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COMPLETELY ISOMETRIC REPRESENTATIONS

OF M,A(G) AND UCB(G)*
MATTHIAS NEUFANG, ZHONG-JIN RUAN, AND NICO SPRONK

ABSTRACT. Let G be a locally compact group. It is shown that there exists a
natural completely isometric representation of the completely bounded Fourier
multiplier algebra M., A(G), which is dual to the representation of the measure
algebra M(G), on B(L2(G)). The image algebras of M(G) and M A(G) in
CB? (B(L2(G))) are intrinsically characterized, and some commutant theorems
are proved. It is also shown that for any amenable group G, there is a natural

completely isometric representation of UCB(G)* on B(L2(G)), which can be
regarded as a duality result of Neufang’s completely isometric representation
theorem for LUC(G)*.

1. INTRODUCTION

In this paper we assume that G is a locally compact group with a fixed left Haar
measure jg. We will simply write dug(t) = dt if there is no confusion. Ghahramani
showed in [I5, Theorem 2] that if G contains at least two elements, the convolu-
tion algebra Li(G) (and thus the measure algebra M(G)) cannot be isometrically
isomorphic to a subalgebra of operators on any Hilbert space. Therefore, the repre-
sentation of the measure algebra M (G) has to be considered on some other spaces
different from Hilbert spaces.

The first such representation result was studied by Wendel [46], in which he
showed that M(G) is isometrically isomorphic to the right centralizer algebra
RC(L1(Q)) of L1 (G). More precisely, Wendel showed that every measure p € M(QG)
uniquely corresponds to a bounded right centralizer

my, : f € Li(G)— f*pe Li(G)

on Li(G). If we let ®,, = m, denote the adjoint of m,,, then ®,, is a bounded weak”
continuous operator on Lo (G) commuting with left translations (i.e., ®,(l,f) =
14®,(f)). On the other hand, every such operator on L (G) is implemented by
a measure in this way. Therefore, if we denote by By (Loo(G)) the space of all
bounded weak* continuous maps on L., (G) commuting with left translations, then

(1.1) Q:peMG)— @, € Bl (Lo(G))
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is an isometric isomorphism from M(G) onto BY (L. (G)) (see [I. §1.6]). Let
LUC(G)* denote the dual space of all left uniformly continuous bounded func-
tions on G. Then LUC(G)* is a Banach algebra containing M(G) as a Banach
subalgebra. It was shown by Curtis and Figa-Talamanca (cf. Theorem 3.3 in [5])
that there is a similar isometric isomorphism from LUC/(G)* onto the space of all
bounded operators on L, (G) which commute with the left convolution action of
L1(G) on Lo (G). Note that the proof given in [5] assumes G to be unimodular.
The general case follows from a more general result due to Lau (see Theorem 1,
together with Lemma 1 and Remark 3 in [2§]).

It is also known that M (G) and LUC(G)* can be nicely represented on the space
B(L2(G)) of all bounded linear operators on the Hilbert space La(G). Stgrmer
showed in [45] that for any abelian group G, there exists an isometric homomor-
phism ©; from M (G) into B 4 (B(L2(G))), the space of all normal bounded R(G)-

bimodule morphisms on B(L2(G)), which is given by

(1.2) 01(n)(a) = | Ms)ad(s)"du(s

for p € M(G) and a € B(L2(@G)). This result was extended to general (not necessar-
ily abelian) groups by Ghahramani [I5] and was further studied by Neufang in his
Ph.D. thesis [32]. Neufang showed that each ©;(p) is actually completely bounded
and ©; is an isometric homomorphism from M(G) into CB% ) (B(L2(G))), the
space of all normal (i.e. weak* continuous) completely bounded R(G)-bimodule
morphisms on B(Ly(G)). Moreover, Neufang successfully characterized the range
space of the representation (L2)) in CB% ¢)(B(L2(G))) by showing that ©;(M(G)) is

equal to the space CB;;’(LC?;(G) (B(Ly(@))) of all normal completely bounded R(G)-

bimodule morphisms on B(L3(G)), which map Lo (G) into Lo (G) (see [32] and
[34]). Neufang also introduced and studied the representation of the Banach alge-
bra LUC(G)* on B(Ly(G)) in [32] and [33].

The aim of this paper is to investigate the corresponding representations of the
completely bounded Fourier multiplier algebra M., A(G) and the Banach algebra

UCB(G)* introduced by Granirer [19] (see §6 for details), since M A(G) and

UCB(G)*, when G is amenable, can be regarded as the natural dual objects of
M(G) and LUC(G)*, respectively. Our main results show that there exist nat-
ural completely isometric representations of Mg A(G) and UCB(G)* when G is
amenable on B(Ly(G)). The advantage of this investigation is that it allows us to
compare and study the connection of these representations with the corresponding
representations of M(G) and LUC(G)* on the same space B(L2(G)).

Since operator space techniques will play an important role, we first recall some
necessary definitions and notations on operator spaces in §2. Readers are referred
to the recent books [I1], [35], and [37] for more details. In §3, we recall the repre-
sentation theorem of M (G) by considering the weak*-weak* continuous completely
isometric homomorphism ©, : M(G) — CBZg)(B(L2(G))) induced by the right
regular representation

(1.3) 0, ()(a) = /G p()ap(s) dp(s).

With this setup, we may significantly simplify our calculations, and we will be able
to obtain some intriguing commutant theorems in §5. We provide a proof, which is
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simpler than Neufang’s original argument, for the equality
o,Lo (G
(1.4) 0,(M(G)) = CBZ 5 “ (B(La2(@)))

in Theorem Moreover, we show in Proposition B.3] and Proposition 3.4l that ©,.
preserves the natural involutions and matrix orders on these two spaces. We also
characterize the range space 0,(L1(G)) in Theorem

We study the representation of M, A(G) in §4. Using the techniques developed
in Spronk’s Ph.D. thesis [42] and published in [43], we show that M, A(G) can be
completely isometrically identified with the space V22 (G, m) of all left invariant
measurable Schur multipliers. It follows that we obtain a weak*-weak® continuous
completely isometric isomorphism

(1.5) 6 : Mo, A(G) = CB]Z(E) (B(L2(G)),

which preserves the natural involutions and the matrix orders on these two spaces
(see Theorem 3] and Theorem [L3)). In particular, if G is an abelian group, we can

write L(G) = Loo(G) and Lo (G) = L(G). In this case, (LO) can be expressed in
the following duality form:

A o O’,Loo(é) A
In §5, we show some commutant results for ©,(M(G)) and O(M,4A(G)) in

CB°(B(Ly(G))) and some double commutant results for ©,.(M(G)) and O(M4,A(G))
in CB(B(L2(G))), respectively. Finally, we show in §6 that for any amenable

group G, there is a natural completely isometric homomorphism of UCB(G)* into
CBE;G()G)B(L2(G))7 which can be regarded as a duality result of Neufang’s com-
pletely isometric representation theorem for LUC(G)*.

2. OPERATOR SPACES AND COMPLETELY BOUNDED MAPS

In this paper, we let X and Y be operator spaces and let CB(X,Y’) denote the
space of all completely bounded maps from X into Y. Then there exists a canonical
operator space matrix norm on CB(X,Y’) given by the identification

With this operator space structure, CB(B(H)) = CB(B(H),B(H)) is a completely
contractive Banach algebra since the composition multiplication ® oW on CB(B(H))
satisfies

@5 0 Wralllen < (1] llenll [ ra]ll o
for all [®;;] € M, (CB(B(H))) and [¥y] € M,(CB(B(H))). There is a canonical
involution on CB(B(H)) given by

D" (a) = P(a™)".
This involution is an isometrically conjugate automorphism on CB(B(H)) since
(PoW)* =% o U™,
Moreover, for each n € N there exists a natural order on the matrix space
M, (CB(B(H))) = CB(B(H), M, (B(H)))

given by the positive cone CB(CB(H), M,,(B(H)))* of all completely positive maps
from B(H) into M, (B(H)). This determines a matrix order on CB(B(H)).
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If M is a von Neumann on a Hilbert space H, we let
CBm(B(H)) =CBm(B(H),B(H))

denote the space of all completely bounded M-bimodule morphisms on B(H) and
let CBS,(B(H)) denote the space of all normal completely bounded M-bimodule
morphisms in CBa(B(H)). Then CB%,(B(H)) C CBm(B(H)) are completely con-
tractive Banach subalgebras of CB(B(H)) with a natural involution and a ma-
trix order inherited from CB(B(H)). In general, CB3(B(H)) # CBm(B(H)) (see
Hofmeier and Wittstock [25]). But the two spaces are equal in some special cases
(trivially when H is finite dimensional or when M = B(H)). Moreover, if G is
a discrete group, then ¢ (G) = o (G)’ is a finite atomic von Neumann algebra
standardly represented on ¢3(G). We can conclude from [25, Lemma 3.5] that

(2.2) CBY..(c)(B(f2(G))) = CBe (c)(B(£2(G)))-

Inspection of the proof shows that we do not need to assume ¢2(G) to be separable
(which is an assumption made throughout in [25] for the Hilbert spaces occurring).
Similarly, we have

(2.3) CBL () (B(La(G))) = CBL(ay(B(L2(G)))

for any compact group G since in this case, L(G) =[], My(x) ® Ly (r) and L(G)" =
[1: In(zx) ® M,y () are finite atomic von Neumann algebras standardly represented
on Lg( ) @ S2(xy» Where we let S2_, denote the Hilbert space of all n(m) x
n(m) Hilbert-Schmidt matrices and let n(w) denote the dimension of irreducible
representations 7 : G — M,y of G. Then we may obtain (2.3)) by considering the
central projections z,(z) = Inix) ® Iniry € L(G) N L(G) from Ly(G) onto Sfl(ﬂ)
Again, we do not have to assume the separability of Ls(G). The result is true
for arbitrary compact groups. Actually, the corresponding result holds for general
discrete Kac algebras.

