following standard fact about the first eigenfunction of the Laplacian on bounded
domains. Recall that

λ1 = min
ψ∈H1

0 (Ω)\{0}

∫
Ω
|∇ψ|2 dx∫
Ω
ψ2 dx

.

where the minimum is taken over all ψ : H1
0 (Ω) → R. Note that in Theorem 1.3 we have already covered

the case µ > 0. Here is our result for the linear case where we are allowing negative values for µ.

Theorem 1.4 Let Ω be smooth bounded domain in Rn and p = 2. Assume that −λ1 ≤ µ < 0, and
f ∈ L2(Ω). Then there exists u ∈ V such that the following assertions hold:

(i) If n ≥ 2, then∫
Ω

∇u.∇η dx+ µ

∫
Ω

uη dx +

∫
Ω

Λu η dx =

∫
Ω

f(x)η dx, ∀η ∈ C1
c (Ω), with ∇.η = 0.

(ii) If n ≤ 4 , then ∫
Ω

∇u.∇η dx+ µ

∫
Ω

u η dx+

∫
Ω

Λu η dx =

∫
Ω

f(x)η dx, ∀η ∈ V.

The highlight of the above theorem is the case where µ = −λ1 in which case one losses the coercivity required
in most minimax arguments.
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Remark 1.5 Even though our main objective in this paper is to prove existence results having a damping
term in mind, we would like emphasize that the applications of Theorem 1.1 goes well beyond this goal. In
light of this remark, let us define the maps π1, π2, π3 : Ω ⊂ R3 → Ω as follow:

π1(x1, x2, x3) = (−x1, x2, x3),
π2(x1, x2, x3) = (x1,−x2, x3),
π3(x1, x2, x3) = (x1, x2,−x3).

Consider the 3D case of the stationary Navier-Stokes equations with damping presented in equation (1).
Assume that Ω is invariant under the maps π1, π2, π3 : Ω → Ω. Moreover, assume that KS is a subset of V
containing all u ∈ V with the following property:

u1(x1, x2, x3) = −u1(−x1, x2, x3),
u2(x1, x2, x3) = u2(−x1, x2, x3),
u3(x1, x2, x3) = u3(−x1, x2, x3).

(4)

Furthermore, assume that f(x) ∈ L2(Ω) also holds the same property; i.e.,
f1(x1, x2, x3) = −f1(−x1, x2, x3),
f2(x1, x2, x3) = f2(−x1, x2, x3),
f3(x1, x2, x3) = f3(−x1, x2, x3).

Then, the solution u = (u1, u2, u3) obtained in Theorems 1.2, 1.3 and 1.4 is symmetric in the sense (4).

The paper is organized as follows. In section 2, we shall provide the proof of Theorems 1.1 and 1.2 through
a minimax principle. Section 3 is devoted to the proof of our results in Theorems 1.3 and 1.4.

2 A minimax principle and the proof of Theorem 1.2

In this section, we first prove the variational principle presented in Theorem 1.1 which is applicable specifically
to our problem when µ < 0, and p > 2. Afterwards, we proceed with the proof of Theorem 1.2.
We consider the Banach space V = {u ∈ H1

0 (Ω) ∩ Lp(Ω) : ∇.u = 0} equipped with the following norm

∥u∥ :=∥u∥H1
0 (Ω)+∥u∥Lp(Ω).

Let Λu be the operator Λu := (u.∇)u, that is

< Λu, v >=

∫
Ω

(Λu)v =

∫
Ω

n∑
j,k=1

uk
∂uj
∂xk

vj .

Let K be a convex and weakly closed subset of V . As stated in Theorem 1.1 we shall consider the functional
M : K ×K → R given in (2).

