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COMPLETELY ISOMETRIC REPRESENTATIONS
OF McbA(G) AND UCB(Ĝ)∗

MATTHIAS NEUFANG, ZHONG-JIN RUAN, AND NICO SPRONK

Abstract. Let G be a locally compact group. It is shown that there exists a
natural completely isometric representation of the completely bounded Fourier
multiplier algebra McbA(G), which is dual to the representation of the measure
algebra M(G), on B(L2(G)). The image algebras of M(G) and McbA(G) in
CBσ(B(L2(G))) are intrinsically characterized, and some commutant theorems
are proved. It is also shown that for any amenable group G, there is a natural

completely isometric representation of UCB(Ĝ)∗ on B(L2(G)), which can be
regarded as a duality result of Neufang’s completely isometric representation
theorem for LUC(G)∗.

1. Introduction

In this paper we assume that G is a locally compact group with a fixed left Haar
measure µG. We will simply write dµG(t) = dt if there is no confusion. Ghahramani
showed in [15, Theorem 2] that if G contains at least two elements, the convolu-
tion algebra L1(G) (and thus the measure algebra M(G)) cannot be isometrically
isomorphic to a subalgebra of operators on any Hilbert space. Therefore, the repre-
sentation of the measure algebra M(G) has to be considered on some other spaces
different from Hilbert spaces.

The first such representation result was studied by Wendel [46], in which he
showed that M(G) is isometrically isomorphic to the right centralizer algebra
RC(L1(G)) of L1(G). More precisely, Wendel showed that every measure µ ∈ M(G)
uniquely corresponds to a bounded right centralizer

mµ : f ∈ L1(G) �→ f ∗ µ ∈ L1(G)

on L1(G). If we let Φµ = m∗
µ denote the adjoint of mµ, then Φµ is a bounded weak∗

continuous operator on L∞(G) commuting with left translations (i.e., Φµ(lgf) =
lgΦµ(f)). On the other hand, every such operator on L∞(G) is implemented by
a measure in this way. Therefore, if we denote by Bσ

l (L∞(G)) the space of all
bounded weak∗ continuous maps on L∞(G) commuting with left translations, then

(1.1) Φ : µ ∈ M(G) �→ Φµ ∈ Bσ
l (L∞(G))
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is an isometric isomorphism from M(G) onto Bσ
l (L∞(G)) (see [1, §1.6]). Let

LUC(G)∗ denote the dual space of all left uniformly continuous bounded func-
tions on G. Then LUC(G)∗ is a Banach algebra containing M(G) as a Banach
subalgebra. It was shown by Curtis and Figà-Talamanca (cf. Theorem 3.3 in [5])
that there is a similar isometric isomorphism from LUC(G)∗ onto the space of all
bounded operators on L∞(G) which commute with the left convolution action of
L1(G) on L∞(G). Note that the proof given in [5] assumes G to be unimodular.
The general case follows from a more general result due to Lau (see Theorem 1,
together with Lemma 1 and Remark 3 in [28]).

It is also known that M(G) and LUC(G)∗ can be nicely represented on the space
B(L2(G)) of all bounded linear operators on the Hilbert space L2(G). Størmer
showed in [45] that for any abelian group G, there exists an isometric homomor-
phism Θl from M(G) into Bσ

R(G)(B(L2(G))), the space of all normal bounded R(G)-
bimodule morphisms on B(L2(G)), which is given by

(1.2) Θl(µ)(a) =
∫

G

λ(s)aλ(s)∗dµ(s)

for µ ∈ M(G) and a ∈ B(L2(G)). This result was extended to general (not necessar-
ily abelian) groups by Ghahramani [15] and was further studied by Neufang in his
Ph.D. thesis [32]. Neufang showed that each Θl(µ) is actually completely bounded
and Θl is an isometric homomorphism from M(G) into CBσ

R(G)(B(L2(G))), the
space of all normal (i.e. weak∗ continuous) completely bounded R(G)-bimodule
morphisms on B(L2(G)). Moreover, Neufang successfully characterized the range
space of the representation (1.2) in CBσ

R(G)(B(L2(G))) by showing that Θl(M(G)) is

equal to the space CBσ,L∞(G)
R(G) (B(L2(G))) of all normal completely bounded R(G)-

bimodule morphisms on B(L2(G)), which map L∞(G) into L∞(G) (see [32] and
[34]). Neufang also introduced and studied the representation of the Banach alge-
bra LUC(G)∗ on B(L2(G)) in [32] and [33].

The aim of this paper is to investigate the corresponding representations of the
completely bounded Fourier multiplier algebra McbA(G) and the Banach algebra
UCB(Ĝ)∗ introduced by Granirer [19] (see §6 for details), since McbA(G) and
UCB(Ĝ)∗, when G is amenable, can be regarded as the natural dual objects of
M(G) and LUC(G)∗, respectively. Our main results show that there exist nat-
ural completely isometric representations of McbA(G) and UCB(Ĝ)∗ when G is
amenable on B(L2(G)). The advantage of this investigation is that it allows us to
compare and study the connection of these representations with the corresponding
representations of M(G) and LUC(G)∗ on the same space B(L2(G)).

Since operator space techniques will play an important role, we first recall some
necessary definitions and notations on operator spaces in §2. Readers are referred
to the recent books [11], [35], and [37] for more details. In §3, we recall the repre-
sentation theorem of M(G) by considering the weak∗-weak∗ continuous completely
isometric homomorphism Θr : M(G) → CBσ

L(G)(B(L2(G))) induced by the right
regular representation

(1.3) Θr(µ)(a) =
∫

G

ρ(s)aρ(s)∗dµ(s).

With this setup, we may significantly simplify our calculations, and we will be able
to obtain some intriguing commutant theorems in §5. We provide a proof, which is
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simpler than Neufang’s original argument, for the equality

(1.4) Θr(M(G)) = CBσ,L∞(G)
L(G) (B(L2(G)))

in Theorem 3.2. Moreover, we show in Proposition 3.3 and Proposition 3.4 that Θr

preserves the natural involutions and matrix orders on these two spaces. We also
characterize the range space Θr(L1(G)) in Theorem 3.6.

We study the representation of McbA(G) in §4. Using the techniques developed
in Spronk’s Ph.D. thesis [42] and published in [43], we show that McbA(G) can be
completely isometrically identified with the space V ∞

inv(G, m) of all left invariant
measurable Schur multipliers. It follows that we obtain a weak∗-weak∗ continuous
completely isometric isomorphism

(1.5) Θ̂ : McbA(G) ∼= CBσ,L(G)
L∞(G)(B(L2(G))),

which preserves the natural involutions and the matrix orders on these two spaces
(see Theorem 4.3 and Theorem 4.5). In particular, if G is an abelian group, we can
write L(G) = L∞(Ĝ) and L∞(G) = L(Ĝ). In this case, (1.5) can be expressed in
the following duality form:

Θr(M(Ĝ)) = CBσ,L∞(Ĝ)

L(Ĝ)
(B(L2(Ĝ))).

In §5, we show some commutant results for Θr(M(G)) and Θ̂(McbA(G)) in
CBσ(B(L2(G))) and some double commutant results for Θr(M(G)) and Θ̂(McbA(G))
in CB(B(L2(G))), respectively. Finally, we show in §6 that for any amenable
group G, there is a natural completely isometric homomorphism of UCB(Ĝ)∗ into
CBL(G)

L∞(G)B(L2(G)), which can be regarded as a duality result of Neufang’s com-
pletely isometric representation theorem for LUC(G)∗.

2. Operator spaces and completely bounded maps

In this paper, we let X and Y be operator spaces and let CB(X, Y ) denote the
space of all completely bounded maps from X into Y . Then there exists a canonical
operator space matrix norm on CB(X, Y ) given by the identification

(2.1) Mn(CB(X, Y )) = CB(X, Mn(Y )).

With this operator space structure, CB(B(H)) = CB(B(H),B(H)) is a completely
contractive Banach algebra since the composition multiplication Φ◦Ψ on CB(B(H))
satisfies

‖[Φij ◦ Ψkl]‖cb ≤ ‖[Φij ]‖cb‖[Ψkl]‖cb

for all [Φij ] ∈ Mm(CB(B(H))) and [Ψkl] ∈ Mn(CB(B(H))). There is a canonical
involution on CB(B(H)) given by

Φ∗(a) = Φ(a∗)∗.

This involution is an isometrically conjugate automorphism on CB(B(H)) since

(Φ ◦ Ψ)∗ = Φ∗ ◦ Ψ∗.

Moreover, for each n ∈ N there exists a natural order on the matrix space

Mn(CB(B(H))) = CB(B(H), Mn(B(H)))

given by the positive cone CB(CB(H), Mn(B(H)))+ of all completely positive maps
from B(H) into Mn(B(H)). This determines a matrix order on CB(B(H)).
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If M is a von Neumann on a Hilbert space H, we let

CBM(B(H)) = CBM(B(H),B(H))

denote the space of all completely bounded M-bimodule morphisms on B(H) and
let CBσ

M(B(H)) denote the space of all normal completely bounded M-bimodule
morphisms in CBM(B(H)). Then CBσ

M(B(H)) ⊆ CBM(B(H)) are completely con-
tractive Banach subalgebras of CB(B(H)) with a natural involution and a ma-
trix order inherited from CB(B(H)). In general, CBσ

M(B(H)) 
= CBM(B(H)) (see
Hofmeier and Wittstock [25]). But the two spaces are equal in some special cases
(trivially when H is finite dimensional or when M = B(H)). Moreover, if G is
a discrete group, then �∞(G) = �∞(G)′ is a finite atomic von Neumann algebra
standardly represented on �2(G). We can conclude from [25, Lemma 3.5] that

(2.2) CBσ
�∞(G)(B(�2(G))) = CB�∞(G)(B(�2(G))).