It is important to note that the mapping spaces CB%,(B(H)) and CBm(B(H))
can be completely identified with the extended (or weak*) Haagerup tensor product
M’ @ M’ and the normal Haagerup tensor product M’ @7" M’ of M’, the
commutant of M in B(H), respectively. We assume that readers are familiar with
the Haagerup tensor product X ®"Y (for instance, see details in [L1], [35], and [37]).
The definition for the extended Haagerup tensor product X @°*Y can be found in
[8] and [12]. For the convenience of the reader, let us recall that the extended
Haagerup tensor norm of an element [u;;] € M, (X ®@°"Y) is defined by

lwighllen.n = [zl ar, , colllyrslliag .00}

where the infimum is taken over all possible representations [u;;] = [zx] © [yr;] with
(23] € My 1(X) and [yx;] € My, (Y). The index I in the above definition could
be an infinite set (or a countable set if X and Y are operator spaces on separable

Hilbert spaces). In this case, the notion [u;;] = [zix] © [yx;] means that
<[uzj f®g [Zf xzk yk] ‘|
kel

for all f € X* and g € Y*. For dual operator spaces X* and Y*, X* @ Y*
can be completely isometrically identified with the weak® Haagerup tensor prod-
uct X* @Y " Y* introduced by Blecher and Smith [2] via the following complete
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isometries:
XMy =(Xe"Y) =X @y
The normal Haagerup tensor product
X* @ y* = (X @ Y)*
for dual operator spaces was first introduced by Effros and Kishimoto [7]. It was

shown by Effros and Ruan [I2], §5] that the identity map on X* ® Y* extends to a
completely isometric inclusion

(24) X* ®eh Y* s X* ®oh Y*

and the image space X*®@°"Y* is completely contractively complemented in X*®@7"
Y* since the adjoint map (txgy)* of txgy : X ®" Y — X @Y induces a
completely contractive projection from X* @7 Y* onto X* @°" Y*.

Given u = >, ok @ yr € M’ @" M’, we can define a normal completely
bounded M-bimodule morphism

(2.5) T(u)(a) = Zxk ay (weak™ limit)
kel
on B(H). It was shown by Haagerup [20] (also see [9] and [40]) that

T:ueM @M — T(u) € CBY(B(H))

determines a weak*-weak® continuous completely isometric isomorphism from
M @" M" onto CB%,(B(H)) with respect to the completely contractive Banach
algebra structure on M’ ®°" M’ given by

(zRY)o(ZRY) — x& ® Jy.
Moreover, there is an isometric involution
(zoy) =y 0"

and a matrix order on M’ ®°" M’ given by the positive cones

My (M @" M) = {[uij] € Mp(M @ M)
[u;j] = 2* © x for some z = [zy;] € M, (M)}

It is easy to see that T preserves the involution and the matrix order on these
spaces.

We can similarly define a completely contractive Banach algebra, an isometric
involution, and a matrix order on the normal Haagerup tensor product M’ ®@7" M.
It was shown by Effros and Kishimoto [7] that there is a natural extension of T' to
a weak*-weak® continuous completely isometric isomorphism T from M’ @7" M’
onto CBa(B(H)). Moreover, T preserves the involution and the matrix order on
M @7" M" and CBa(B(H)). Therefore, we can completely identify these spaces

(2.6) M @ M = CBY(B(H)) and M’ @°" M’ = CBu(B(H))

via T and T, respectively. The complement of M’'®@" M’ in M’ @7" M’ exactly cor-
responds to the space C3%(B(H)) of all singular completely bounded M-bimodule
morphisms on B(H).

Finally we note that there is a commutant theorem for CB%,(B(H)) (respectively,
for CBpm(B(H))) in CB(B(H)). If V is a subspace of CB(B(H)), we let

Ve={UeCBBH)):Tod=>0V forall eV}
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denote the commutant of V in CB(B(H)). Then we have

(2.7) CB(B(H))® = CBm (B(H)),

and if, in addition, M is standardly represented on H, then

(2.8) CBMm(B(H))¢ =CB% (B(H)).

Combining (27)) and (28], we obtain the following double commutant theorem:
(2.9) CBM(B(H))* = CB34(B(H))

when M is standardly represented on H. (27 is due to Effros and Exel [0, §3];
[2.8) was proved by Hofmeier and Wittstock [25, Proposition 3.1 and Remark 4.3]
in case H is separable, and was extended to the non-separable situation by Magajna
[3T, §2]. We remark that, trivially, we also have

CBMm(B(H))* = CBm(B(H)).

3. REPRESENTATION OF M(G)

The measure algebra M(G) of all bounded complex-valued (Radon) measures
on G is a Banach algebra with the multiplication defined by

(3.1) pevis) = [ [ fstiants)an)

for every bounded continuous function f € Cy(G) and p,v € M(G). We may
identify Lq(G) with a norm closed ideal in M (G), which consists of all absolutely
continuous measures with respect to the Haar measure. It follows from the defini-
tion [B.) that there is an M (G)-bimodule action on L;(G). Taking the dual, we
obtain an M (G)-bimodule structure on Lo (G), which is defined by

for all h € L1(G). More precisely, we have

i f(s) = / F(st)du(t) = / Lof(t)du(t) and
(3.3) ¢ ¢
fon(t) = /G F(st)du(s) = /G rof(5)du(s).

where we let I f and r;f denote the left translation and right translation

Isf(t) = f(st) and r.f(s) = f(st).
Let A : G — B(L2(G)) denote the left reqular representation, and let p : G —
B(L2(G)) denote the right reqular representation defined by
A)E(t) = €(s71) and p(s)E(t) = As)'/&(1s)
for £ € Ly(G), s,t € G, and the Haar modular function A : G — (0, +00). We let

s.0.t

L(G) = span{\(s) : s € G} “ and R(G) = span{p(s) : s € G}

denote the left group von Neumann algebra and the right group von Neumann
algebra generated by A and p, respectively. Then £(G) and R(G) are standardly
represented on Lo(G) and satisfy the commutant relations

(3.4) L(G) =R(G) and R(G) = L(G).
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With the conjugate linear isometry

JE(s) = Al Re(s™)
on Ly(G) = Ly(L(G)), we obtain a natural *-anti-isomorphism
(3.5) At) € L(G) — )T = p(t™!) € R(G)
such that JL(G)J = R(G).
We obtain the following result known as Heisenberg’s theorem (see [13, Corollary

4.1.5] for a proof for general Kac algebras). We provide a simple proof here for the
convenience of the reader.

Lemma 3.1. Let G be a locally compact group. Then we have
(3.6) Lo(G)NR(G) =Cl1 = Lo (G) N L(G).
Taking the commutants, we obtain

(3.7) Loo(G) V L(G) = B(L2(G)) = Leo(G) V R(G),

where Loo(G) V L(G) denotes the von Neumann algebra generated by Loo(G) and
L(G), and Loo(G) V R(G) denotes the von Neumann algebra generated by Loo(G)
and R(G).

Proof. If f € Loo(G) NR(G), then we get
Isf=A(s)"fA(s) = f

for all s € G. This implies that f is a constant function on G and thus shows that
Loo(G) NR(G) = C1. Taking the commutant, we obtain

B(Ly(G)) = (Loo(G) NR(G)) = Loo(G) V L(G).
A similar argument shows that L., (G) N L(G) = C1 and

B(L2(G)) = (Loo(G) N L(G)) = Loo (G) V R(G).

O

A function f € Lo (G) is said to be left uniformly continuous if the left transla-
tion map s € G — I;f € Loo(G) is continuous. We note that in some books (such
as [23]) these functions are called right uniformly continuous since this definition is
equivalent to saying that we have |f(s) — f(¢)| < e for st~! in some neighborhood
of e. In this paper, let us stay with the first notion and let LUC(G) denote the
space of all bounded left uniformly continuous functions on G. Then it is easy to
see that

Co(G) - LUC( ) - Cb(G)

Since the right regular representation p : G — B(L2(G)) is strong operator
continuous, for any a € B(L2(G)) and &,n € Lao(G),

faen(t) = (p(t)ap(t)*E | n)

defines a bounded left uniformly continuous function on G with ||foenllee <
lla|l 11€]] Inll.  Actually, for fixed £, € Lo(G) the family of functions {f, ¢} is
equi-left uniformly continuous in a € Ball(B(L2(G))), i.e.