Proof of Theorem 1.1: It follows from condition (i) in the theorem that there exists ū ∈ K such that

1

2

∫
Ω

|∇ū|2 dx− 1

2

∫
Ω

|∇v|2 dx ≤
∫
Ω

(f(x) +
1

p
|ū|p−2ū− Λū)(ū− v) dx, ∀v ∈ K. (5)

It also follows from (ii) that there exists v̄ ∈ K such that∫
Ω

∇v̄.∇η dx =

∫
Ω

(f(x) + |ū|p−2ū− Λū)η dx, ∀η ∈ V. (6)

Substituting η = ū− v̄ in the latter equality gives∫
Ω

∇v̄.∇(ū− v̄) dx =

∫
Ω

(f(x) + |ū|p−2ū− Λū)(ū− v̄) dx, ∀η ∈ V. (7)

4



Setting v = v̄ in (5) and taking into account the equality (7) we obtain that∫
Ω

∇v̄.∇(ū− v̄) dx ≥ 1

2

∫
Ω

|∇ū|2 dx− 1

2

∫
Ω

|∇v̄|2 dx. (8)

On the other hand, it follows from the convexity of g(t) =
1

2
t2 that∫

Ω

∇v̄.∇(ū− v̄) dx ≤ 1

2

∫
Ω

|∇ū|2 dx− 1

2

∫
Ω

|∇v̄|2 dx. (9)

Inequalities (8) and (9) together imply that∫
Ω

∇v̄.∇(ū− v̄) dx =
1

2

∫
Ω

|∇ū|2 dx− 1

2

∫
Ω

|∇v̄|2 dx.

Therefore, ∫
Ω

|∇ū−∇v̄|2 = 0,

from which it follows that v̄ = ū for a.e. x ∈ Ω. Hence, the equality (6) proves the desired result. □

We shall apply Theorem 1.1 to prove the existence of a solution in Theorem 1.2. The convex subset K of V
required in Theorem 1.1 is defined by

K := K(r) = {u ∈ V : ∥u∥W 2,2(Ω) ≤ r}, (10)

for some r > 0 to be determined. To see that K(r) is weakly closed, we present the proof of the statement
in the following lemma.

Lemma 2.1 Let r > 0 be fixed. The set

K(r) = {u ∈ V : ∥u∥W 2,2(Ω) ≤ r},

is weakly closed in V .

Proof: Let {um} be a sequence in K(r) such that um ⇀ u weakly in V . Then there exists a subsequence
of um, denoted by um again such that um → u a.e in Ω. On the other hand, ∥um∥W 2,2(Ω) ≤ r for all m ∈ N
and so {um} is bounded in W 2,2(Ω). Going if necessary to a subsequence, there exists ū ∈ W 2,2(Ω) such
that um ⇀ ū weakly in W 2,2(Ω) and um(x) → ū(x) for a.e. x ∈ Ω. It follows then u(x) = ū(x) for a.e.
x ∈ Ω. Thus um ⇀ u weakly in W 2,2(Ω). Now from the weak lower semi-continuity of the norm in W 2,2(Ω)
follows that

∥u∥W 2,2(Ω) ≤ lim inf
m→∞

∥um∥W 2,2(Ω) ≤ r,

which means that u ∈ K(r). □

To apply Theorem 1.1, we shall need to verify both conditions (i) and (ii) in this theorem. To verify condition
(i) we shall use the following version of the well-known Ky Fan’s min-max principle [1]. We refer to Lemma
12.1 in [5] for a proof.

Lemma 2.2 Let G be a closed convex subset of a reflexive Banach space X, and consider M : G×G → R
to be a functional such that:

1. For each y ∈ G, the map x→M(x, y) is weakly lower semi-continuous on G.

2. For each x ∈ G, the map y →M(x, y) is concave on G.

3. There exists γ ∈ R such that M(x, x) ≤ γ for every x ∈ G.

4. There exists a y0 ∈ G such that G0 = {x ∈ G :M(x, y0) ≤ γ} is bounded.
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Then there exits x̄ ∈ G such that M(x̄, y) ≤ γ for all y ∈ G.

Without loss of generality, we can assume that µ = −1 in Theorem 1.2. Recall that the functional M :
K ×K → R is defined as follows,

M(u, v) =
1

2

∫
Ω

|∇u|2 dx− 1

2

∫
Ω

|∇v|2 dx+

∫
Ω

(Λu− f(x)− 1

p
|u|p−2u)(u− v) dx. (11)

One of the requirements in Lemma 2.2 is the lower semi-continuity of M(. , v) for a fixed v. In order to
verify that, we begin by the following Lemma.