Inspection of the proof shows that we do not need to assume �2(G) to be separable
(which is an assumption made throughout in [25] for the Hilbert spaces occurring).
Similarly, we have

(2.3) CBσ
L(G)(B(L2(G))) = CBL(G)(B(L2(G)))

for any compact group G since in this case, L(G) =
∏

π Mn(π) ⊗ In(π) and L(G)′ =∏
π In(π) ⊗ Mn(π) are finite atomic von Neumann algebras standardly represented

on L2(G) =
∑⊕ S2

n(π), where we let S2
n(π) denote the Hilbert space of all n(π) ×

n(π) Hilbert-Schmidt matrices and let n(π) denote the dimension of irreducible
representations π : G → Mn(π) of G. Then we may obtain (2.3) by considering the
central projections zn(π) = In(π) ⊗ In(π) ∈ L(G) ∩ L(G)′ from L2(G) onto S2

n(π).
Again, we do not have to assume the separability of L2(G). The result is true
for arbitrary compact groups. Actually, the corresponding result holds for general
discrete Kac algebras.

It is important to note that the mapping spaces CBσ
M(B(H)) and CBM(B(H))

can be completely identified with the extended (or weak∗) Haagerup tensor product
M′ ⊗eh M′ and the normal Haagerup tensor product M′ ⊗σh M′ of M′, the
commutant of M in B(H), respectively. We assume that readers are familiar with
the Haagerup tensor product X⊗hY (for instance, see details in [11], [35], and [37]).
The definition for the extended Haagerup tensor product X ⊗eh Y can be found in
[8] and [12]. For the convenience of the reader, let us recall that the extended
Haagerup tensor norm of an element [uij ] ∈ Mn(X ⊗eh Y ) is defined by

‖[uij ]‖eh,n = inf{‖[xik]‖Mn,I(X)‖[ykj ]‖MI,n(Y )},
where the infimum is taken over all possible representations [uij ] = [xik]
[ykj ] with
[xik] ∈ Mn,I(X) and [ykj ] ∈ MI,n(Y ). The index I in the above definition could
be an infinite set (or a countable set if X and Y are operator spaces on separable
Hilbert spaces). In this case, the notion [uij ] = [xik] 
 [ykj ] means that

〈[uij ], f ⊗ g〉 =

[∑
k∈I

f(xik)g(ykj)

]

for all f ∈ X∗ and g ∈ Y ∗. For dual operator spaces X∗ and Y ∗, X∗ ⊗eh Y ∗

can be completely isometrically identified with the weak∗ Haagerup tensor prod-
uct X∗ ⊗w∗h Y ∗ introduced by Blecher and Smith [2] via the following complete
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isometries:
X∗ ⊗eh Y ∗ = (X ⊗h Y )∗ = X∗ ⊗w∗h Y ∗.

The normal Haagerup tensor product

X∗ ⊗σh Y ∗ = (X ⊗eh Y )∗

for dual operator spaces was first introduced by Effros and Kishimoto [7]. It was
shown by Effros and Ruan [12, §5] that the identity map on X∗ ⊗ Y ∗ extends to a
completely isometric inclusion

(2.4) X∗ ⊗eh Y ∗ ↪→ X∗ ⊗σh Y ∗

and the image space X∗⊗ehY ∗ is completely contractively complemented in X∗⊗σh

Y ∗ since the adjoint map (ιX⊗Y )∗ of ιX⊗Y : X ⊗h Y ↪→ X ⊗eh Y induces a
completely contractive projection from X∗ ⊗σh Y ∗ onto X∗ ⊗eh Y ∗.

Given u =
∑

k∈I xk ⊗ yk ∈ M′ ⊗eh M′, we can define a normal completely
bounded M-bimodule morphism

(2.5) T (u)(a) =
∑
k∈I

xk a yk (weak∗ limit)

on B(H). It was shown by Haagerup [20] (also see [9] and [40]) that

T : u ∈ M′ ⊗eh M′ �→ T (u) ∈ CBσ
M(B(H))

determines a weak∗-weak∗ continuous completely isometric isomorphism from
M′ ⊗eh M′ onto CBσ

M(B(H)) with respect to the completely contractive Banach
algebra structure on M′ ⊗eh M′ given by

(x ⊗ y) ◦ (x̃ ⊗ ỹ) �→ xx̃ ⊗ ỹy.

Moreover, there is an isometric involution

(x ⊗ y)∗ = y∗ ⊗ x∗

and a matrix order on M′ ⊗eh M′ given by the positive cones

Mn(M′ ⊗eh M′)+ = {[uij ] ∈ Mn(M⊗eh M′) :

[uij ] = x∗ 
 x for some x = [xkj ] ∈ MI,n(M′)}.
It is easy to see that T preserves the involution and the matrix order on these
spaces.

We can similarly define a completely contractive Banach algebra, an isometric
involution, and a matrix order on the normal Haagerup tensor product M′⊗σhM′.
It was shown by Effros and Kishimoto [7] that there is a natural extension of T to
a weak∗-weak∗ continuous completely isometric isomorphism T̃ from M′ ⊗σh M′

onto CBM(B(H)). Moreover, T̃ preserves the involution and the matrix order on
M′ ⊗σh M′ and CBM(B(H)). Therefore, we can completely identify these spaces

(2.6) M′ ⊗eh M′ ∼= CBσ
M(B(H)) and M′ ⊗σh M′ ∼= CBM(B(H))

via T and T̃ , respectively. The complement of M′⊗ehM′ in M′⊗σhM′ exactly cor-
responds to the space CBs

M(B(H)) of all singular completely bounded M-bimodule
morphisms on B(H).

Finally we note that there is a commutant theorem for CBσ
M(B(H)) (respectively,

for CBM(B(H))) in CB(B(H)). If V is a subspace of CB(B(H)), we let

Vc = {Ψ ∈ CB(B(H)) : Ψ ◦ Φ = Φ ◦ Ψ for all Φ ∈ V}
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denote the commutant of V in CB(B(H)). Then we have

(2.7) CBσ
M(B(H))c = CBM′(B(H)),

and if, in addition, M is standardly represented on H, then

(2.8) CBM(B(H))c = CBσ
M′(B(H)).

Combining (2.7) and (2.8), we obtain the following double commutant theorem:

(2.9) CBσ
M(B(H))cc = CBσ

M(B(H))

when M is standardly represented on H. (2.7) is due to Effros and Exel [6, §3];
(2.8) was proved by Hofmeier and Wittstock [25, Proposition 3.1 and Remark 4.3]
in case H is separable, and was extended to the non-separable situation by Magajna
[31, §2]. We remark that, trivially, we also have

CBM(B(H))cc = CBM(B(H)).

3. Representation of M(G)

The measure algebra M(G) of all bounded complex-valued (Radon) measures
on G is a Banach algebra with the multiplication defined by

(3.1) µ ∗ ν(f) =
∫

G

∫
G

f(st)dµ(s)dν(t)

for every bounded continuous function f ∈ Cb(G) and µ, ν ∈ M(G). We may
identify L1(G) with a norm closed ideal in M(G), which consists of all absolutely
continuous measures with respect to the Haar measure. It follows from the defini-
tion (3.1) that there is an M(G)-bimodule action on L1(G). Taking the dual, we
obtain an M(G)-bimodule structure on L∞(G), which is defined by

(3.2) 〈µ · f, h〉 = 〈f, h ∗ µ〉 and 〈f · µ, h〉 = 〈f, µ ∗ h〉
for all h ∈ L1(G). More precisely, we have

µ · f(s) =
∫

G

f(st)dµ(t) =
∫

G

lsf(t)dµ(t) and

f · µ(t) =
∫

G

f(st)dµ(s) =
∫

G

rtf(s)dµ(s),
(3.3)

where we let lsf and rtf denote the left translation and right translation

lsf(t) = f(st) and rtf(s) = f(st).

Let λ : G → B(L2(G)) denote the left regular representation, and let ρ : G →
B(L2(G)) denote the right regular representation defined by

λ(s)ξ(t) = ξ(s−1t) and ρ(s)ξ(t) = ∆(s)1/2ξ(ts)

for ξ ∈ L2(G), s, t ∈ G, and the Haar modular function ∆ : G → (0, +∞). We let

L(G) = span{λ(s) : s ∈ G}s.o.t
and R(G) = span{ρ(s) : s ∈ G}s.o.t

denote the left group von Neumann algebra and the right group von Neumann
algebra generated by λ and ρ, respectively. Then L(G) and R(G) are standardly
represented on L2(G) and satisfy the commutant relations

(3.4) L(G)′ = R(G) and R(G)′ = L(G).
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With the conjugate linear isometry

Jξ(s) = ∆(s−1)
1
2 ξ(s−1)

on L2(G) = L2(L(G)), we obtain a natural *-anti-isomorphism

(3.5) λ(t) ∈ L(G) �→ Jλ(t)∗J = ρ(t−1) ∈ R(G)

such that JL(G)J = R(G).
We obtain the following result known as Heisenberg’s theorem (see [13, Corollary

4.1.5] for a proof for general Kac algebras). We provide a simple proof here for the
convenience of the reader.