(3.8) s faem = lefagmlloo =0
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uniformly in ¢ when s — ¢ in G. For any p € M(G),

(€.1) € La(G) X La(G) /G (p()ap(t)*€ | n)du(t) € C

is a bounded sesquilinear form on Ls(G) x Ly(G) and thus determines a bounded
linear operator, which is denoted by 0,.(1)(a), on Ly(G) such that

(©r(n)(a)¢ | n) = /G<p(t)ap(t)*§ | m)dp(t).

We simply write

(3.9) 0.1)(0) = [ plt)ap(ty du(o).
In particular, if we let §; denote the Dirac measure at ¢ we can write
(3.10) ©,(8:)(a) = p(t)ap(t)*.

Then O, is a well-defined weak*-weak* continuous isometric homomorphism from
M(G) into B?(B(L2(@Q))). Moreover, for each pu € M(G), O,(u) is a completely
bounded £(G)-bimodule morphism on B(L2(G)) with ||©,. (1)l = 1O ()|l = ||l
(see [33]). If f € Loo(G), we have

0, (u)(f) = /G p(t) Fo(t) du(t) = - | € Loo(G).

This shows that ©, (1) maps Lo (G) into Loo(G). In particular, if f € LUC(G) (re-
spectively, f € Cp(G)), then ©,.(u)(f) = p- f is contained in LUC(G) (respectively,
in Cp(@)). In this case, we can consider the point evaluation

(311) (6. ©:0)(1) = - £(0) = [ FOau) = ).

Let us use CBZ’(LG?(G) (B(L2(@))) to denote the space of all normal completely
bounded £(G)-bimodule morphisms on B(L2(G)) which map Lo (G) into Lo (G),
and let us assume that M(G) = Co(G)* is equipped with the M AX operator
space matrix norm. We are now ready to state the following result of Stgrmer [45],
Ghahramani [I5], and Neufang (see [32] and [34]) for ©, in the completely isometric
form.

Theorem 3.2. The map O, is a weak-weak® continuous completely isometric
isomorphism from M(G) onto CBZ’(LG?(G) (B(L2(G))).

Proof. We only need to show that ©,. is onto and is completely isometric. Suppose
that we are given a map ® € CBZ’(LG";(G)(B(LQ(G))). Then we need to construct a
measure u € M(G) such that ©,(u) = ®. We carry out this construction in the
following three steps.

Step 1. We claim that ®(1) = al for some a € C. Since @ is Lo (G)-invariant,

we have ®(1) € Lo (G). Moreover since ® is an £(G)-bimodule morphism, we have
A(5)®(1) = D(A(s)) = B(1)A(s)
for all s € G. Tt follows from Lemma Bl that ®(1) € Lo.(G) N R(G) = C1.

Step 2. Construct a measure u € M(G). Since ® € CBZ’(LG?;’(G) (B(L2(G))), we

LO(f) = A(s)"@(F)A(s) = ®(A(s)" fA(s)) = (L f).

have
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This implies that for every f € LUC(G), ®(f) is a bounded left uniformly con-
tinuous function on G. Then, the point evaluation ®(f)(e) = (0., P(f)) defines a
bounded linear functional

F€Cy(G)— o(f)(e)eC

on Cy(G). By the Riesz representation theorem, we obtain a unique bounded
complex-valued measure u € M(G) which satisfies u(f) = ®(f)(e).
Step 3. We claim that ©,.(1) = ®. For any f € Cy(G), we have

/ flst)du(t) = u(lsf) = ®(ls f)(e)

s)"®(f)A(s)(e) = L:@(f)(e) = B(f)(s)-
This shows that ©,.(u)(f) = (f) for any f € Cy(G). Since Cp(G) is weak* dense
in Loo(G), the normality of O, (u) implies that ©,(u) = ® on Lo (G). We also have
©, (1) = ® on L(G) since for any s € G,
Or(1)(A(s)) = A(5)Or(1)(1) = A(5)@(1)(e) = A(s)®(1) = D(A(s))-

Since span{fA; : f € Loo(G), s € G} is actually a *-subalgebra of B(L2(Q)), its
o-weak closure is equal to the von Neumann algebra generated by L. (G) and
L(G) and thus equals B(Ly(G)) by Lemma [BIE therefore, we can conclude that
O, () = ® on B(L2(G)).

Since M(G) = Cy(G)* is equipped with the M AX operator space matrix norm,
©, is clearly a complete contraction. For any [u;;] € M, (M(G)) = M,(Co(G)*) =
CB(Cy(G), M,,), we can express the matrix norm of [u;;] as follows:

(3.12) Ilig) | ar, vy = sup{lllpis (Hllla, = f € Co(G), | flloe < 1}-

Then we can conclude from BII) and BI2]) that
10 (pij)lllev = sup{[[[Or (1is) (H)]l| a1, (coiey + f € ColG) I flloe < 1}
2 sup{||[(e, O (p1i5) (fD|az, = f € Co(G), [ flloo < 1}
= sup{[|[i; (N)]llaz, : f € Co(G), | flloo < 1} = [l[pis]l-
This shows that ©, is a completely isometric isomorphism from M (G) onto
o, Lo (G
CB G (B(LA(@)). O
Considering the complex conjugation on M (G), we obtain the following result.

Proposition 3.3. For any p € M(G), we have
O, (1) = O,(p)"
Therefore, p € M(G) is a real-valued measure if and only if ©,.(u) is a self-adjoint
map in CBZ’{&;)C(G)(B(LQ(G)))¢
Proof. Let p € M(G). For any a € B(L2(G)), we have
Or (1) (a) = O, (p)(a")" = (/ p(t)a”p(t)"dpu(t))"

G
= [ ptoastey i) = o.)(w.

This shows that & = p if and only if ©,(u)* = 6, (u). O
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It is worthy to note that ©, does not preserve the anti-automorphic involution
on M(G) given by
dp*(t) = dp(t™") = A1)~ da(t).
With this involution, ©,(u*) € CBZ’(LC;;(G)(B(LQ (G@))) can be expressed as

0, (i")(a) = /G p(t) ap(t)A () d(t).

For each n € N, there is a natural order on M, (M (G)) given by the positive
cone
M, (M(G))" = CB(Co(G), M) "
of all completely positive maps from Cy(G) into M,,. The following proposition

shows that ©,. also preserves the matrix orders on M (G) and CBZ’(LC;";’(G) (B(L2(G))).

Proposition 3.4. Given [p;;] € M, (M(G)), the following are equivalent:
(1) [wsj] is positive in M, (M(G))*;
(2) [©,(1ij)] is a completely positive map in
CBL '@ (B(La(G)), My (B(Ls(G))));
(3) [04(pi3)] is a positive map in CBE 5D (B(La(G)), Mo (B(La2(G)))).
Therefore, ©, preserves the matriz orders on M(G) and CBZ’(LC;;(G)(B(LQ(G))).

Proof. Tt is easy to verify that (1) = (2) = (3). Let us assume [®;;] = [©,(1;;)] is
a positive map in

Mo (CBE G O (B(La(G))) T = CBE 5 (B(La(@)), Mo (B(L2(G))))
It follows from (B.I1]) that for any positive function f € Co(G)T,
(15 ()] = [©r (niz) (f)(e)] = [®i5(f)(e)]

is a positive matrix in M,,. Then [u;;] is a positive and thus completely positive
map (by Stinespring [44]) from Cy(G) into M,. O

In the following, let us write RUC(G) for the space of right uniformly contin-
uous functions f € L (G), i.e., the translation map s € G — r.f € Lo(G) is
continuous. Note that these functions are called left uniformly continuous in [23];
cf. the discussion after Lemma [B.] above.

Lemma 3.5. For u € M(G), the following conditions are equivalent:
(2) ©,(u) maps Loo(G) into RUC(G);
(3) ©,(1) maps Loo(G) into Cy(G).

Proof. (1) = (2). This is well known. Indeed, if du = gdt with g € L, (G), then for
any f € Loo(G), one easily checks that ©,(u)(f) = (g * f) , where f(s) = f(s™1).
Hence, by [23, Theorem (20.16)], we have ©,.(u)(f) € RUC(G).

(2) = (3). Trivial.

(3) = (1). If G is a compact group, this is proved in [24, Theorem (35.13)].
However, inspection of the proof shows that compactness is only needed in order to
apply [23, Theorem (8.7)], which holds for all compactly generated, locally compact
groups G. This observation can be used to modify the proof given for [24, Theorem
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(35.13)] and obtain our assertion for all locally compact groups G. We shall now
outline this procedure as follows.