Lemma 2.3 ∀ v ∈ K, the map u→< Λu, v > is weakly continuous on K for the values of n, p in Theorem
1.2.

Proof: Fix v ∈ K, and let {um} be a sequence in K such that um ⇀ u weakly in V . We have∣∣∣ < Λum, v > − < Λu, v >
∣∣∣ = ∣∣∣ n∑

j,k=1

∫
Ω

(
umk

∂umj
∂xk

vj − uk
∂uj
∂xk

vj
)
dx

∣∣∣
=

∣∣∣ n∑
j,k=1

∫
Ω

(
(umk − uk)

∂umj
∂xk

vj + uk
∂(umj − uj)

∂xk
vj
)
dx

∣∣∣
≤

n∑
j,k=1

∫
Ω

∣∣∣(umk − uk)
∂umj
∂xk

vj

∣∣∣+ n∑
j,k=1

∫
Ω

∣∣∣uk ∂(umj − uj)

∂xk
vj

∣∣∣ dx.
On the other hand, by Hölder inequality we can conclude that

n∑
j,k=1

∫
Ω

∣∣∣(umk − uk)
∂umj
∂xk

vj

∣∣∣ ≤ C∥(um − u)v∥L2(Ω)∥∇um∥L2(Ω)

≤ C∥um − u∥L4(Ω)∥v∥L4(Ω)∥∇um∥L2(Ω),

for some constant C. Therefore, we would have∣∣∣ < Λum, v > − < Λu, v >
∣∣∣ ≤ C∥um − u∥L4(Ω)∥v∥L4(Ω)∥∇um∥L2(Ω) +

n∑
j,k=1

∫
Ω

∣∣∣uk ∂(umj − uj)

∂xk
vj

∣∣∣ dx.
Moreover, since the space W 2,2(Ω) is compactly imbedded into L4(Ω), for all n ≤ 6, it follows that um → u
strongly in L4(Ω). Furthermore, since u, v are in W 2,2(Ω), we deduce from Hölder’s inequality that ukvj ∈
L2(Ω). Finally, since ∇um ⇀ ∇u weakly in K, by definition of weak convergence the result follows. □

Lemma 2.4 ∀ v ∈ K, the map u→M(u, v) is weakly lower semi-continuous on K for the values of n, p in
Theorem 1.2.

Proof: Let v ∈ K be fixed and, let {um} be a sequence in K such that um ⇀ u weakly in V . Considering
< Λu, u >= 0, it follows from (2) that

M(u, v) =
1

2

∫
Ω

|∇u|2 dx− < Λu, v > −
∫
Ω

f(x)u dx− 1

p

∫
Ω

|u|p dx

+
1

p

∫
Ω

|u|p−2uv dx− 1

2

∫
Ω

|∇v|2 dx+

∫
Ω

f(x)v dx, (12)

Now we shall verify lower semi-continuity of every single term in (12) separately. Note that the last two
terms in (12) are constant with respect to u.

• Since the function g(u) = |u|2 is convex, it can be easily shown that∫
Ω

|∇u|2 dx ≤ lim inf
m→∞

∫
Ω

|∇um|2 dx.

This implies that the map u→
∫
Ω

|∇u|2 dx is weakly lower semi-continuous.
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• The map u→ −
∫
Ω

Λu.v dx is weakly lower semi-continuous by Lemma 2.3.

• Since f ∈ L2(Ω), applying the definition of weak convergence leads to∫
Ω

f(x) u dx = lim inf
n→∞

∫
Ω

f(x)um dx.

• The map u→
∫
Ω

|u|p dx is weakly lower semi-continuous for n, p in Theorem 1.2 because

(i) if n ≤ 4, then W 2,2(Ω) is compactly imbedded into Lp(Ω) for all p > 2, and

(ii) if n = 5, 6, then W 2,2(Ω) is compactly imbedded into Lp(Ω) for all 2 < p <
2n

n− 4
.