Lemma 3.1. Let G be a locally compact group. Then we have

(3.6) L∞(G) ∩R(G) = C1 = L∞(G) ∩ L(G).

Taking the commutants, we obtain

(3.7) L∞(G) ∨ L(G) = B(L2(G)) = L∞(G) ∨R(G),

where L∞(G) ∨ L(G) denotes the von Neumann algebra generated by L∞(G) and
L(G), and L∞(G) ∨ R(G) denotes the von Neumann algebra generated by L∞(G)
and R(G).

Proof. If f ∈ L∞(G) ∩R(G), then we get

lsf = λ(s)∗fλ(s) = f

for all s ∈ G. This implies that f is a constant function on G and thus shows that
L∞(G) ∩R(G) = C1. Taking the commutant, we obtain

B(L2(G)) = (L∞(G) ∩R(G))′ = L∞(G) ∨ L(G).

A similar argument shows that L∞(G) ∩ L(G) = C1 and

B(L2(G)) = (L∞(G) ∩ L(G))′ = L∞(G) ∨R(G).

�

A function f ∈ L∞(G) is said to be left uniformly continuous if the left transla-
tion map s ∈ G → lsf ∈ L∞(G) is continuous. We note that in some books (such
as [23]) these functions are called right uniformly continuous since this definition is
equivalent to saying that we have |f(s) − f(t)| < ε for st−1 in some neighborhood
of e. In this paper, let us stay with the first notion and let LUC(G) denote the
space of all bounded left uniformly continuous functions on G. Then it is easy to
see that

C0(G) ⊆ LUC(G) ⊆ Cb(G).

Since the right regular representation ρ : G → B(L2(G)) is strong operator
continuous, for any a ∈ B(L2(G)) and ξ, η ∈ L2(G),

fa,ξ,η(t) = 〈ρ(t)aρ(t)∗ξ | η〉

defines a bounded left uniformly continuous function on G with ‖fa,ξ,η‖∞ ≤
‖a‖ ‖ξ‖ ‖η‖. Actually, for fixed ξ, η ∈ L2(G) the family of functions {fa,ξ,η} is
equi-left uniformly continuous in a ∈ Ball(B(L2(G))), i.e.

(3.8) ‖lsfa,ξ,η − ltfa,ξ,η‖∞ → 0
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uniformly in a when s → t in G. For any µ ∈ M(G),

(ξ, η) ∈ L2(G) × L2(G) �→
∫

G

〈ρ(t)aρ(t)∗ξ | η〉dµ(t) ∈ C

is a bounded sesquilinear form on L2(G) × L2(G) and thus determines a bounded
linear operator, which is denoted by Θr(µ)(a), on L2(G) such that

〈Θr(µ)(a)ξ | η〉 =
∫

G

〈ρ(t)aρ(t)∗ξ | η〉dµ(t).

We simply write

(3.9) Θr(µ)(a) =
∫

G

ρ(t)aρ(t)∗dµ(t).

In particular, if we let δt denote the Dirac measure at t we can write

(3.10) Θr(δt)(a) = ρ(t)aρ(t)∗.

Then Θr is a well-defined weak∗-weak∗ continuous isometric homomorphism from
M(G) into Bσ(B(L2(G))). Moreover, for each µ ∈ M(G), Θr(µ) is a completely
bounded L(G)-bimodule morphism on B(L2(G)) with ‖Θr(µ)‖cb = ‖Θr(µ)‖ = ‖µ‖
(see [33]). If f ∈ L∞(G), we have

Θr(µ)(f) =
∫

G

ρ(t)fρ(t)∗dµ(t) = µ · f ∈ L∞(G).

This shows that Θr(µ) maps L∞(G) into L∞(G). In particular, if f ∈ LUC(G) (re-
spectively, f ∈ Cb(G)), then Θr(µ)(f) = µ ·f is contained in LUC(G) (respectively,
in Cb(G)). In this case, we can consider the point evaluation

(3.11) 〈δe, Θr(µ)(f)〉 = µ · f(e) =
∫

G

f(t)dµ(t) = µ(f).

Let us use CBσ,L∞(G)
L(G) (B(L2(G))) to denote the space of all normal completely

bounded L(G)-bimodule morphisms on B(L2(G)) which map L∞(G) into L∞(G),
and let us assume that M(G) = C0(G)∗ is equipped with the MAX operator
space matrix norm. We are now ready to state the following result of Størmer [45],
Ghahramani [15], and Neufang (see [32] and [34]) for Θr in the completely isometric
form.

Theorem 3.2. The map Θr is a weak∗-weak∗ continuous completely isometric
isomorphism from M(G) onto CBσ,L∞(G)

L(G) (B(L2(G))).

Proof. We only need to show that Θr is onto and is completely isometric. Suppose
that we are given a map Φ ∈ CBσ,L∞(G)

L(G) (B(L2(G))). Then we need to construct a
measure µ ∈ M(G) such that Θr(µ) = Φ. We carry out this construction in the
following three steps.

Step 1. We claim that Φ(1) = α1 for some α ∈ C. Since Φ is L∞(G)-invariant,
we have Φ(1) ∈ L∞(G). Moreover since Φ is an L(G)-bimodule morphism, we have

λ(s)Φ(1) = Φ(λ(s)) = Φ(1)λ(s)

for all s ∈ G. It follows from Lemma 3.1 that Φ(1) ∈ L∞(G) ∩R(G) = C1.
Step 2. Construct a measure µ ∈ M(G). Since Φ ∈ CBσ,L∞(G)

L(G) (B(L2(G))), we
have

lsΦ(f) = λ(s)∗Φ(f)λ(s) = Φ(λ(s)∗fλ(s)) = Φ(lsf).
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This implies that for every f ∈ LUC(G), Φ(f) is a bounded left uniformly con-
tinuous function on G. Then, the point evaluation Φ(f)(e) = 〈δe, Φ(f)〉 defines a
bounded linear functional

f ∈ C0(G) �→ Φ(f)(e) ∈ C

on C0(G). By the Riesz representation theorem, we obtain a unique bounded
complex-valued measure µ ∈ M(G) which satisfies µ(f) = Φ(f)(e).

Step 3. We claim that Θr(µ) = Φ. For any f ∈ C0(G), we have

Θr(µ)(f)(s) =
∫

G

f(st)dµ(t) = µ(lsf) = Φ(lsf)(e)

= λ(s)∗Φ(f)λ(s)(e) = lsΦ(f)(e) = Φ(f)(s).

This shows that Θr(µ)(f) = Φ(f) for any f ∈ C0(G). Since C0(G) is weak∗ dense
in L∞(G), the normality of Θr(µ) implies that Θr(µ) = Φ on L∞(G). We also have
Θr(µ) = Φ on L(G) since for any s ∈ G,

Θr(µ)(λ(s)) = λ(s)Θr(µ)(1) = λ(s)Φ(1)(e) = λ(s)Φ(1) = Φ(λ(s)).

Since span{fλs : f ∈ L∞(G), s ∈ G} is actually a ∗-subalgebra of B(L2(G)), its
σ-weak closure is equal to the von Neumann algebra generated by L∞(G) and
L(G) and thus equals B(L2(G)) by Lemma 3.1; therefore, we can conclude that
Θr(µ) = Φ on B(L2(G)).

Since M(G) = C0(G)∗ is equipped with the MAX operator space matrix norm,
Θr is clearly a complete contraction. For any [µij ] ∈ Mn(M(G)) = Mn(C0(G)∗) =
CB(C0(G), Mn), we can express the matrix norm of [µij ] as follows:

(3.12) ‖[µij ]‖Mn(M(G)) = sup{‖[µij(f)]‖Mn
: f ∈ C0(G), ‖f‖∞ ≤ 1}.

Then we can conclude from (3.11) and (3.12) that

‖[Θr(µij)]‖cb ≥ sup{‖[Θr(µij)(f)]‖Mn(Cb(G)) : f ∈ C0(G), ‖f‖∞ ≤ 1}
≥ sup{‖[〈δe, Θr(µij)(f)〉]‖Mn

: f ∈ C0(G), ‖f‖∞ ≤ 1}
= sup{‖[µij(f)]‖Mn

: f ∈ C0(G), ‖f‖∞ ≤ 1} = ‖[µij ]‖.

This shows that Θr is a completely isometric isomorphism from M(G) onto
CBσ,L∞(G)

L(G) (B(L2(G))). �

Considering the complex conjugation on M(G), we obtain the following result.

Proposition 3.3. For any µ ∈ M(G), we have

Θr(µ̄) = Θr(µ)∗.

Therefore, µ ∈ M(G) is a real-valued measure if and only if Θr(µ) is a self-adjoint
map in CBσ,L∞(G)

L(G) (B(L2(G))).

Proof. Let µ ∈ M(G). For any a ∈ B(L2(G)), we have

Θr(µ)∗(a) = Θr(µ)(a∗)∗ = (
∫

G

ρ(t)a∗ρ(t)∗dµ(t))∗

=
∫

G

ρ(t)aρ(t)∗dµ̄(t) = Θr(µ̄)(a).

This shows that µ̄ = µ if and only if Θr(µ)∗ = Θr(µ). �
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It is worthy to note that Θr does not preserve the anti-automorphic involution
on M(G) given by

dµ∗(t) = dµ(t−1) = ∆(t)−1dµ(t).