Assume towards a contradiction that u ¢ Lq(G). Write u = pq + s, where pg
is absolutely continuous and g is singular with respect to the Haar measure. By
assumption, we have u, # 0. Without loss of generality, we may assume ||us|| = 1.
Since pus € M(QG), there is a o-compact set Hy C G with us(H§) =0. Let H; C G
be an open o-compact subgroup of G. Define H to be the subgroup of G generated
by Hy and H;. Obviously, H is o-compact and open, since H° # &. Hence, H
is an open o-compact subgroup of G, in particular locally compact in the relative
topology.

Denote by Ay the restriction to H of our fixed left Haar measure, which defines
a left Haar measure on H. Define p/ = ps|s. Of course, we still have ||p/|| = 1, in
particular p/ # 0. Furthermore, it is easy to see that p’ is singular with respect to
A1¢. We can now, in order to finish the argument, follow the proof of [24, Theorem
(35.13)] with the group G replaced by our H and the measure v replaced by our '
(using, as mentioned above, [23, Theorem (8.7)] for the compactly generated group
H). O

As a consequence of Lemma [B.5] we can obtain the following theorem, which
characterizes the image space of ©,(L1(G)) in CBZ ) (B(L2(G)))-

Theorem 3.6. We have

@r(Ll(G)) _ CBZ’(%)"X’(G)’RUC(G))(B(Lg(G))) _ CBZ’((CI;S"’(G)’&(G))(B(Lg(G))),
where CBZ’(%;”(G)’RUC(G))(B(Lg(G))), resp. CBZ’(%)“’(G)’C”(G))(B(LQ(G))), denotes
the space of all normal completely bounded L(G)-bimodule morphisms which map
Loo(G) into RUC(G), resp. Cp(G).

Remark 3.7. Tt is known from abstract harmonic analysis that there is a (com-
pletely) isometric injection

M(G) — LUC(G)*.
Neufang proved in [33] that the map ©,. can be extended to a (completely) isometric
homomorphism O, from LUC(G)* into CBEE‘é)G)(B(Lg(G))) so that

©,(M(G)) = 6,(LUC(G)") N CB” (B(L2(G)))-

However, it is still left open whether the map O, is onto CBifé)c;) (B(L2(@))) for

general locally compact groups. The difficulty is of course the missing normality
for maps in CBZTG()G) (B(L2(@Q))). The techniques used in the proof of Theorem
fail in this case. In the special case when G is a compact group, this is true since

every continuous function on G is bounded and uniformly continuous, and thus
M(G) = LUC(G)*. Tt follows from (23] that
(3.13)

O,(LUC(G)) = ©,(M(G)) = CB 57V (B(La(G))) = CBL )" (B(Lo(G)).
4. REPRESENTATION OF M ,A(G)

We let A(G) denote the Fourier algebra of G, which consists of all coefficient
functions

(4.1) P(s) = (A(s)E [ m)
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of the left regular representation A. It was shown by Eymard [I4] that A(G) with
the pointwise multiplication and norm

¥l aey = mELEN Inll = &(s) = Als)E [ )}

is a commutative Banach algebra. Moreover, A(G) can be isometrically identified
with the predual L£(G). of £(G) and thus has a canonical operator space ma-
trix norm with which A(G) is a completely contractive Banach algebra (see [39]).
The multiplication on A(G) induces a commutative completely contractive A(G)-
bimodule structure (w -z, w') = (z, v’ - w) on L(G).

A function ¢ : G — C is called a multiplier of A(G) if the induced (pointwise)
multiplication map

my (1) = @i
maps A(G) into A(G). It is known that m,, is automatically bounded on A(G). A
multiplier ¢ is completely bounded if ||my|| < co. We let My A(G) denote the
space of all completely bounded multipliers of A(G). Then M., A(G) is a completely
contractive Banach subalgebra of CB(A(G)). The complex conjugation on My, A(G)
corresponds to the involution on CB(A(G)). Taking the Banach space dual, we
obtain the completely isometric, but anti-isomorphic identification CB(A(G)) =
CB?(L(@G)) such that ¢ € M, A(G) if and only if the adjoint map
M, = (my)* : A(s) € L(G) — p(s)A(s) € L(G)

is a weak* continuous completely bounded map on £(G). This provides us with a
completely isometrically isomorphic identification of M., A(G) with the subalgebra
CB () (L(G))) of all weak™ continuous completely bounded A(G)-bimodule maps

on £(@), and thus induces a natural matrix order on M, A(G) given by the positive
cones

M, (M A(G)T = {lwis] € Mp (M A(G))
such that [M,, ] : L(G) — M, (L(G)) is completely positive}.
Using an (unpublished) result of Gilbert [18], Bozejko and Fendler [4] showed
that M, A(G) is isometrically isomorphic to By(G), the space of all Herz-Schur
multipliers on G. This shows that a function ¢ : G — C is contained in M, A(G)

with [[¢]|ar,, a(e) < 1if and only if there exist a Hilbert space H and two bounded
continuous maps &,7 : G — H such that

(4.2) p(s7t) = (n(t) | £(s)) = &(s)™n(t)
and
sup{[[€(s) I} sup{[In(®)llm} < 1.
If we replace £(s) and n(t) by £(s) = £(s71) and #(t) = n(t~ 1), then @2) can be
expressed as
(4.3) p(st™h) = ((t) | £(s)) = &(s)*n(1).

In this case, we have the same norm control

sup{[[¢(s)llr} sup{[ln(t)[} < 1.

Haagerup gave a complete argument (including a proof of Gilbert’s result) in [21
Appendix], and Jolissaint [26] provided a very short elegant proof of this result
by using the representation theorem for completely bounded maps. The matricial
form of (3] for discrete groups can be found in Pisier [37, Theorem 8.3]. Spronk
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showed in [43], Theorem 5.3] that such a matricial form still holds for general locally
compact groups. We state their result in the following lemma, which can be proved

by simply applying Jolissaint’s representation argument to the normal completely
bounded map [M,, ] : L(G) — M,(L(G)) € M, (B(L2(G))).

Lemma 4.1. Let ¢;; : G — C be functions on G with 1 <+,5 < n. The following
are equivalent:

(1) [pij] € Mn(MayA(G)) with [|[i]lar, (v ac)) < 15
(2) there exist a Hilbert space H and bounded continuous maps &,n; : G — H
such that

[oij (st™)] = [(n; (8) | &(s))] = [&s(s)"n; (2)]

and

sup{[[[§1(s) - - &n )l cn e} sup{ll [ (8) - -0 ()] I3 (cn y } < 1.

Moreover, [pi;] € M,(MaA(G))" if and only if we can choose n; = &; for all
j=1,-,n.
In all of these cases, the functions ¢;; are automatically continuous.

A map £ : G — H is called weakly continuous if s € G — (£(s) | n) = n*&(s) is
continuous for allp € H. A continuous Schur multiplier is a functionu : GXxG — C

such that there exist a Hilbert space and bounded weakly continuous maps &,7 :
G — H with

u(s,t) = (n(t) | £(s)) =& (s)n(?).
Given a function ¢ : G — C, we let u, : G X G — C denote the function defined by

up(s,t) = p(st ™).

Lemma ATl shows that for every ¢ € My, A(G), uy is a continuous Schur multiplier.
Let V*(G) denote the space of all continuous Schur multipliers on G' x G. Then
V*(G) has a canonical operator space matrix norm given by

ITwij]llaz, (ve(ay) = inf{ sup{|[[§1(s) - - - En(8)]ll BCm 1) }
sup{[|[n(t) - - ()]l Bcr 1) } }5

where the infimum is taken over all representations [u;;(s,t)] = [£/(s)n;(¢)]. It
was shown by Spronk [43, Proposition 3.6] that we may completely isometrically
identify V?(G) with C,(G) @°" C,(G). To see this, let us assume that [u;;] is a
matrix element in M, (V?(G)) with norm [|[u;]||ar, (v+(c)) < 1. Then there exist
bounded weakly continuous maps §;,7; : G — H such that

[wij(s,t)] = [& (5)n;(1)]
and
sup{[|[§1(s) -~ &n ()]l Bcn, i)} sup{l[m (1) - - (O]l B(cn iy } < 1.

We may fix an orthonormal basis {h } ey for the Hilbert space H and thus identify
H with ¢5(I). In this case the identity operator 1y on H can be expressed as
g = her he ® hy. Let us define

vik(s) = (hw | &i(s)) = & (s)hy, and wy;(t) = (1;(t) | hi) = hin; (2)-
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These are continuous functions in Cy(G) such that [v;] € M, ;1(Cy(G)) and [wy;] €
M., (Cy(@)) with

[virllaz, s 0oy = sup{ll[En(s) - - - & ()] IB(ea().cm) }
= sup{||[£1(s) - - - & (8)]llB(Cr o)

and

wisllay . coiayy = sup{l[ma(t) - (O]l Bccr e (1))
= sup{{[|[n1(t) - - ()]l B, 1) }-
It follows that we can express

(4.4) [uij] = [vik] © [wis] € M (Cy(G) @°" Cu(G))

with norm ||[wi;]l[ar,, (0, (yer (@) < 1. We note that the expression of [u]
in (£4) is well defined and is independent of the choice of an orthonormal basis
{hk}rer. The converse is obvious since we may simply take H = M; 1 = {o(1).