It then follows for both of cases that

lim
n→∞

∫
Ω

|um|p =
∫
Ω

|u|p dx,

• The map u→
∫
Ω

|u|p−2uv dx is weakly lower semi-continuous for n, p in Theorem 1.2 because

(i) if n ≤ 4, then W 2,2(Ω) is compactly imbedded into L2(p−1)(Ω) for all p > 2, and

(ii) if n = 5, 6, then W 2,2(Ω) is compactly imbedded into L2(p−1)(Ω) for all 2 < p <
2n− 4

n− 4
.

In both cases, we have |u|p−2u ∈ L2(Ω) from which we deduce that the map u →
∫
Ω

|u|p−2uv dx is a

continuous functional and

lim
n→∞

∫
Ω

|um|p−2uv dx =

∫
Ω

|u|p−2uv dx.

This completes the proof. □

We are now in the position to state the following result addressing condition (i) in Theorem 1.1.

Lemma 2.5 Let K = K(r) be a convex and weakly closed subset of V defined in (10). Let M : K ×K → R
be defined as (2) and n, p as in Theorem 1.2. Then there exists ū ∈ K such that

M(ū, v) ≤ 0, ∀v ∈ K.

Proof: We shall show that the function M satisfies all the conditions of the Ky Fan’s Min-Max Principle
presented in Lemma 2.2. The condition (1) is provided by Lemma 2.4. For each u ∈ K, the map v →M(u, v)

is concave on K since M(u, v) is a linear functional with respect to v except −1

2

∫
Ω

|∇v|2 dx , which is in

fact concave . Also we have M(u, u) = 0 = γ for every u ∈ K. Finally, since K is bounded, we can conclude
that {u ∈ K :M(u, v) ≤ 0} is bounded. It now follows by Lemma 2.2 that there exists ū ∈ K such that

M(ū, v) ≤ 0, ∀v ∈ K,

as desired. □

Our next task consists of verifying condition (ii) in Theorem 1.1. In order to do this, we start with the
following two lemmas, which provide us the required estimates. Hereafter C will denote a positive constant,
not necessarily the same one.
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Lemma 2.6 Let Ω ⊂ Rn be a bounded domain and 1 < p. Then there exists a constant C such that for any
u ∈ K(r) we have∥∥f + |u|p−2u− Λu

∥∥
L2(Ω)

≤ C
(
∥f∥L2(Ω)+∥u∥p−1

L2(p−1)(Ω)
+∥u∥W 1,2∗ (Ω)∥u∥Ln(Ω)

)
, (13)

when n > 2, and∥∥f + |u|p−2u− Λu
∥∥
L2(Ω)

≤ C
(
∥f∥L2(Ω)+∥u∥p−1

L2(p−1)(Ω)
+∥u∥W 1,4(Ω)∥u∥L4(Ω)

)
, (14)

when n = 2.

Proof: Let u ∈ K(r) and n > 2. By Hölder’s inequality we have∥∥f + |u|p−2u− Λu
∥∥
L2(Ω)

≤∥f∥L2(Ω)+∥up−1∥L2(Ω)+∥Λu∥L2(Ω)

≤∥f∥L2(Ω)+∥u∥p−1
L2(p−1)(Ω)

+ C∥∇u∥L2∗ (Ω)∥u∥Ln(Ω), (where 2∗ =
2n

n− 2
)

≤∥f∥L2(Ω)+∥u∥p−1
L2(p−1)(Ω)

+ C∥u∥W 1,2∗ (Ω)∥u∥Ln(Ω),

as desired. For the case n = 2, one can proceed via the same argument considering the fact that

∥Λu∥L2(Ω) ≤ C∥∇u∥L4(Ω)∥u∥L4(Ω).

□

Lemma 2.7 Let p > 2 and C > 0 be given. If ∥f∥L2(Ω) is small enough then there exists 0 < r ∈ R which
satisfies

C(∥f∥L2(Ω) + rp−1 + r2) ≤ r.

Proof: Since p > 2, we can choose r such that

C(rp−1 + r2) ≤ r

2
.

Now if C∥f∥L2(Ω) ≤ r
2 then we have

C(∥f∥L2(Ω) + rp−1 + r2) ≤ r,

as desired. □

Here is another useful results that we shall use in the sequel. See Theorem 1.2 in [3] for a more general
version of the following theorem.