With this involution, Θr(µ∗) ∈ CBσ,L∞(G)
L(G) (B(L2(G))) can be expressed as

Θr(µ∗)(a) =
∫

G

ρ(t)∗aρ(t)∆(t)−1dµ(t).

For each n ∈ N, there is a natural order on Mn(M(G)) given by the positive
cone

Mn(M(G))+ = CB(C0(G), Mn)+

of all completely positive maps from C0(G) into Mn. The following proposition
shows that Θr also preserves the matrix orders on M(G) and CBσ,L∞(G)

L(G) (B(L2(G))).

Proposition 3.4. Given [µij ] ∈ Mn(M(G)), the following are equivalent:
(1) [µij ] is positive in Mn(M(G))+;
(2) [Θr(µij)] is a completely positive map in

CBσ,L∞(G)
L(G) (B(L2(G)), Mn(B(L2(G))));

(3) [Θr(µij)] is a positive map in CBσ,L∞(G)
L(G) (B(L2(G)), Mn(B(L2(G)))).

Therefore, Θr preserves the matrix orders on M(G) and CBσ,L∞(G)
L(G) (B(L2(G))).

Proof. It is easy to verify that (1) ⇒ (2) ⇒ (3). Let us assume [Φij ] = [Θr(µij)] is
a positive map in

Mn(CBσ,L∞(G)
L(G) (B(L2(G))))+ = CBσ,L∞(G)

L(G) (B(L2(G)), Mn(B(L2(G))))+.

It follows from (3.11) that for any positive function f ∈ C0(G)+,

[µij(f)] = [Θr(µij)(f)(e)] = [Φij(f)(e)]

is a positive matrix in Mn. Then [µij ] is a positive and thus completely positive
map (by Stinespring [44]) from C0(G) into Mn. �

In the following, let us write RUC(G) for the space of right uniformly contin-
uous functions f ∈ L∞(G), i.e., the translation map s ∈ G → rsf ∈ L∞(G) is
continuous. Note that these functions are called left uniformly continuous in [23];
cf. the discussion after Lemma 3.1 above.

Lemma 3.5. For µ ∈ M(G), the following conditions are equivalent:
(1) µ ∈ L1(G);
(2) Θr(µ) maps L∞(G) into RUC(G);
(3) Θr(µ) maps L∞(G) into Cb(G).

Proof. (1) ⇒ (2). This is well known. Indeed, if dµ = gdt with g ∈ L1(G), then for
any f ∈ L∞(G), one easily checks that Θr(µ)(f) = (g ∗ f̌) ,̌ where f̌(s) = f(s−1).
Hence, by [23, Theorem (20.16)], we have Θr(µ)(f) ∈ RUC(G).

(2) ⇒ (3). Trivial.
(3) ⇒ (1). If G is a compact group, this is proved in [24, Theorem (35.13)].

However, inspection of the proof shows that compactness is only needed in order to
apply [23, Theorem (8.7)], which holds for all compactly generated, locally compact
groups G. This observation can be used to modify the proof given for [24, Theorem
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(35.13)] and obtain our assertion for all locally compact groups G. We shall now
outline this procedure as follows.

Assume towards a contradiction that µ /∈ L1(G). Write µ = µa + µs, where µa

is absolutely continuous and µs is singular with respect to the Haar measure. By
assumption, we have µs 
= 0. Without loss of generality, we may assume ‖µs‖ = 1.
Since µs ∈ M(G), there is a σ-compact set H0 ⊆ G with µs(Hc

0) = 0. Let H1 ⊆ G
be an open σ-compact subgroup of G. Define H to be the subgroup of G generated
by H0 and H1. Obviously, H is σ-compact and open, since H◦ 
= ∅. Hence, H
is an open σ-compact subgroup of G, in particular locally compact in the relative
topology.

Denote by λH the restriction to H of our fixed left Haar measure, which defines
a left Haar measure on H. Define µ′ = µs|H. Of course, we still have ‖µ′‖ = 1, in
particular µ′ 
= 0. Furthermore, it is easy to see that µ′ is singular with respect to
λH. We can now, in order to finish the argument, follow the proof of [24, Theorem
(35.13)] with the group G replaced by our H and the measure ν replaced by our µ′

(using, as mentioned above, [23, Theorem (8.7)] for the compactly generated group
H). �

As a consequence of Lemma 3.5, we can obtain the following theorem, which
characterizes the image space of Θr(L1(G)) in CBσ

L(G)(B(L2(G))).

Theorem 3.6. We have

Θr(L1(G)) = CBσ,(L∞(G),RUC(G))
L(G) (B(L2(G))) = CBσ,(L∞(G),Cb(G))

L(G) (B(L2(G))),

where CBσ,(L∞(G),RUC(G))
L(G) (B(L2(G))), resp. CBσ,(L∞(G),Cb(G))

L(G) (B(L2(G))), denotes
the space of all normal completely bounded L(G)-bimodule morphisms which map
L∞(G) into RUC(G), resp. Cb(G).

Remark 3.7. It is known from abstract harmonic analysis that there is a (com-
pletely) isometric injection

M(G) ↪→ LUC(G)∗.

Neufang proved in [33] that the map Θr can be extended to a (completely) isometric
homomorphism Θ̃r from LUC(G)∗ into CBL∞(G)

L(G) (B(L2(G))) so that

Θr(M(G)) = Θ̃r(LUC(G)∗) ∩ CBσ(B(L2(G))).

However, it is still left open whether the map Θ̃r is onto CBL∞(G)
L(G) (B(L2(G))) for

general locally compact groups. The difficulty is of course the missing normality
for maps in CBL∞(G)

L(G) (B(L2(G))). The techniques used in the proof of Theorem 3.2
fail in this case. In the special case when G is a compact group, this is true since
every continuous function on G is bounded and uniformly continuous, and thus
M(G) = LUC(G)∗. It follows from (2.3) that
(3.13)

Θ̃r(LUC(G)∗) = Θr(M(G)) = CBσ,L∞(G)
L(G) (B(L2(G))) = CBL∞(G)

L(G) (B(L2(G))).

4. Representation of McbA(G)

We let A(G) denote the Fourier algebra of G, which consists of all coefficient
functions

(4.1) ψ(s) = 〈λ(s)ξ | η〉
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of the left regular representation λ. It was shown by Eymard [14] that A(G) with
the pointwise multiplication and norm

‖ψ‖A(G) = inf{‖ξ‖ ‖η‖ : ψ(s) = 〈λ(s)ξ | η〉}
is a commutative Banach algebra. Moreover, A(G) can be isometrically identified
with the predual L(G)∗ of L(G) and thus has a canonical operator space ma-
trix norm with which A(G) is a completely contractive Banach algebra (see [39]).
The multiplication on A(G) induces a commutative completely contractive A(G)-
bimodule structure 〈ω · x, ω′〉 = 〈x, ω′ · ω〉 on L(G).

A function ϕ : G → C is called a multiplier of A(G) if the induced (pointwise)
multiplication map

mϕ(ψ) = ϕψ

maps A(G) into A(G). It is known that mϕ is automatically bounded on A(G). A
multiplier ϕ is completely bounded if ‖mϕ‖cb < ∞. We let McbA(G) denote the
space of all completely bounded multipliers of A(G). Then McbA(G) is a completely
contractive Banach subalgebra of CB(A(G)). The complex conjugation on McbA(G)
corresponds to the involution on CB(A(G)). Taking the Banach space dual, we
obtain the completely isometric, but anti-isomorphic identification CB(A(G)) =
CBσ(L(G)) such that ϕ ∈ McbA(G) if and only if the adjoint map

Mϕ = (mϕ)∗ : λ(s) ∈ L(G) �→ ϕ(s)λ(s) ∈ L(G)

is a weak∗ continuous completely bounded map on L(G). This provides us with a
completely isometrically isomorphic identification of McbA(G) with the subalgebra
CBσ

A(G)(L(G))) of all weak∗ continuous completely bounded A(G)-bimodule maps
on L(G), and thus induces a natural matrix order on McbA(G) given by the positive
cones

Mn(McbA(G))+ = {[ϕij ] ∈ Mn(McbA(G))

such that [Mϕij
] : L(G) → Mn(L(G)) is completely positive}.

Using an (unpublished) result of Gilbert [18], Bożejko and Fendler [4] showed
that McbA(G) is isometrically isomorphic to B2(G), the space of all Herz-Schur
multipliers on G. This shows that a function ϕ : G → C is contained in McbA(G)
with ‖ϕ‖McbA(G) ≤ 1 if and only if there exist a Hilbert space H and two bounded
continuous maps ξ, η : G → H such that

(4.2) ϕ(s−1t) = 〈η(t) | ξ(s)〉 = ξ(s)∗η(t)

and
sup{‖ξ(s)‖H} sup{‖η(t)‖H} ≤ 1.

If we replace ξ(s) and η(t) by ξ̌(s) = ξ(s−1) and η̌(t) = η(t−1), then (4.2) can be
expressed as

(4.3) ϕ(st−1) = 〈η̌(t) | ξ̌(s)〉 = ξ̌(s)∗η̌(t).

In this case, we have the same norm control

sup{‖ξ̌(s)‖H} sup{‖η̌(t)‖H} ≤ 1.

Haagerup gave a complete argument (including a proof of Gilbert’s result) in [21,
Appendix], and Jolissaint [26] provided a very short elegant proof of this result
by using the representation theorem for completely bounded maps. The matricial
form of (4.3) for discrete groups can be found in Pisier [37, Theorem 8.3]. Spronk
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showed in [43, Theorem 5.3] that such a matricial form still holds for general locally
compact groups. We state their result in the following lemma, which can be proved
by simply applying Jolissaint’s representation argument to the normal completely
bounded map [Mϕij

] : L(G) → Mn(L(G)) ⊆ Mn(B(L2(G))).