Motivated by this, Spronk also considered measurable Schur multipliers in [42]
by letting

V®(G,m) = Loo(G) " Loo(G),

i.e., a function u : G x G — C is a measurable Schur multiplier if and only if u
can be identified with an element in L. (G) ®*" Lo (G). The advantage of this
approach is that we may apply the completely isometric isomorphism

T :u€ Loo(G) ®" Loo(G) > T(u) € CB]_ () (B(L2(G)))

defined in (2.3).

A continuous (respectively, measurable) Schur multiplier w is right invariant if
for every g € G,

T!)u(sv t) - U(Sg, tg) = U(S, t)

for all (s,t) € G x G (respectively, for almost every (s,t) € G x G). It is easy
to see that for any ¢ € M, A(G), the corresponding Schur multiplier w,, is right
invariant. If we let V2 (G) and V22 (G, m) denote the spaces of all right invariant
continuous Schur multipliers and right invariant measurable Schur multipliers on
G x @G, respectively, we obtain the following result, in which the equivalence of (1),
(2) and (2') has been observed by Spronk [43, Theorem 5.3]. We provide a very
different, but much simpler proof here.

Theorem 4.2. Let u;j € V°(G,m) = Loo(G) @ Lo (G) with 1 < 4,5 <n. Then
the following are equivalent:
(1) there exists [p;;] € My(MpA(G)) such that ||[wi]llar, (maac)) < 1 and
[Uij} = [u%j];
(2) [uis] € Ma(Vigy (G)) with [|[ui]ll s, vp, ay) < 15
(2) [uis] € Mn(Vigo (G, m)) with [|[ui]la,, (vigs (6.my) < 15
[

(3) [T(uiy)] € Mo (CBTEE) (B(La(G)))) with [[[T ()]l < 1.

Proof. (1) = (2) is an immediate consequence of Lemma [L1] and (2) = (2/) is
obvious since we have the completely isometric injections

Cy(G) @ Cy(G) — Loo(G) @M Loo(G) and thus V2 (G) — Vi2(G, m).

(2') = (3) Let us assume that [u;;] = [>,c; vik ® wg;] is a contractive element
in M, (VX (G,m)). Then T, ([ui;]) = [T'(us5)] is a normal completely contractive

nv
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Lo (G)-bimodule morphism contained in M, (CB7,__ () (B(L2(G)))). For any s € G
and [¢;] € L2(G)™, we have

[T'(uiz ) AN G] (1) = [Z(UikA( 8)wi;C;)( 1 lz vit (Hywe; (s )¢ (57 ')
kel kel
= [ugj (t, 57 (MG (1)] = [uij (s, e)M()¢5] (£)-

This shows that T, ([ui;])(A(s)) = [wi;(s,e)A(s)] € M,(L(G)). By the normality
of T, ([ui;]), we can conclude that T}, ([u;;]) maps £(G) into M, (L(G)). Therefore,
To([uis]) € Mo(CBTEE) (B(La(@)))).

(3) = (1) Let us assume (3). Since T is a complete isometry from Lo.(G) @°"
Lo (G) onto CBY _ ()(B(L2(G))), we may assume that [u;;] = [Y ke Vik ® wiy] is
a contractive element in M, (Lo (G) ®@°" Loo(G)). As we calculated above,

Zvik)\(s)wkjl = lz Vik (lslwkj))\(s)]

kel kel

[T(ui;)(A(s))] =

for any s € G. Since Y, ;v (Is—1wyj) € Loo(G) and 37, vk (ls-1wry) =
T'(uij)(A(s))A(s)" € L(G), we can conclude from LemmaB.Ilthat ), - vir (ls-1wp;)
are scalar multiples of identity contained in Lo (G)NL(G) = C1. We let ¢;; : G —
C be functions determined by

(4.5) Zvik (ls—1wpj) = piz(s)L.
kel

Then these functions ¢;; satisfy

[T(uij)(A(s))] = [gij (s)A(s)]-
Since T'(u;;), restricted to L(G), is a normal completely bounded map on £(G), its
preadjoint determines a completely bounded map on A(G). Therefore, ¢;; defines
a completely bounded multiplier on A(G) such that T'(ui;)|z(a) = My,,. 1t follows
from (43) that we have

wi;(s,1) szk ) wy;(t) = Zvik(s) (lis—rwyj)(s) = @ij(st_l).
kel kel
This completes the proof. (Il

Theorem 4.3. We have the completely isometric isomorphisms

(4.6) M A(G) = Vih, (G) = Vi (G, m) = B8 (B(La(@))),

mnv mv

which preserve the natural involutions and matriz orders on these completely con-
tractive Banach algebras.

In particular, we may completely identify Mo, A(G) with CBZLE? (B(L2(@Q))) via

the map 6 given by
O(p) = T(uy).
Proof. Let us first note that for any
(@] € M (CBTE(G) (B(L2(G))) € Ma(CBY (6 (B(L2(G))),

there exists [ui;] = [>jc; vik @ wij| € My (Loo(G) @°" Lo (G)) such that [@45] =
[T'(ui;)]. Then we may apply Lemma[£.]] and Theorem .2 to obtain the result. O
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It is known from work of Haagerup and Kraus [22] that M., A(G) is a dual space
with a predual Q(G), which is the completion of L;(G) under the norm induced
from M, A(G)*, i.e., we may define the Q(G)-norm

1 llawe = sup{‘ / f(t)w(t)dt‘ o € MaAG), lpllmncc) < 1}

for any f € L;(G). We may obtain a canonical operator space matrix norm on
Q(G) such that M A(G) is completely isometric to the operator dual of Q(G) (see
Kraus and Ruan [27]). Since the co-involution r : f € Loo(G) — f € Loo(G) is a
normal unital *-isomorphism on L., (G), its preadjoint

re(f)(8) = FIETHART)

defines an isometric anti-isomorphism on L;(G). Let m denote the convolution
multiplication on the convolution algebra L;i(G). The following is similar to a
result of Spronk [43, Theorem 6.5].

Proposition 4.4. The map
mo (id® k) : f®g € Li1(G) ® L1(G) — [ xku(g) € L1(G)

extends to a complete quotient map, which is denoted by Miggy., from Li(G) @"
Ly (G) onto Q(G).

Proof. Let us first recall (from the discussion above) that
Tg=T"'o O:p € MypA(G) = uy € Loo(G) @ Lo (G)

defines a completely isometric injection from M., A(G) into Lo (G) @ Lo (G). For
any p € M, A(G) and f,h € L1(G), we have

(o, mo (id® k,)(f ® h)) / / F(s)ra (h) (s~ 0)dsdt

:/ / o(t)f(s)h(t ™ s)A(t™ s)dsdt

// ©(sg™ 1) f(s)h(g)dsdg (with g =t 1s)
= (g, f ® h) = (T (), f @ R).

This shows that m o (id ® k) is equal to F’é|L1(G)®L1(G), the restriction of I'y to
L1(G)® L1 (@), and thus extends to a complete quotient map from L, (G) ®" L (G)
onto Q(G). O

Theorem 4.5. O is a weak*-weak® continuous completely isometric isomorphism

from M A(G) onto CBZﬁ((g) (B(L2(Q))).

Proof. From Propositionf4], we see that I'g is just the adjoint of m;qg,, and thus is
weak*-weak* continuous from M, A(G) into Lo (G)®°" Lo (G). Since T is a weak*-
weak* continuous completely isometric isomorphism from L..(G) ®°" L., (G) onto
CBT __(c)(B(L2(G))), we can conclude that 6= Tol'y is a weak™-weak™ continuous

completely isometric isomorphism from M, A(G) onto CB’(r A G) (B(LQ(G))). d
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We have seen from Theorem B.2land Theorem 5 that M (G) and M, A(G)) can
be completely isometrically identified as the completely contractive Banach algebras

0, (M(G)) = By “ (B(La(G))) and O(MaA(G)) = CBTZ(E (B(Lx(G))) on
B(L2(G)), respectively. Moreover, we may easily obtain the following result.

Corollary 4.6. We have ©,(M(G)) N O(M4pA(G)) = Cidpr,c))-

Proof. Let ® € ©,(M(G)) N O(M4A(G)). We have
(f) = fe(1) =2(1)f and D(A(s)) = A(s)2(1) = B(1)A(s)

for all f € Loo(G) and s € G. Since span{fAs;: [ € Lo(G),s € G} is o-weakly
dense in B(L3(G)) (cf. step 3 in the proof of Theorem B.2)), the normality of @
implies that

O(x) =2zP(1) = 2(1)x
for all 2 € B(L2(G)). Therefore, ® is a scalar multiple of idp(r,(q))- O

Let C*(G) denote the full group C*-algebra of G and B(G) = C*(G)* the
Fourier-Stieltjes algebra of G. The (non-degenerate) universal representation 7, :
Li(G) — C*(G) induces a complete contraction from Q(G) into C*(G). The ad-
joint map (m,)* of m, is exactly the canonical inclusion of B(G) into M, A(G). It is
known (see Bozejko [3] and Losert [30]) that a locally compact group G is amenable
if and only if M, A(G) = B(G) (or equivalently, Q(G) = C*(G) = C5(G)). Then
the following corollary is an immediate consequence of Proposition [£.4], which ex-
tends the result of Pisier [36] for discrete groups.