Lemma 2.8 If g ∈ L2(Ω), then there exists u ∈ W 2,2(Ω) ∩ H1
0 (Ω), a scalar function P : Ω → R and a

constant C such that
∆u+∇P = g, ∇.u = 0, u|∂Ω = 0,

and
∥∆u∥L2(Ω)+∥∇P∥L2(Ω) ≤ C∥g∥L2(Ω).

The following result is proved in [4], Lemma 9.17.

Lemma 2.9 Let Ω be a bounded C1,1 domain in Rn and let the operator Lu = aij(x)Diju+b
i(x)Diu+c(x)u

be strictly Elliptic in Ω with coefficients aij ∈ C(Ω), bi, c ∈ L∞(Ω), with i, j = 1, ..., n and c ≤ 0. Then there
exists a positive constant C (independent of u) such that

∥u∥W 2,p(Ω) ≤ C∥Lu∥Lp(Ω),

for all u ∈W 2,p(Ω) ∩W 1,p
0 (Ω), 1 < p <∞.
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Here comes a direct consequence of Lemma 2.9.

Corollary 2.10 Let Ω be a bounded C1,1 domain in Rn. Then there exists a constant C such that

∥u∥W 2,2(Ω) ≤ C∥∆u∥L2(Ω),

for all u ∈W 2,2(Ω) ∩H1
0 (Ω).

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality we may suppose that µ = −1. Define K = K(r) for
r > 0 to be determined presently. By Lemma 2.5 we have the existence of a non-trivial ū ∈ K such that

M(ū, v) ≤ 0 ∀v ∈ K.

Now we shall show the existence of v̄ that satisfy condition (ii) in Theorem 1.1. Consider

g(x) = f + |ū|p−2ū− Λū.

Thus we have to show there exists v̄ ∈ K that the following equation holds in the weak sense,

−∆v +∇P = g(x), (15)

where P : Ω → R is an appropriate scalar function. By Lemma 2.8 there exists v̄ ∈ V which satisfies (15)
and

∥∆v̄∥L2(Ω)+∥∇P∥L2(Ω) ≤ C∥g∥L2(Ω). (16)

It is sufficient to show that v̄ ∈ K. For n > 2, the estimate (16) together with Lemma 2.6 imply that

∥∆v̄∥L2(Ω)+∥∇P∥L2(Ω) ≤ C∥f + |ū|p−2ū− Λū∥L2(Ω)

≤ C
(
∥f∥L2(Ω)+∥ū∥p−1

L2(p−1)(Ω)
+∥ū∥W 1,2∗ (Ω)∥ū∥Ln(Ω)

)
. (17)

On the other hand, Corollary 2.10 together with (17) yield that

∥v̄∥W 2,2(Ω) ≤ C∥∆v̄∥L2(Ω) ≤ C
(
∥∆v̄∥L2(Ω)+∥∇P∥L2(Ω)

)
≤ C

(
∥f∥L2(Ω)+∥ū∥p−1

L2(p−1)(Ω)
+∥ū∥W 1,2∗ (Ω)∥ū∥Ln(Ω)

)
. (18)

Using the imbeddings ofW 2,2(Ω) ↪→ L2(p−1)(Ω),W 2,2(Ω) ↪→W 1,2∗(Ω) andW 2,2(Ω) ↪→ Ln(Ω) for 2 < n ≤ 6,
we obtain from (18) that

∥v̄∥W 2,2(Ω) ≤ C
(
∥f∥L2(Ω)+∥ū∥p−1

W 2,2(Ω)+∥ū∥W 2,2(Ω)∥ū∥W 2,2(Ω)

)
. (19)

Let r be as in Lemma 2.7 for C given in the last inequality above. The inequality (19) and Lemmas 2.7 yield
that

∥v̄∥W 2,2(Ω) ≤ C(∥f∥L2(Ω) + rp−1 + r2) ≤ r,

where ∥f∥L2(Ω) is small enough. That means v̄ ∈ K and so v̄ = ū as in Theorem 1.1. This completes the
proof of (i) for n > 2, and (ii). Now the inequality (17) gives that

∥∆u∥L2(Ω)+∥∇P∥L2(Ω) ≤ C
(
∥f∥L2(Ω)+∥u∥p−1

L2(p−1)(Ω)
+∥u∥W 1,2∗ (Ω)∥u∥Ln(Ω)

)
.