Lemma 4.1. Let ϕij : G → C be functions on G with 1 ≤ i, j ≤ n. The following
are equivalent:

(1) [ϕij ] ∈ Mn(McbA(G)) with ‖[ϕij ]‖Mn(McbA(G)) ≤ 1;
(2) there exist a Hilbert space H and bounded continuous maps ξi, ηj : G → H

such that

[ϕij(st−1)] = [〈ηj(t) | ξi(s)〉] = [ξi(s)∗ηj(t)]

and

sup{‖[ξ1(s) · · · ξn(s)]‖B(Cn,H)} sup{‖[η1(t) · · · ηn(t)]‖B(Cn,H)} ≤ 1.

Moreover, [ϕij ] ∈ Mn(McbA(G))+ if and only if we can choose ηj = ξj for all
j = 1, · · · , n.

In all of these cases, the functions ϕij are automatically continuous.

A map ξ : G → H is called weakly continuous if s ∈ G �→ 〈ξ(s) | η〉 = η∗ξ(s) is
continuous for all η ∈ H. A continuous Schur multiplier is a function u : G×G → C

such that there exist a Hilbert space and bounded weakly continuous maps ξ, η :
G → H with

u(s, t) = 〈η(t) | ξ(s)〉 = ξ∗(s)η(t).

Given a function ϕ : G → C, we let uϕ : G×G → C denote the function defined by

uϕ(s, t) = ϕ(st−1).

Lemma 4.1 shows that for every ϕ ∈ McbA(G), uϕ is a continuous Schur multiplier.
Let V b(G) denote the space of all continuous Schur multipliers on G × G. Then
V b(G) has a canonical operator space matrix norm given by

‖[uij ]‖Mn(V b(G)) = inf{ sup{‖[ξ1(s) · · · ξn(s)]‖B(Cn,H)}
sup{‖[η1(t) · · · ηn(t)]‖B(Cn,H)}},

where the infimum is taken over all representations [uij(s, t)] = [ξ∗i (s)ηj(t)]. It
was shown by Spronk [43, Proposition 3.6] that we may completely isometrically
identify V b(G) with Cb(G) ⊗eh Cb(G). To see this, let us assume that [uij ] is a
matrix element in Mn(V b(G)) with norm ‖[uij ]‖Mn(V b(G)) < 1. Then there exist
bounded weakly continuous maps ξi, ηj : G → H such that

[uij(s, t)] = [ξ∗i (s)ηj(t)]

and
sup{‖[ξ1(s) · · · ξn(s)]‖B(Cn,H)} sup{‖[η1(t) · · · ηn(t)]‖B(Cn,H)} < 1.

We may fix an orthonormal basis {hk}k∈I for the Hilbert space H and thus identify
H with �2(I). In this case the identity operator 1H on H can be expressed as
1H =

∑
k∈I hk ⊗ h∗

k. Let us define

vik(s) = 〈hk | ξi(s)〉 = ξ∗i (s)hk and wkj(t) = 〈ηj(t) | hk〉 = h∗
kηj(t).
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These are continuous functions in Cb(G) such that [vik] ∈ Mn,I(Cb(G)) and [wkj ] ∈
MI,n(Cb(G)) with

‖[vik]‖Mn,I(Cb(G)) = sup{‖[ξ1(s) · · · ξn(s)]∗‖B(�2(I),Cn)}
= sup{‖[ξ1(s) · · · ξn(s)]‖B(Cn,H)}

and

‖[wkj ]‖MI,n(Cb(G)) = sup{‖[η1(t) · · · ηn(t)]‖B(Cn,�2(I))}
= sup{‖[η1(t) · · · ηn(t)]‖B(Cn,H)}.

It follows that we can express

(4.4) [uij ] = [vik] 
 [wkj ] ∈ Mn(Cb(G) ⊗eh Cb(G))

with norm ‖[uij ]‖Mn(Cb(G)⊗ehCb(G)) < 1. We note that the expression of [uij ]
in (4.4) is well defined and is independent of the choice of an orthonormal basis
{hk}k∈I . The converse is obvious since we may simply take H = MI,1 = �2(I).

Motivated by this, Spronk also considered measurable Schur multipliers in [42]
by letting

V ∞(G, m) = L∞(G) ⊗eh L∞(G),
i.e., a function u : G × G → C is a measurable Schur multiplier if and only if u
can be identified with an element in L∞(G) ⊗eh L∞(G). The advantage of this
approach is that we may apply the completely isometric isomorphism

T : u ∈ L∞(G) ⊗eh L∞(G) �→ T (u) ∈ CBσ
L∞(G)(B(L2(G)))

defined in (2.5).
A continuous (respectively, measurable) Schur multiplier u is right invariant if

for every g ∈ G,
rgu(s, t) = u(sg, tg) = u(s, t)

for all (s, t) ∈ G × G (respectively, for almost every (s, t) ∈ G × G). It is easy
to see that for any ϕ ∈ McbA(G), the corresponding Schur multiplier uϕ is right
invariant. If we let V b

inv(G) and V ∞
inv(G, m) denote the spaces of all right invariant

continuous Schur multipliers and right invariant measurable Schur multipliers on
G×G, respectively, we obtain the following result, in which the equivalence of (1),
(2) and (2′) has been observed by Spronk [43, Theorem 5.3]. We provide a very
different, but much simpler proof here.

Theorem 4.2. Let uij ∈ V ∞(G, m) = L∞(G)⊗eh L∞(G) with 1 ≤ i, j ≤ n. Then
the following are equivalent:

(1) there exists [ϕij ] ∈ Mn(McbA(G)) such that ‖[ϕij ]‖Mn(McbA(G)) ≤ 1 and
[uij ] = [uϕij

];
(2) [uij ] ∈ Mn(V b

inv(G)) with ‖[uij ]‖Mn(V b
inv(G)) ≤ 1;

(2′) [uij ] ∈ Mn(V ∞
inv(G, m)) with ‖[uij ]‖Mn(V ∞

inv(G,m)) ≤ 1;

(3) [T (uij)] ∈ Mn(CBσ,L(G)
L∞(G)(B(L2(G)))) with ‖[T (uij)]‖cb ≤ 1.

Proof. (1) ⇒ (2) is an immediate consequence of Lemma 4.1, and (2) ⇒ (2′) is
obvious since we have the completely isometric injections

Cb(G) ⊗eh Cb(G) ↪→ L∞(G) ⊗eh L∞(G) and thus V b
inv(G) ↪→ V ∞

inv(G, m).

(2′) ⇒ (3) Let us assume that [uij ] =
[∑

k∈I vik ⊗ wkj

]
is a contractive element

in Mn(V ∞
inv(G, m)). Then Tn([uij ]) = [T (uij)] is a normal completely contractive
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L∞(G)-bimodule morphism contained in Mn(CBσ
L∞(G)(B(L2(G)))). For any s ∈ G

and [ζj ] ∈ L2(G)n, we have

[T (uij)(λ(s))] [ζj ] (t) =

[∑
k∈I

(vikλ(s)wkjζj)(t)

]
=

[∑
k∈I

vik(t)wkj(s−1t)ζj(s−1t)

]

=
[
uij(t, s−1t)(λ(s)ζj)(t)

]
= [uij(s, e)λ(s)ζj] (t).

This shows that Tn([uij ])(λ(s)) = [uij(s, e)λ(s)] ∈ Mn(L(G)). By the normality
of Tn([uij ]), we can conclude that Tn([uij ]) maps L(G) into Mn(L(G)). Therefore,
Tn([uij ]) ∈ Mn(CBσ,L(G)

L∞(G)(B(L2(G)))).
(3) ⇒ (1) Let us assume (3). Since T is a complete isometry from L∞(G) ⊗eh

L∞(G) onto CBσ
L∞(G)(B(L2(G))), we may assume that [uij ] =

[∑
k∈I vik ⊗ wkj

]
is

a contractive element in Mn(L∞(G) ⊗eh L∞(G)). As we calculated above,

[T (uij)(λ(s))] =

[∑
k∈I

vikλ(s)wkj

]
=

[∑
k∈I

vik (ls−1wkj)λ(s)

]

for any s ∈ G. Since
∑

k∈I vik (ls−1wkj) ∈ L∞(G) and
∑

k∈I vik (ls−1wkj) =
T (uij)(λ(s))λ(s)∗∈L(G), we can conclude from Lemma 3.1 that

∑
k∈I vik (ls−1wkj)

are scalar multiples of identity contained in L∞(G)∩L(G) = C1. We let ϕij : G →
C be functions determined by

(4.5)
∑
k∈I

vik (ls−1wkj) = ϕij(s)1.

Then these functions ϕij satisfy

[T (uij)(λ(s))] = [ϕij(s)λ(s)].

Since T (uij), restricted to L(G), is a normal completely bounded map on L(G), its
preadjoint determines a completely bounded map on A(G). Therefore, ϕij defines
a completely bounded multiplier on A(G) such that T (uij)|L(G) = Mϕij

. It follows
from (4.5) that we have

uij(s, t) =
∑
k∈I

vik(s) wkj(t) =
∑
k∈I

vik(s) (lts−1wkj)(s) = ϕij(st−1).