Corollary 4.7. A locally compact group G is amenable if and only if m, © Midgs,
defines a complete quotient map from L1 (G)®" L1(G) onto C*(G) (or equivalently,
A\ O Mider, = Mrgrox defines a complete quotient map from Li(G) @" Ly (G) onto
C%(Q), where & is the co-involution &(A(s)) = A(s™') on C3(G)).

We note that the right regular representation p is unitarily equivalent to the left
regular representation \. More precisely, there exists a self-adjoint unitary operator
V on Ly(G) defined by

1

VE(s) =E(s7HA(s™H)z
such that p(s) = V*A(s)V. Using this unitary equivalence, we may completely
isometrically identify R(G) with £(G) and thus completely isometrically identify
the operator predual R(G). of R(G) with the Fourier algebra A(G). Recall that
T : R(G)RMR(G) — CBZ(g)(B(L2(G))), defined in ([Z3), is a completely isometric
isomorphism. Then

Lo, (1) =T"" 0O, (1) = /G,O(t) ® p(t)*dpu(t)

defines a weak*-weak* continuous completely isometric homomorphism I'g from

M(G) into R(G) @°" R(G). We may obtain the following duality result to Propo-

sition 441

Proposition 4.8. The preadjoint of I'e, determines a complete quotient map
Mugro, t ¢ @Y € A(G) @" A(G) — ¢y € Co(G)

from A(G) @" A(G) onto Cy(G).
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Proof. Since Cy(G) is a commutative C*-algebra, the canonical inclusion ¢ : A(G) —
Co(G) and the co-involution , restricted to Co(G), are complete contractions.
Then
mo(t®@rou): p®Y € AG)@" A(G) = ¢y € Co(G)

extends to a complete contraction m,g.o, from A(G) @" A(G) into Co(G). It is
routine to verify that m,gro, = (I'e,.)«. Therefore, this map is a complete quotient
map from A(G) @" A(G) onto Cy(G). O
Remark 4.9. In Theorem B.6l we characterized the image space 0,(L1(G)) in
CBZ () (B(L2(G))). It is an intriguing question to ask whether we can obtain an

analogous characterization for ©(A(G)) in CBT_ (c)(B(L2(G))). To consider this
question, we need to assume G to be an amenable group. This allows us to com-
pletely isometrically identify A(G) with a norm closed ideal in B(G) = M4 A(G).
Since Cy(G) = MCy(G) is the multiplier C*-algebra of Cy(G), it is natural to
conjecture that we have

O(A(G)) = B (G N (BlLa()),

where M C%(G) is the multiplier C*-algebra of the reduced group C*-algebra C5(G).

5. COMMUTANT THEOREMS

It is known from Theorem B2l that we have 0,.(M(G)) = CBZ’(LG";(G) (B(L2(G))).-
The following theorem shows that this space can be identified with the commutant
of O(Max A(G)) in CBZ (6 (B(L2(G)))-

Theorem 5.1. We have
6,(M(G)) = O(Moy A(G))° N CB ) (B(L2(G))):
Proof. Let us first show that for every u € M(G), ©,(u) is contained in

O(MaA(G))* = T(Vigg (G, m))".

inv

Given any u =Y, ;v @ wy € Viou (G, m), we have

0. ((T(w(a) = | o0 (Z kwk> p(t)*du(t)

kel

:L(Zp(t)vkawk/’(t)*> dpu(t)

kel

:/G(Z(nvk)(p(t)ap(t)*)(rtwk)> du(t)

kel

=St [ (o100t 1)) )

kel
= T(riu)(©r(p)(a)) = T(u)(Or(n)(a))
for all a € B(L2(G)). This shows that
0,(M(G)) € O(MupA(G))* N CBE () (B(L2(G))).

Now assume that ® is a map contained in ©(MqA(G))¢ N CBZ () (B(L2(G))).
We claim that ®(f) € Loo(G) for all f € Loo(G). To see this, let us first fix an
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orthonormal basis {hi}rer of La(G). For any £,n € La(G), ¥(s) = £*A(s)n is an
element in A(G) C M, A(G), and we can write

Uqpy = ka X wg € LOO(G) ®6h LOO(G)
kel
with vy (s) = €*A(s)hy and wy(t) = hiA(t~1)n. For any f € Lo(G) and s,t € G,

we have

p(8)T (uy)(f)p(t) = p(s) <Z kawk> p(t)

kel
= Z(Tsvk)(rsf)(""swk Z¢
kel kel
This implies that

(5.1) a1 (uy)(f)y = v(e)zfy
for all z,y € R(G). Since ¢ € CBZ () (B(L2(G))), there exists 2 =3, ;2; ®y; €
R(G) ®°* R(G) such that

a) = Z x;jay;

for all @ € B(Ly(G)). It follows from (Ea)eihat

(5.2) (T (uy)(f)) = Z]%T(w)(f)yj = 1U(e)®(f).

In particular, if we let ;,(s) = h;;(s)hk, then

59 bin(e)@(f) = (T (uy,,)(f) = T(uy,,)( ];% Fbji

= [hi AR ](11 @ @(f))[1GA"hi].
We may regard
A= [Vig] : s € G — [Whir(s)] = [h]A(s)hi] € M (C)

as an element in M;(Cy(G)). Then A defined by

As) = [b(s™ )] = [hiA(s™
is also an element in M;(Cy(G)) such that

M =1;®1= I\ € M (Cy(Q)).
Since ¥k (€) = dir, we can conclude from (B3] that

11 @ @(f) = [ir(€)2(f)] = (W} M| (11 © @(£)[A; A" hi] = (11 @ D))
This shows that
A1 @ @(f)) = (11 @ 2(f))A.

Using the orthonormal basis {hj}rer, we may express elements & and 7 € La(G)

by scalar vectors [ax] and [Bx] in fo(1), i.e. we can write & = >, ; aphy and
N = > per Behr. Then we can write

U(s) =N =Y ahINs)hiB; =Y anbij(s

B,j€l i,jel
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From this we can conclude that

PO(f) = []A(1r @ ©(f))[8;] = @] (1r @ @(F))A[5;] = (f)y-

This shows that ®(f) commutes with all functions in A(G) and thus commutes
s.o.t

with all functions in L. (G) = A(G) C B(13(Q)). Therefore, ®(f) is contained
in Loo(G) = Loo(G). O

R Correspondingly, we may obtain the following theorem which shows that
O(MnpA(G)) can  be identified with the commutant of ©,(M(G)) in
CBL._ (c)(B(L2(G))).

Theorem 5.2. We have
O(MuA(G)) = ©,(M(G))* NCBT,_cy(B(L2(G)).

Proof. Let us consider T(V;22 (G, m)). Since T is a completely isometric isomor-

phism from L., (G) ®*" L. (G) onto CB7 __(c)(B(L2(G))), it suffices to show that
an element u = >, .; vk @ Wy € Loo(G) @M Loo(G) is contained in Vg2 (G, m) if

and only if T'(u) 00, (u) = O, () oT(u) for all u € M(G). Let us first consider the
Dirac measures ¢;. Given any a € B(Ly(G)), we have

T(u)(©,(8:)(a)) = > vp(t)ap(t) wy = Y _ plt)(ri-1vp)a(ri-1wi)p(t)”

kel kel
= 0:(0:)(T(r-1u)(a)).
Hence u € V22 (G, m) if and only if T'(u) 0 ©,(6:) = 6,.(6;) o T(u) for all t € G.

mv
Moreover, since

0. (ia) = |

and T'(u) is a normal map, we can conclude that v € V.22 (G,m) if and only if

T(u)o0O,(u) =0, (1) o T'(u) for all u € M(G). O

p(t)ap(t)*du(t) = /G 0, (6)(a)dp(t)

Remark 5.3. Let ©, : LUC(G)* — CBZE’Z,()G) (L2(G))) be the completely isometric
homomorphism discussed in Remark B It was shown by Neufang [32] Theo-
rem 3.5.3] that, for non-compact, second countable groups G, the commutant of
O, (LUC(G)*) in CB(B(L2(@))) is contained in CB (B(L2(G))). Then we can easily
conclude from Theorem that in this case,

O(M4A(G)) = 6,.(LUC(G)* )N CBL.. (c)(B(L2(G))).
Theorem 5.4. We have
O(MapA(G)) = O(MpA(G))™
or equivalently,
CBL G (B(La(G)) = CBTEG) (B(La(G)))°
Proof. Combining Theorem 3] and Theorem (5.2, we obtain

CBT (G (B(Lo(@)) = (©-(M(G))* N CBY ) (B(L2(G))) ) -
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Taking the double commutant, we get
CBY A (B(L2(G))) = (0, (M(G))° NCBY_ 6 (B(L2(G))))
C O,(M(G))** = 6,.(M(G))".
Moreover, we have
CBT A (B(La(G)))* C CBY_ () (B(La(G)))* = CBY_ (5 (B(La(G)))
by 29). The above argument shows that
CBT O (B(La(G)))* € 0,(M(G))*NCBY,_ () (B(L2(G))) = CBT (&) (B(La(G))).
This completes the proof. ([

Similarly, we can apply Theorem and Theorem [5.1] to obtain the following
double commutant theorem, which was first proved in Neufang [32] by using a
different argument (in a more general setting). We leave the details to the reader.