For n = 2, by inequality (14) in Lemma 2.6 and by repeating the same argument we have the desired result.
□
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3 Proof of Theorems 1.3 and 1.4

We shall need some preliminary results before proving our results in this section. We shall consider the same
notation for the Banach space V = {u ∈ H1

0 (Ω) ∩ Lp(Ω) : ∇.u = 0} with norm ∥u∥ =∥u∥H1
0 (Ω)+∥u∥Lp(Ω).

Where Ω is a bounded domain of Rn. Note that the operator Λu = (u.∇)u may not be defined on whole
space H1

0 (Ω). Although, there exists constant C such that

| < Λu, v > | =
∣∣ ∫

Ω

n∑
j,k=1

uk
∂uj
∂xk

vj
∣∣ ≤ C∥u∥L2(Ω)∥∇u∥L2(Ω)∥v∥C1(Ω),

which means that for the dense linear subspace

E = {u ∈ C1
c (Ω) : ∇.u = 0}

of V , we have that < Λu, v > is well defined for all u ∈ V and v ∈ E. We shall define Φ : V → R by

Φ(u) =
1

2

∫
Ω

|∇u|2 dx+
1

p

∫
Ω

|u|p dx−
∫
Ω

fu dx.

We also define H : V × V → R by
H(v, u) = Φ(u)− Φ(v).

For r > 1, set
K(r) = {u ∈ V : ∥u∥ ≤ r},

that is convex and weakly closed in V by similar arguments as in the proof of Lemma 2.1. Let

K0(r) = K(r) ∩ E,

and define M : K(r)×K0(r) → R by

M(u, v) = H(v, u)− < Λu, v > . (20)

In the case where µ > 0 in the damping term, we shall make use of a different version of Ky-Fan minimax
theorem (See Lemma 12.1 in [5]) for a proof). This version is more practical when one expects less regularity
of the solution. For a set D, we denote its convex hull by conv(D).

Lemma 3.1 Let ∅ ≠ D ⊂ G ⊂ X where G is a weakly compact convex set in a Banach space X, and
consider M : G× conv(D) → R to be a function such that:

1. For each y ∈ D, the map x→M(x, y) is weakly lower semi-continuous on G.

2. For each x ∈ G, the map y →M(x, y) is concave on conv(D).

3. M(x, x) ≤ 0 for every x ∈ conv(D).

Then there exits x̄ ∈ G such that M(x̄, y) ≤ 0 for all y ∈ D.

Proof of Theorem 1.3. Without loss of generality we may suppose that µ = 1. By similar arguments as
in Lemma 2.4 for M defined in (20) we obtain that

• For each v ∈ K0(r) the function u→M(u, v) is weakly lower semi-continuous.

• For each u ∈ K(r) the function v →M(u, v) is concave.

• M(u, u) = 0,∀u ∈ K0(r)

10



Now we can apply Ky-Fan minimax principle (Lemma 3.1), which yields the existence of a ūr ∈ K(r) such
that

M(ūr, v) = H(v, ūr)− < Λūr, v >≤ 0, ∀v ∈ K0(r). (21)

Substituting v = 0 in the latter inequality implies that Φ(ūr) ≤ 0. Now the coercivity of the functional Φ
follows that {ūr}r is bounded in V and so there exists a sequence rn → ∞ and ū ∈ V such that ūrn ⇀ ū
weakly in V . If v ∈ E is fixed, then from (21) and the weak lower semi-continuity of the functions involved,
we get

H(v, ū)− < Λū, v >≤ 0, ∀v ∈ K0(r). (22)

Since r > 1, this indeed implies that

sup
v∈E,∥v∥≤1

< Λū, v > + inf
∥z∥≤1

H(z, ū) ≤ 0. (23)