This completes the proof. �

Theorem 4.3. We have the completely isometric isomorphisms

(4.6) McbA(G) ∼= V b
inv(G) ∼= V ∞

inv(G, m) ∼= CBσ,L(G)
L∞(G)(B(L2(G))),

which preserve the natural involutions and matrix orders on these completely con-
tractive Banach algebras.

In particular, we may completely identify McbA(G) with CBσ,L(G)
L∞(G)(B(L2(G))) via

the map Θ̂ given by
Θ̂(ϕ) = T (uϕ).

Proof. Let us first note that for any

[Φij ] ∈ Mn(CBσ,L(G)
L∞(G)(B(L2(G)))) ⊆ Mn(CBσ

L∞(G)(B(L2(G)))),

there exists [uij ] =
[∑

k∈I vik ⊗ wkj

]
∈ Mn(L∞(G) ⊗eh L∞(G)) such that [Φij ] =

[T (uij)]. Then we may apply Lemma 4.1 and Theorem 4.2 to obtain the result. �
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It is known from work of Haagerup and Kraus [22] that McbA(G) is a dual space
with a predual Q(G), which is the completion of L1(G) under the norm induced
from McbA(G)∗, i.e., we may define the Q(G)-norm

‖f‖Q(G) = sup
{∣∣∣∣

∫
G

f(t)ϕ(t)dt

∣∣∣∣ : ϕ ∈ McbA(G), ‖ϕ‖McbA(G) ≤ 1
}

for any f ∈ L1(G). We may obtain a canonical operator space matrix norm on
Q(G) such that McbA(G) is completely isometric to the operator dual of Q(G) (see
Kraus and Ruan [27]). Since the co-involution κ : f ∈ L∞(G) → f̌ ∈ L∞(G) is a
normal unital *-isomorphism on L∞(G), its preadjoint

κ∗(f)(t) = f(t−1)∆(t−1)

defines an isometric anti-isomorphism on L1(G). Let m denote the convolution
multiplication on the convolution algebra L1(G). The following is similar to a
result of Spronk [43, Theorem 6.5].

Proposition 4.4. The map

m ◦ (id ⊗ κ∗) : f ⊗ g ∈ L1(G) ⊗ L1(G) �→ f ∗ κ∗(g) ∈ L1(G)

extends to a complete quotient map, which is denoted by mid⊗κ∗ , from L1(G) ⊗h

L1(G) onto Q(G).

Proof. Let us first recall (from the discussion above) that

ΓΘ̂ = T−1 ◦ Θ̂ : ϕ ∈ McbA(G) �→ uϕ ∈ L∞(G) ⊗eh L∞(G)

defines a completely isometric injection from McbA(G) into L∞(G)⊗ehL∞(G). For
any ϕ ∈ McbA(G) and f, h ∈ L1(G), we have

〈ϕ, m ◦ (id ⊗ κ∗)(f ⊗ h)〉 =
∫

G

ϕ(t)
∫

G

f(s)κ∗(h)(s−1t)dsdt

=
∫

G

∫
G

ϕ(t)f(s)h(t−1s)∆(t−1s)dsdt

=
∫

G

∫
G

ϕ(sg−1)f(s)h(g)dsdg (with g = t−1s)

= 〈uϕ, f ⊗ h〉 = 〈ΓΘ̂(ϕ), f ⊗ h〉.

This shows that m ◦ (id ⊗ κ∗) is equal to Γ∗
Θ̂
|L1(G)⊗L1(G), the restriction of Γ∗

Θ̂
to

L1(G)⊗L1(G), and thus extends to a complete quotient map from L1(G)⊗h L1(G)
onto Q(G). �

Theorem 4.5. Θ̂ is a weak∗-weak∗ continuous completely isometric isomorphism
from McbA(G) onto CBσ,L(G)

L∞(G)(B(L2(G))).

Proof. From Proposition 4.4, we see that ΓΘ̂ is just the adjoint of mid⊗κ∗ and thus is
weak∗-weak∗ continuous from McbA(G) into L∞(G)⊗ehL∞(G). Since T is a weak∗-
weak∗ continuous completely isometric isomorphism from L∞(G) ⊗eh L∞(G) onto
CBσ

L∞(G)(B(L2(G))), we can conclude that Θ̂ = T ◦ΓΘ̂ is a weak∗-weak∗ continuous

completely isometric isomorphism from McbA(G) onto CBσ,L(G)
L∞(G)(B(L2(G))). �



REPRESENTATIONS OF McbA(G) AND UCB(Ĝ)∗ 1149

We have seen from Theorem 3.2 and Theorem 4.5 that M(G) and McbA(G)) can
be completely isometrically identified as the completely contractive Banach algebras
Θr(M(G)) = CBσ,L∞(G)

L(G) (B(L2(G))) and Θ̂(McbA(G)) = CBσ,L(G)
L∞(G)(B(L2(G))) on

B(L2(G)), respectively. Moreover, we may easily obtain the following result.

Corollary 4.6. We have Θr(M(G)) ∩ Θ̂(McbA(G)) = C idB(L2(G)).

Proof. Let Φ ∈ Θr(M(G)) ∩ Θ̂(McbA(G)). We have

Φ(f) = fΦ(1) = Φ(1)f and Φ(λ(s)) = λ(s)Φ(1) = Φ(1)λ(s)

for all f ∈ L∞(G) and s ∈ G. Since span{fλs : f ∈ L∞(G), s ∈ G} is σ-weakly
dense in B(L2(G)) (cf. step 3 in the proof of Theorem 3.2), the normality of Φ
implies that

Φ(x) = xΦ(1) = Φ(1)x

for all x ∈ B(L2(G)). Therefore, Φ is a scalar multiple of idB(L2(G)). �

Let C∗(G) denote the full group C∗-algebra of G and B(G) = C∗(G)∗ the
Fourier-Stieltjes algebra of G. The (non-degenerate) universal representation πu :
L1(G) → C∗(G) induces a complete contraction from Q(G) into C∗(G). The ad-
joint map (πu)∗ of πu is exactly the canonical inclusion of B(G) into McbA(G). It is
known (see Bożejko [3] and Losert [30]) that a locally compact group G is amenable
if and only if McbA(G) = B(G) (or equivalently, Q(G) = C∗(G) = C∗

λ(G)). Then
the following corollary is an immediate consequence of Proposition 4.4, which ex-
tends the result of Pisier [36] for discrete groups.

Corollary 4.7. A locally compact group G is amenable if and only if πu ◦ mid⊗κ∗

defines a complete quotient map from L1(G)⊗h L1(G) onto C∗(G) (or equivalently,
λ ◦ mid⊗κ∗ = mλ⊗κ̂◦λ defines a complete quotient map from L1(G) ⊗h L1(G) onto
C∗

λ(G), where κ̂ is the co-involution κ̂(λ(s)) = λ(s−1) on C∗
λ(G)).

We note that the right regular representation ρ is unitarily equivalent to the left
regular representation λ. More precisely, there exists a self-adjoint unitary operator
V on L2(G) defined by

V ξ(s) = ξ(s−1)∆(s−1)
1
2

such that ρ(s) = V ∗λ(s)V . Using this unitary equivalence, we may completely
isometrically identify R(G) with L(G) and thus completely isometrically identify
the operator predual R(G)∗ of R(G) with the Fourier algebra A(G). Recall that
T : R(G)⊗ehR(G) → CBσ

L(G)(B(L2(G))), defined in (2.5), is a completely isometric
isomorphism. Then

ΓΘr
(µ) = T−1 ◦ Θr(µ) =

∫
G

ρ(t) ⊗ ρ(t)∗dµ(t)

defines a weak∗-weak∗ continuous completely isometric homomorphism ΓΘr
from

M(G) into R(G) ⊗eh R(G). We may obtain the following duality result to Propo-
sition 4.4.

Proposition 4.8. The preadjoint of ΓΘr
determines a complete quotient map

mι⊗κ◦ι : ϕ ⊗ ψ ∈ A(G) ⊗h A(G) �→ ϕψ̌ ∈ C0(G)

from A(G) ⊗h A(G) onto C0(G).
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Proof. Since C0(G) is a commutative C∗-algebra, the canonical inclusion ι : A(G) →
C0(G) and the co-involution κ, restricted to C0(G), are complete contractions.
Then

m ◦ (ι ⊗ κ ◦ ι) : ϕ ⊗ ψ ∈ A(G) ⊗h A(G) �→ ϕψ̌ ∈ C0(G)
extends to a complete contraction mι⊗κ◦ι from A(G) ⊗h A(G) into C0(G). It is
routine to verify that mι⊗κ◦ι = (ΓΘr

)∗. Therefore, this map is a complete quotient
map from A(G) ⊗h A(G) onto C0(G). �
Remark 4.9. In Theorem 3.6, we characterized the image space Θr(L1(G)) in
CBσ

L(G)(B(L2(G))). It is an intriguing question to ask whether we can obtain an
analogous characterization for Θ̂(A(G)) in CBσ

L∞(G)(B(L2(G))). To consider this
question, we need to assume G to be an amenable group. This allows us to com-
pletely isometrically identify A(G) with a norm closed ideal in B(G) = McbA(G).
Since Cb(G) = MC0(G) is the multiplier C∗-algebra of C0(G), it is natural to
conjecture that we have

Θ̂(A(G)) = CBσ,(L(G),MC∗
λ(G))

L∞(G) (B(L2(G))),

where MC∗
λ(G) is the multiplier C∗-algebra of the reduced group C∗-algebra C∗

λ(G).