Theorem 5.5. We have

or equivalently,

CB G (B(La()) = B (B(La(@))

Remark 5.6. As we discussed in (LII), there is an isometric isomorphism & from
the measure M (G) into the space B(Loo(G)) of all bounded maps on Lo (G). Re-
stricting ® to L;(G), Ghahramani and Lau proved in [16, Theorem 5.1] that the
bicommutant of ®(L1(G)) in B(Lw(G)) is equal to ®(M(G)). Motivated by this
result, it is natural to conjecture that

0, (L1(G))* = 6, (M(G)).
Since ©,.(L1(G)) € 6,(M(Q)), it follows from Theorem [5.5 that
O, (L1(G))™ € 6,(M(G))* = 6,(M(G)).

However, we cannot prove the equality at this moment. Considering the duality, it
is also natural to conjecture that for amenable groups GG, we have

O(A(G))™ = O(M4A(G)).

6. REPRESENTATION OF UCB(G)*

Let us first recall from §4 that there is a commutative completely contractive
A(G)-bimodule structure on £(G) given by (w -z, w') = (z, v’ - w). We let A(G) -

LG) ={w-z: we AG),xz € L(G)}, and we define UCB(G) to be the norm

closure of A(G)-L(G) in L(G). Then UCB(G) is a linear subspace of L(G) (see [19]

footnote (2) on page 373]), and elements in UCB(G) are called bounded uniformly
continuous linear functionals on G. Moreover, it was shown by Lau [29] that

UCB(QG) is a C*-subalgebra of £(G), which contains the reduced group C*-algebra

C5(G), and we have UCB(G) = C5(G) when G is a discrete group. In particular,
if G is an amenable group, A(G) - L(G) is automatically norm closed in £(G) and

we have the equality UCB(G) = A(G) - L(G) (see [19]).
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The dual space UCB(G)* is a Banach algebra with the multiplication given by

(6.1) (momn, x) = (m, nox)
for m,n € UCB(G)* and z € UCB(G), where n oz defined by
(6.2) (nozx,w)=(n,w-z) (Ywe A(Q))

is an operator contained in UCB(G). Since we need to use the right action w - =
(id ® w)T'(x) on UCB(G) (especially, later on in Lemma 6.1 and Theorem [6.2), we
use this diamond product ¢ to distinguish it from the first Arens’ product o defined
by the left action z-w = (wid)[(z). Given any n € UCB(G)*, there exists a norm
preserving extension 7 € £(G)*. We may find a net of elements n, € A(G) such
that ||ne]| < ||n|| and ne(z) — 7(z) for all x € L(G). It follows that n,(z) — n(z)

for all x € UCB(G). If m is another element in UCB(G)*, we let mg € A(G) such

that mg(x) — m(x) for all x € UCB(G). Then we can write ([G.I) as

(6.3) (mon, x) = (m,nox) = lién<mﬁ, nox) = lién<n, mg-x) = lién lim(ny-mg, x).
«

On the other hand, the first Arens’ product m o n can be expressed as

(mom, ) =(m,nox) = lién(m,g, nox) = lién<n, xomg) = 1ig111m<m5 ‘Mg, T).
«

Since A(G) is a commutative Banach algebra, we atually have m o n = mon for
m,n € UCB(G)*. However, the two multiplications are different on A** for general
non-commutative completely contractive Banach algebras A.

It is easy to see from (6.3) that UC B(G)* with the canonical dual operator space
structure is a completely contractive Banach algebra. In general, UCB (G’)* is not
necessarily commutative since Lau has proved in [29] Theorem 5.5] that for any
amenable group G, UCB (G')* is commutative if and only if G is discrete. If G is
an amenable group, then M, A(G) = B(G) is completely isometrically isomorphic
to a Banach subalgebra of UCB(G)* and UCB(G)* acts naturally as the duality
of LUC(G)*. Our goal of this section is to study the representation theorem for
UCB(G)*.

To do this, we need to recall some useful notions from Kac algebras (see [13] for
details). It is known from the theory of Kac algebras that for any locally compact
group G, there is an important fundamental unitary operator W on Lo(G X G)
defined by W{(s,t) = ((s, st) for all {( € Lo(G x G). The operator W is contained

in Lo (G)®L(G) and satisfies the pentagonal relation
(6.4) WasWisWiz = Wi2Was,

where we let Wi = W ® 1, Wos =1Q@ W and Wiz = (0 ® 1)Wasz(o ® 1), and we
let o be the flip map o((s,t) = ((t,s) on La(G x G). Given any f € L1(G), we can
write
A(f) = (f @id, W) and  &(A(f)) = (f @ id, W)

by using the right slice map (f @ id,z @ y) = f(z)y from L (G)RL(G) into L(G)
induced by f.

We denote by W = ocW+*o the dual fundamental unitary operator of W. Then
W also satisfies the pentagonal relation (G4]), and we may define a normal unital
completely isometric *-homomorphism

(6.5) [(z)=WA®z)W*
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from B(Ly(G)) into B(Ly(G))@B(L2(G)). The pentagonal relation implies that T’
is co-associative, i.e., it satisfies

(6.6) [T ®id)ol = (id®T)ol.
The preadjoint of I' defines an associative completely contractive multiplication
(6.7) mp =yt T(La(G)) x T(L2(G)) — T(La(G))

on T(Ly(G)) = B(Ly(G))s«. This also determines a completely contractive
7T (L2(@))-bimodule action

w-r=(idow(z)) and z-w= (w®id,I'(z))
on B(Ly(G)). If we restrict T’ to £(G), we obtain the co-multiplication
D(A(s)) = A(s) @ A(s)
on £(G) and my induces the completely contractive multiplication on A(G).

Lemma 6.1. Let G be an amenable group. For any w € T (L2(G)) and x €

B(L2(@G)), w-x is an operator contained in UCB(G).
(1) The map
S:wezeT(LyG)®B(Ly(G)) = w2 = (id®w,I(z)) € UCB(G)

extends to a complete quotient from the operator projective tensor product
T(L2(GQ))®B(La(G)) onto UCB(G).

(2) The corresponding map
Sceyw®r e AG)®LG) ww-r=(id® w,I'(z)) € UCB(G)
extends to a complete quotient from the operator projective tensor product

A(G)&L(G) onto UCB(G).

Proof. Let us first prove (1). Assume that w = we ,, such that £ and 7 are vectors in
C.(GQ) C Lo(G) with supports contained in a compact, symmetric set C. Since G
is an amenable group, there exists a net of non-empty compact sets K, such that

(6.8) / X (5) = Xrea (D] dE _ pa(s ' KalKs)
G Ho(Ka) 1o (Ka)
uniformly for s € C'. Then &, = uc(;(a)% XK., is a net of unit vectors in Ls(G) such
that
/ Ea(st)éa(t)dt — 1
G

uniformly for s € C by (6.8), and thus

[W*(€a ®€) — (La @OI? = W(E® &) — (E® &)
=2/l¢]|? — 2Re (W(E® &) | (€@ &a)))

=24el? = 2me [ 16 ([ lstiattar) as)
=24l =2 [ 16 ([ alsngaoar) as) —o
This shows that

(6.9) [W*(¢a ®€) — (€a @ E)|| — 0.
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Similarly, we can prove that
(6.10) IW*(€a @) = (€a@)|* — 0.