Therefore,

sup
v∈E,∥v∥≤1

< Λū, v >≤ − inf
∥z∥≤1

H(z, ū) <∞. (24)

This implies that the linear functional l : E + Rū → R defined by l(v + tū) =< Λū, v > is continuous. It
now follows from the bounded linear extension theorem that l can be extended to a bounded linear operator
L : V → R with the same operator norm as l. It then follows from the Riesz representation theorem that
there exists Λ̂ū ∈ V ∗ such that

< Λ̂ū, ū >= 0, and < Λ̂ū, v >=< Λū, v >, ∀v ∈ E. (25)

This together with (22) yield that

H(v, ū)− < Λ̂ū, v >≤ 0, ∀v ∈ E. (26)

But since E is dense in V and expression (26) is continuous with respect to v, we can conclude that

H(v, ū)− < Λ̂ū, v >≤ 0, ∀v ∈ V. (27)

Now by substituting v = ū+ tη, η ∈ V , into (27) we obtain that

H(ū+ tη, ū)− < Λ̂ū, ū+ tη >≤ 0, ∀t ∈ R. (28)

Dividing (28) by t > 0 and letting t converge to zero yield that∫
Ω

∇ū.∇η dx+

∫
Ω

|ū|p−2ū η dx−
∫
Ω

fη dx+ < Λ̂ū, η >≥ 0, ∀η ∈ V. (29)

Now substituting η by −η in (29) we deduce the opposite inequality and thus∫
Ω

∇ū.∇η dx+

∫
Ω

|ū|p−2ū η dx−
∫
Ω

fη dx+ < Λ̂ū, η >= 0, ∀η ∈ V. (30)

This together with (25) follow that∫
Ω

∇ū.∇η dx+

∫
Ω

|ū|p−2ū η dx−
∫
Ω

fη dx+ < Λū, η >= 0, ∀η ∈ E.

This complete the proof of part (i).

11



For the proof of the second part we will consider two cases n ≤ 4 and p ≥ 4 separately.

Case 1, (n ≤ 4): Let v ∈ V . If n ≤ 4, then 4 ≤ 2n

n− 2
. From continuous imbedding of Sobolev space H1

0 (Ω)

into L4(Ω), and by the Hölder inequality we obtain for operator Λu

| < Λu, v > | =
∣∣ ∫

Ω

n∑
j,k=1

uk
∂uj
∂xk

vj
∣∣ ≤ C∥uv∥L2(Ω)∥∇u∥L2(Ω)

≤ C∥u∥L4(Ω)∥v∥L4(Ω)∥u∥H1
0 (Ω) <∞.

This means, the operator Λu is well defined on V . Since E is a dense subspace of V , from uniqueness of the
bounded linear extension theorem we have < Λ̂ū, v >=< Λū, v >, ∀v ∈ V. Now the result follows from (30).
Case 2, p ≥ 4: For v ∈ V , since V ⊂ Lp(Ω) we can deduce that

| < Λu, v > | ≤ C∥uv∥L2(Ω)∥∇u∥L2(Ω) ≤ C∥u∥H1
0 (Ω)∥u∥Lp(Ω)∥v∥

L
2p

p−2 (Ω)
<∞

where the last inequality follows from
2p

p− 2
≤ p. Thus operator Λu is well defined on whole V and this

completes the proof. □

As we have just seen, the case of µ > 0 with the linear damping term was covered in the theorem 1.3.
But for µ < 0, due to an essential role of Lemma 2.7 in the proof of Theorem 1.2 we were not be able to
deal with the linear damping term in this theorem. However, with a similar argument as in the proof of
Theorem 1.3, we would be in a position to manage this separately. Note that when p = 2 we have that
V = {u ∈ H1

0 (Ω) : ∇u = 0}, and

Φ(u) =
1

2

∫
Ω

|∇u|2 dx+
µ

2

∫
Ω

|u|2 dx−
∫
Ω

f u dx.