5. Commutant theorems

It is known from Theorem 3.2 that we have Θr(M(G)) = CBσ,L∞(G)
L(G) (B(L2(G))).

The following theorem shows that this space can be identified with the commutant
of Θ̂(McbA(G)) in CBσ

L(G)(B(L2(G))).

Theorem 5.1. We have

Θr(M(G)) = Θ̂(McbA(G))c ∩ CBσ
L(G)(B(L2(G))).

Proof. Let us first show that for every µ ∈ M(G), Θr(µ) is contained in

Θ̂(McbA(G))c = T (V ∞
inv(G, m))c.

Given any u =
∑

k∈I vk ⊗ wk ∈ V ∞
inv(G, m), we have

Θr(µ)(T (u)(a)) =
∫

G

ρ(t)

(∑
k∈I

vkawk

)
ρ(t)∗dµ(t)

=
∫

G

(∑
k∈I

ρ(t)vkawkρ(t)∗
)

dµ(t)

=
∫

G

(∑
k∈I

(rtvk)(ρ(t)aρ(t)∗)(rtwk)

)
dµ(t)

=
∑
k∈I

(rtvk)
(∫

G

(ρ(t)aρ(t)∗)dµ(t)
)

(rtwk)

= T (rtu)(Θr(µ)(a)) = T (u)(Θr(µ)(a))

for all a ∈ B(L2(G)). This shows that

Θr(M(G)) ⊆ Θ̂(McbA(G))c ∩ CBσ
L(G)(B(L2(G))).

Now assume that Φ is a map contained in Θ̂(McbA(G))c ∩ CBσ
L(G)(B(L2(G))).

We claim that Φ(f) ∈ L∞(G) for all f ∈ L∞(G). To see this, let us first fix an
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orthonormal basis {hk}k∈I of L2(G). For any ξ, η ∈ L2(G), ψ(s) = ξ∗λ(s)η is an
element in A(G) ⊆ McbA(G), and we can write

uψ =
∑
k∈I

vk ⊗ wk ∈ L∞(G) ⊗eh L∞(G)

with vk(s) = ξ∗λ(s)hk and wk(t) = h∗
kλ(t−1)η. For any f ∈ L∞(G) and s, t ∈ G,

we have

ρ(s)T (uψ)(f)ρ(t) = ρ(s)

(∑
k∈I

vkfwk

)
ρ(t)

=
∑
k∈I

(rsvk)(rsf)(rswk)ρ(s)ρ(t) =
∑
k∈I

ψ(e)ρ(s)fρ(t).

This implies that

(5.1) xT (uψ)(f)y = ψ(e)xfy

for all x, y ∈ R(G). Since Φ ∈ CBσ
L(G)(B(L2(G))), there exists z =

∑
j∈J xj ⊗ yj ∈

R(G) ⊗eh R(G) such that
Φ(a) =

∑
j∈J

xjayj

for all a ∈ B(L2(G)). It follows from (5.1) that

(5.2) Φ(T (uψ)(f)) =
∑
j∈J

xjT (uψ)(f)yj = ψ(e)Φ(f).

In particular, if we let ψik(s) = h∗
i λ(s)hk, then

ψik(e)Φ(f) = Φ(T (uψik
)(f)) = T (uψik

)(Φ(f)) =
∑
j∈I

ψijΦ(f)ψjk

= [h∗
i λhj ](1I ⊗ Φ(f))[h∗

jλ
∗hk].

(5.3)

We may regard

λ = [ψik] : s ∈ G → [ψik(s)] = [h∗
i λ(s)hk] ∈ MI(C)

as an element in MI(Cb(G)). Then λ̌ defined by

λ̌(s) = [ψ̌(s−1)] = [h∗
i λ(s−1)hk]

is also an element in MI(Cb(G)) such that

λλ̌ = 1I ⊗ 1 = λ̌λ ∈ MI(Cb(G)).

Since ψik(e) = δik, we can conclude from (5.3) that

1I ⊗ Φ(f) = [ψik(e)Φ(f)] = [h∗
i λhj ](1I ⊗ Φ(f))[h∗

jλ
∗hk] = λ(1I ⊗ Φ(f))λ̌.

This shows that
λ(1I ⊗ Φ(f)) = (1I ⊗ Φ(f))λ.

Using the orthonormal basis {hk}k∈I , we may express elements ξ and η ∈ L2(G)
by scalar vectors [αk] and [βk] in �2(I), i.e. we can write ξ =

∑
k∈I αkhk and

η =
∑

k∈I βkhk. Then we can write

ψ(s) = ξ∗λ(s)η =
∑
i,j∈I

ᾱih
∗
i λ(s)hjβj =

∑
i,j∈I

ᾱiψij(s)βj .
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From this we can conclude that

ψΦ(f) = [ᾱi]λ(1I ⊗ Φ(f))[βj ] = [ᾱi](1I ⊗ Φ(f))λ[βj ] = Φ(f)ψ.

This shows that Φ(f) commutes with all functions in A(G) and thus commutes
with all functions in L∞(G) = A(G)

s.o.t ⊆ B(l2(G)). Therefore, Φ(f) is contained
in L∞(G)′ = L∞(G). �

Correspondingly, we may obtain the following theorem which shows that
Θ̂(McbA(G)) can be identified with the commutant of Θr(M(G)) in
CBσ

L∞(G)(B(L2(G))).

Theorem 5.2. We have

Θ̂(McbA(G)) = Θr(M(G))c ∩ CBσ
L∞(G)(B(L2(G))).

Proof. Let us consider T (V ∞
inv(G, m)). Since T is a completely isometric isomor-

phism from L∞(G) ⊗eh L∞(G) onto CBσ
L∞(G)(B(L2(G))), it suffices to show that

an element u =
∑

k∈I vk ⊗ wk ∈ L∞(G) ⊗eh L∞(G) is contained in V ∞
inv(G, m) if

and only if T (u) ◦Θr(µ) = Θr(µ) ◦T (u) for all µ ∈ M(G). Let us first consider the
Dirac measures δt. Given any a ∈ B(L2(G)), we have

T (u)(Θr(δt)(a)) =
∑
k∈I

vkρ(t)aρ(t)∗wk =
∑
k∈I

ρ(t)(rt−1vk)a(rt−1wk)ρ(t)∗

= Θr(δt)(T (rt−1u)(a)).

Hence u ∈ V ∞
inv(G, m) if and only if T (u) ◦ Θr(δt) = Θr(δt) ◦ T (u) for all t ∈ G.

Moreover, since

Θr(µ)(a) =
∫

G

ρ(t)aρ(t)∗dµ(t) =
∫

G

Θr(δt)(a)dµ(t)

and T (u) is a normal map, we can conclude that u ∈ V ∞
inv(G, m) if and only if

T (u) ◦ Θr(µ) = Θr(µ) ◦ T (u) for all µ ∈ M(G). �

Remark 5.3. Let Θ̃r : LUC(G)∗ → CBL∞(G)
L(G) (L2(G))) be the completely isometric

homomorphism discussed in Remark 3.7. It was shown by Neufang [32, Theo-
rem 3.5.3] that, for non-compact, second countable groups G, the commutant of
Θ̃r(LUC(G)∗) in CB(B(L2(G))) is contained in CBσ(B(L2(G))). Then we can easily
conclude from Theorem 5.2 that in this case,

Θ̂(McbA(G)) = Θ̃r(LUC(G)∗)c ∩ CBL∞(G)(B(L2(G))).

Theorem 5.4. We have

Θ̂(McbA(G)) = Θ̂(McbA(G))cc

or equivalently,

CBσ,L(G)
L∞(G)(B(L2(G))) = CBσ,L(G)

L∞(G)(B(L2(G)))cc.

Proof. Combining Theorem 4.3 and Theorem 5.2, we obtain

CBσ,L(G)
L∞(G)(B(L2(G))) =

(
Θr(M(G))c ∩ CBσ

L∞(G)(B(L2(G)))
)

.
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Taking the double commutant, we get

CBσ,L(G)
L∞(G)(B(L2(G)))cc =

(
Θr(M(G))c ∩ CBσ

L∞(G)(B(L2(G)))
)cc

⊆ Θr(M(G))ccc = Θr(M(G))c.

Moreover, we have

CBσ,L(G)
L∞(G)(B(L2(G)))cc ⊆ CBσ

L∞(G)(B(L2(G)))cc = CBσ
L∞(G)(B(L2(G)))

by (2.9). The above argument shows that

CBσ,L(G)
L∞(G)(B(L2(G)))cc ⊆ Θr(M(G))c∩CBσ

L∞(G)(B(L2(G))) = CBσ,L(G)
L∞(G)(B(L2(G))).

This completes the proof. �

Similarly, we can apply Theorem 3.2 and Theorem 5.1 to obtain the following
double commutant theorem, which was first proved in Neufang [32] by using a
different argument (in a more general setting). We leave the details to the reader.

Theorem 5.5. We have

Θr(M(G)) = Θr(M(G))cc

or equivalently,

CBσ,L∞(G)
L(G) (B(L2(G))) = CBσ,L∞(G)

L(G) (B(L2(G)))cc.

Remark 5.6. As we discussed in (1.1), there is an isometric isomorphism Φ from
the measure M(G) into the space B(L∞(G)) of all bounded maps on L∞(G). Re-
stricting Φ to L1(G), Ghahramani and Lau proved in [16, Theorem 5.1] that the
bicommutant of Φ(L1(G)) in B(L∞(G)) is equal to Φ(M(G)). Motivated by this
result, it is natural to conjecture that

Θr(L1(G))cc = Θr(M(G)).