Let 2 be an arbitrary operator in B(Ly(@G)). Since W € £(G)RLaso(G), it is easy
to see that
a=wey-r=(WAQz)W*(id®¢) | (id®n))
is an operator contained in £(G). Using the pentagonal rule, we can write

we, 0 o= (WA ®aW*(id® &) | (id® &)
= (WiaWasWih(1® 1@ 2)WiaWeyWin(id @ &, @ €) | (id @ &4 @ 1))
= (WasWi3(1® 1@ 2)WisWis(id ® &0 @ &) | (id @ &a ® 1)),
which clearly converges to

a=(WIe)W*(idof) | (idon)) = (Wiz(101ez)Wis(id@E,®E) | (ido&on))

in norm by (@9) and (@I0). This shows that a = we, -« € UCB(G). Since

C:(G) is norm dense in Ly(G), we get we, -« € UCB(G) for all £, € Lo(G)
and © € B(Ly(G)). Moreover, since every w in 7T (L2(G)) can be expressed as
a norm convergent series w = Y. we, ». in T(La(G)), we can conclude that

w-x € UCB(G).
It is easy to see that the map

S:w@zeT(LyR) @B(Ly(F)) = w-z = (idw,T'(z)) € UCB(G)
extends to a complete contraction from 7 (Ly(G))QB(Ly(G)) into UCB(G). More-

over, for each n € N, M,,(UCB(G)) is a commutative completely contractive A(G)-
bimodule with the module structure given by w - [z;;] = [w - 2;;]. Using Herz’s idea

(see [19, footnote (2) on page 373]), it is easy to show that A(G) - M, (UCB(G)) =

M, (UCB(Q)). For any [z;;] € M,(UCB(G)) with ||[z;;]]| < 1, we may apply Co-
hen’s factorization theorem (since A(G) has a contractive approximate identity) to

find w € A(G) with |[w|| < 1 and [#;;] € M,,(UCB(G)) with ||[#;]]| < 1 such that
[ij] = w- [#i5] = [S(w @ Z45)].
This shows that S is a complete quotient map from 7 (Ly(G))®B(L2(G)) onto
UCB(G).
To see (2), it is obvious (from the definition) that

See) w@r € AG)®L(G) » w -z = (id®w,I(z)) € UCB(G)

extends to a complete contraction from the operator projective tensor product
A(G)®L(G) into UCB(G). The complete quotient property can be proved by
using the same argument as the one given at the end of the above proof. O

In the rest of this section, let us assume that G is an amenable group. By

Lemma [61] we may always apply n € UCB(G)* to w-x for any w € T (L2(G)) and

x € B(Ly(G)). Then, for any n € UCB(G)* and z € B(L2(G)), we may obtain a

bounded linear operator, which is denoted by ©(n)(x), in B(L2(G)) such that

o1 OM)(@)E | 1) = (0, wey - 7) = lim(na, wey @)
. = ligl(na ® wey, [(x)) = li£n<na W, T),
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where the module action ng - we,, € 7(L2(G)) of A(G) on T(Lo(G)) is induced by
the co-multiplication I'. If we let {hy}rer be an orthonormal basis of Ly(G), then
we may identify Lo(G) with ¢o(I) and may write

O(n)(x) = [ &) ()] = (&) @)hy | )]

(6.12) X .
= [(n @ wn e, D)) | = (@ id, D)),

It is easy to see that for each n € UCB(G)”, O(n) is a completely bounded linear
map on B(Ly(G)) with ||©(n)||w < ||n||, and it follows from the definition that 6
is equal to the adjoint of S. Then we can conclude frgm Lemma that © is a
weak*-weak* continuous complete isometry from UC B(G)* into CB(B(L2(G))). Let
CBE;G()G) (B(L2(@))) denote the space of all completely bounded Lo (G)-bimodule
morphisms which map £(G) into £(G). We now obtain the following completely

isometric representation theorem for UC B(G)*, which can be regarded as the dual
result to Neufang’s representation theorem [33] indicated in Remark [3.71

Theorem 6.2. Let G be an amenable group. Then O is a weak*-weak* com-

pletel? isometric homomorphism from UCB(G)* into CB?E)OG()G) (B(La(G))) such
that @|Mch(G)~ = 0.
Moreover, © preserves the natural involutions and matriz orders on UC’B(G)*

and CBE ) (B(La(G))).

Proof. Let us first show that O is an algebraic homomorphism from UC’B(G‘)*

into CB(B(L2(G))). Suppose that we are given m,n € UCB(G)*. Then for any
z € B(L2(G)) and &, n € La(G),

(O(mon)(@) | n) = (mon, we, ) = (mon, (id® we,y,[(2)))
= lién lil£n<na @ mg @ wey, (T @id)[(z))

= limlim(n, - mg - we p, ).
On the other hand,

(O(m)(O(n)(2))€ | m) = (m. we,y - O(m)()) = lim(ms © we,,. (O ()))

Dn

= 1ién<m/3 “we, n, O(n)(x))
= (s (ms e, ) - 2) = Dl {a @ (g - ), (@)
= limlim(n, - mg - we p, ).

«

This shows that

&(mon) = O(m) o On).

Therefore, 6 is a completely contractive homomorphism from UCB(G) into
CB(B(L2(G))).
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Since W is contained in £(G)&Loo(G), for any f,g € Loo(G) and z € B(L2(G)),

we have X R R
WA fagW* =1 fIWAQz) W' (1® g)
and thus obtain ~ _
O(n)(frg) = fO(n)(z)g

from (BI2). This shows that ©(n) is an L. (G)-bimodule morphism in
CB(B(L2(G))). For any x € L(G) we have I'(z) € L(G)RL(G) = CB(A(G), L(G)).
It follows that

(n)(z):w e A(G) — 1i£1<na ®@w, I'(z)) e C

Dn

defines an element in £(G). Therefore, é(n) maps L(G) into L(G).
Suppose that we are given ¢ € M, A(G) and £, € Ly(G). From the proof of
Theorem (4.2 we get

(O(P)A$))E | m) = () (AS)E | m) = (@ - wems A(s))
for all s € G and

(©)(HE 1) = (O()W)FE | m) = p((FE | m) = (¢~ wem, )
for any f € Lo (G). By the normality of © this implies that

O @) | 1) = (¢ we . 7) = (. wey - T(@)) = (O(p)(@)€ | )
for all x € B(L2(G)). This shows é\Mch(G) = O. Tt follows from ([B.I2) that we

can write
O(p)(z) = (p@id,T'(z)) = (p ®id, W(1 ® 2)W*)
for p € M, A(G) and x € B(L2(G)).
Since UCB(G) is a C*-algebra, there exist a natural involution and a matrix

order on its dual space UCB(G)*. We leave it to the reader to verify that ©

preserves the involutions and matrix orders on UCB(G)* and CBS;G()G) (B(La2(G))).
U

We note that as a consequence of Theorem and Theorem [6.2] it is easy to

show that if G is an amenable group, then
O(MaA(G)) = OUCB(G)") NCB (B(La(G))),

i.e. the image space of M, A(G) is exactly the normal part of é(UC’B(G)*) This
is dual to Neufang’s result [33] Proposition 3.4 (i)], which shows that ©,(M(G)) =
O, (LUC(G)*)NCB? (B(L2(G))) is the normal part of ©,(LUC(G)*).

Let G be an amenable group. For any n € UCB(G)*, we may define a bounded
linear map n,(g) on £(G) given by

(6.13) (neey (), w) = (n, w-z) = (n, (id @ w,I'(z)))

for all x € £(G) and w € A(G). The map n,(q) is equal to the map np discussed
in [29, §6]. Since A(G) is commutative it is also equal to Lau’s map ny. Lau

showed that this determines an isometric isomorphism from UCB(G)* onto the
space Bae)(L(G)) of all bounded A(G)-bimodule morphisms on £(G). We note

that for each n € UCB(G)*, we actually have ey = é(n)‘L(G), the restriction
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of é(n) to L(G). Therefore, each ny(g) is a completely bounded A(G)-bimodule
morphism contained in CB4 ) (£(G)), and it can be shown by applying Lemma
that the map

n e UCB(G)* — ne@) = é(n)|£(G) € CBae)(L(G))

is a completely isometric isomorphism from UCB(G)* onto CB 4(c)(£(G)). There-

fore, we may obtain the following completely bounded characterization of UC B(G)*.

Proposition 6.3. Let G be an amenable group. Then we have the completely
isometric isomorphism

UCB(G)" = CBae) (L(G)).
Remark 6.4. Similar to the situation described in Remark [3.7, it is still an open

question whether the map © studied in Theorem is onto CBff()G)(B(Lg (@)

for general locally compact amenable groups. This is true when G is an amenable

discrete group, since in this case we have UCB(G) = C}(G) = Q(G) and thus

UCB(G)* = C{(G)* = MapA(G). Tt follows from ([22) that
(6.14)

OUCB(G)") = B(MaA(G)) = CBT ) (B(La(G))) = CBL D (B(L2(G))).

The following result extends the map m o (A ® & o A) in Corollary .1 to the
extended Haagerup tensor product L;(G) ®°" Ly (G).

Proposition 6.5. Let G be an amenable group. The map mo (A® ko \) extends
to a complete quotient map, which is denoted by Magror, from Li(G) @°" Li(G)

onto UCB(G).

Proof. We first note from §2 that 7" has a natural weak*-weak™ continuous com-
pletely isometric extension T from Lo (G) ®°" Loo(G) onto CBy,__(c)(B(L2(G))).

Then I' &= T 'o é is a weak*-weak® continuous completely isometric homomor-
phism from UCB(G)* into Lao(G) @" Lo (G). The preadjoint of L'z defines a

complete quotient from L;(G) @°" Ly (G) onto UCB(G). Since @|Mch(G) =0, it
is easy to see from Proposition 4] and Corollary .7 that this map is the natural
extension of mo (A® ko \). O
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