Proof of Theorem 1.4. In the same way as in proof of Theorem 1.3, it follows from the Ky-Fan minimax
principle ( Lemma 3.1) that there exits ūr ∈ K(r) with

M(ūr, v) = H(v, ūr)− < Λūr, v >≤ 0, ∀v ∈ K0(r). (31)

Now we claim that {ūr}r is bounded in V and so there exists a sequence rn → ∞ and ū ∈ V such that
ūrn ⇀ ū weakly in V . Thus, by similar arguments as in the proof of Theorem 1.3 we obtain the result.
Now in order to complete the proof we have to show the claim. Assume, by contradiction, that {ūr}r is
unbounded. So there exists a sequence rm → ∞ such that {ūrm}m is unbounded. By substituting v = 0 in
(31) we obtain that

Φ(ūrm) =
1

2

∫
Ω

|∇ūrm |2 dx+
µ

2

∫
Ω

|ūrm |2 dx−
∫
Ω

f ūrm dx ≤ 0. (32)

Let t2m =

∫
Ω

|∇ūrm |2 dx, and wm =
ūrm
tm

. Note that ∥wm∥H1
0 (Ω) = 1. Thus, there exists a w = (z1, ..., zn) ∈ V

such that wm ⇀ w weakly in V . It follows that w ̸= 0, because dividing (32) by t2m we obtain

1

2
+
µ

2

∫
Ω

|wm|2 dx ≤ 1

tm

∫
Ω

f wm dx, (33)

and letting m→ ∞, due to the compact imbedding H1
0 (Ω) ↪→ L2(Ω) we obtain that

1

2
+
µ

2

∫
Ω

|w|2 dx ≤ 0, (34)
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which implies w ̸= 0. Also, we have

1

2

∫
Ω

|∇w|2 dx+
µ

2

∫
Ω

|w|2 dx ≤ lim inf
m→∞

(1
2

∫
Ω

|∇wm|2 dx+
µ

2

∫
Ω

|wm|2 dx
)

≤ 1

2
+
µ

2

∫
Ω

|w|2 dx.

This estimate together with (34) yield that∫
Ω

|∇w|2 dx+ µ

∫
Ω

|w|2 dx ≤ 0.

Therefore, ∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

≤ −µ, (35)

from which together with hypothesis −λ1 ≤ µ in the theorem we obtain that∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

≤ λ1. (36)

On the other hand, for the first eigenvalue λ1 of −∆ we have∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

=

∑n
i=1

∫
Ω
|∇zi|2 dx∑n

i=1

∫
Ω
z2i dx

≥
∑n
i=1 λ1

∫
Ω
z2i dx∑n

i=1

∫
Ω
z2i dx

= λ1, (37)

where w = (z1, ..., zn). It then follows from (36) and (37)

λ1 =

∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

, (38)

from which we obtain that ∫
Ω

|∇zi|2 dx = λ1

∫
Ω

z2i dx, (i = 1, .., n).

Therefore,

−∆zi = λ1zi, i = 1, ..., n. (39)

Since the first eigenvalue of the −∆ is simple it follows that there exists α = (α1, ..., αn) ∈ Rn such that

zi = αiψ1, i = 1, ..., n, (40)

where ψ1 > 0 is the unique eigenfunction of −∆ corresponding to λ1 with ∥ψ1∥L2(Ω) = 1, i.e.

−∆ψ1 = λ1ψ1, ψ1|∂Ω = 0.

Since ∇.w = 0, it follows from (40) that

0 =

n∑
i=1

∂zi
∂xi

=

n∑
i=1

αi
∂ψ1

∂xi
= α.∇ψ1. (41)

Now let x be an interior point of Ω and x̄ the closest point on ∂Ω to x such that x̄ − x = Cα for some
constant C ∈ R, and the line joining x to x̄ lies in Ω̄. Define

g : [0, 1] → R
g(t) = ψ1(tx+ (1− t)x̄).

It can be easily deduced from (41) that

g′(t) = (x− x̄).∇ψ1(tx+ (1− t)x̄) = Cα.∇ψ1(tx+ (1− t)x̄) = 0.

Thus, g is a constant function and since ψ1|∂Ω = 0 we have

g(t) = g(0) = ψ1(x̄) = 0, ∀t ∈ [0, 1],

which implies that ψ1(x) = 0. This is the contradiction we were looking for. □
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