Since Θr(L1(G)) ⊆ Θr(M(G)), it follows from Theorem 5.5 that

Θr(L1(G))cc ⊆ Θr(M(G))cc = Θr(M(G)).

However, we cannot prove the equality at this moment. Considering the duality, it
is also natural to conjecture that for amenable groups G, we have

Θ̂(A(G))cc = Θ̂(McbA(G)).

6. Representation of UCB(Ĝ)∗

Let us first recall from §4 that there is a commutative completely contractive
A(G)-bimodule structure on L(G) given by 〈ω · x, ω′〉 = 〈x, ω′ · ω〉. We let A(G) ·
L(G) = {ω · x : ω ∈ A(G), x ∈ L(G)}, and we define UCB(Ĝ) to be the norm
closure of A(G)·L(G) in L(G). Then UCB(Ĝ) is a linear subspace of L(G) (see [19,
footnote (2) on page 373]), and elements in UCB(Ĝ) are called bounded uniformly
continuous linear functionals on Ĝ. Moreover, it was shown by Lau [29] that
UCB(Ĝ) is a C∗-subalgebra of L(G), which contains the reduced group C∗-algebra
C∗

λ(G), and we have UCB(Ĝ) = C∗
λ(G) when G is a discrete group. In particular,

if G is an amenable group, A(G) · L(G) is automatically norm closed in L(G) and
we have the equality UCB(Ĝ) = A(G) · L(G) (see [19]).
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The dual space UCB(Ĝ)∗ is a Banach algebra with the multiplication given by

(6.1) 〈m � n, x〉 = 〈m, n � x〉

for m, n ∈ UCB(Ĝ)∗ and x ∈ UCB(Ĝ), where n � x defined by

(6.2) 〈n � x, ω〉 = 〈n, ω · x〉 (∀ω ∈ A(G))

is an operator contained in UCB(Ĝ). Since we need to use the right action ω · x =
(id⊗ ω)Γ̂(x) on UCB(Ĝ) (especially, later on in Lemma 6.1 and Theorem 6.2), we
use this diamond product � to distinguish it from the first Arens’ product ◦ defined
by the left action x·ω = (ω⊗id)Γ̂(x). Given any n ∈ UCB(Ĝ)∗, there exists a norm
preserving extension ñ ∈ L(G)∗. We may find a net of elements nα ∈ A(G) such
that ‖nα‖ ≤ ‖n‖ and nα(x) → ñ(x) for all x ∈ L(G). It follows that nα(x) → n(x)
for all x ∈ UCB(Ĝ). If m is another element in UCB(Ĝ)∗, we let mβ ∈ A(G) such
that mβ(x) → m(x) for all x ∈ UCB(Ĝ). Then we can write (6.1) as

(6.3) 〈m�n, x〉 = 〈m, n�x〉 = lim
β
〈mβ, n�x〉 = lim

β
〈n, mβ ·x〉 = lim

β
lim
α
〈nα·mβ, x〉.

On the other hand, the first Arens’ product m ◦ n can be expressed as

〈m ◦ n, x〉 = 〈m, n ◦ x〉 = lim
β
〈mβ, n ◦ x〉 = lim

β
〈n, x ◦ mβ〉 = lim

β
lim
α
〈mβ · nα, x〉.

Since A(G) is a commutative Banach algebra, we atually have m � n = m ◦ n for
m, n ∈ UCB(Ĝ)∗. However, the two multiplications are different on A∗∗ for general
non-commutative completely contractive Banach algebras A.

It is easy to see from (6.3) that UCB(Ĝ)∗ with the canonical dual operator space
structure is a completely contractive Banach algebra. In general, UCB(Ĝ)∗ is not
necessarily commutative since Lau has proved in [29, Theorem 5.5] that for any
amenable group G, UCB(Ĝ)∗ is commutative if and only if G is discrete. If G is
an amenable group, then McbA(G) = B(G) is completely isometrically isomorphic
to a Banach subalgebra of UCB(Ĝ)∗ and UCB(Ĝ)∗ acts naturally as the duality
of LUC(G)∗. Our goal of this section is to study the representation theorem for
UCB(Ĝ)∗.

To do this, we need to recall some useful notions from Kac algebras (see [13] for
details). It is known from the theory of Kac algebras that for any locally compact
group G, there is an important fundamental unitary operator W on L2(G × G)
defined by Wζ(s, t) = ζ(s, st) for all ζ ∈ L2(G × G). The operator W is contained
in L∞(G)⊗̄L(G) and satisfies the pentagonal relation

(6.4) W23W13W12 = W12W23,

where we let W12 = W ⊗ 1, W23 = 1 ⊗ W and W13 = (σ ⊗ 1)W23(σ ⊗ 1), and we
let σ be the flip map σζ(s, t) = ζ(t, s) on L2(G×G). Given any f ∈ L1(G), we can
write

λ(f) = 〈f ⊗ id, W ∗〉 and κ̂(λ(f)) = 〈f ⊗ id, W 〉
by using the right slice map 〈f ⊗ id, x ⊗ y〉 = f(x)y from L∞(G)⊗̄L(G) into L(G)
induced by f .

We denote by Ŵ = σW ∗σ the dual fundamental unitary operator of W . Then
Ŵ also satisfies the pentagonal relation (6.4), and we may define a normal unital
completely isometric *-homomorphism

(6.5) Γ̂(x) = Ŵ (1 ⊗ x)Ŵ ∗
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from B(L2(G)) into B(L2(G))⊗̄B(L2(G)). The pentagonal relation implies that Γ̂
is co-associative, i.e., it satisfies

(6.6) (Γ̂ ⊗ id) ◦ Γ̂ = (id ⊗ Γ̂) ◦ Γ̂.

The preadjoint of Γ̂ defines an associative completely contractive multiplication

(6.7) mΓ̂ = Γ̂∗ : T (L2(G)) × T (L2(G)) → T (L2(G))

on T (L2(G)) = B(L2(G))∗. This also determines a completely contractive
T (L2(G))-bimodule action

ω · x = 〈id ⊗ ω, Γ̂(x)〉 and x · ω = 〈ω ⊗ id, Γ̂(x)〉
on B(L2(G)). If we restrict Γ̂ to L(G), we obtain the co-multiplication

Γ̂(λ(s)) = λ(s) ⊗ λ(s)

on L(G) and mΓ̂ induces the completely contractive multiplication on A(G).

Lemma 6.1. Let G be an amenable group. For any ω ∈ T (L2(G)) and x ∈
B(L2(G)), ω · x is an operator contained in UCB(Ĝ).

(1) The map

S : ω ⊗ x ∈ T (L2(G)) ⊗ B(L2(G)) → ω · x = 〈id ⊗ ω, Γ̂(x)〉 ∈ UCB(Ĝ)

extends to a complete quotient from the operator projective tensor product
T (L2(G))⊗̂B(L2(G)) onto UCB(Ĝ).

(2) The corresponding map

SL(G) : ω ⊗ x ∈ A(G) ⊗ L(G) → ω · x = 〈id ⊗ ω, Γ̂(x)〉 ∈ UCB(Ĝ)

extends to a complete quotient from the operator projective tensor product
A(G)⊗̂L(G) onto UCB(Ĝ).

Proof. Let us first prove (1). Assume that ω = ωξ,η such that ξ and η are vectors in
Cc(G) ⊆ L2(G) with supports contained in a compact, symmetric set C. Since G
is an amenable group, there exists a net of non-empty compact sets Kα such that

(6.8)
∫

G

|χKα
(st) − χKα

(t)| dt

µG(Kα)
=

µG(s−1Kα∆Kα)
µG(Kα)

→ 0

uniformly for s ∈ C. Then ξα = 1

µG(Kα)
1
2
χKα

is a net of unit vectors in L2(G) such

that ∫
G

ξα(st)ξα(t)dt → 1

uniformly for s ∈ C by (6.8), and thus

‖Ŵ ∗(ξα ⊗ ξ) − (ξα ⊗ ξ)‖2 = ‖W (ξ ⊗ ξα) − (ξ ⊗ ξα)‖2

= 2‖ξ‖2 − 2Re (〈W (ξ ⊗ ξα) | (ξ ⊗ ξα)〉)

= 2‖ξ‖2 − 2Re

(∫
G

|ξ(s)|2
(∫

G

ξα(st)ξα(t)dt

)
ds

)

= 2‖ξ‖2 − 2Re

(∫
C

|ξ(s)|2
(∫

G

ξα(st)ξα(t)dt

)
ds

)
→ 0.

This shows that

(6.9) ‖Ŵ ∗(ξα ⊗ ξ) − (ξα ⊗ ξ)‖ → 0.
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Similarly, we can prove that

(6.10) ‖Ŵ ∗(ξα ⊗ η) − (ξα ⊗ η)‖2 → 0.

Let x be an arbitrary operator in B(L2(G)). Since Ŵ ∈ L(G)⊗̄L∞(G), it is easy
to see that

a = ωξ,η · x = 〈Ŵ (1 ⊗ x)Ŵ ∗(id ⊗ ξ) | (id ⊗ η)〉
is an operator contained in L(G). Using the pentagonal rule, we can write

ωξα,ξα
· a = 〈Ŵ (1 ⊗ a)Ŵ ∗(id ⊗ ξα) | (id ⊗ ξα)〉

= 〈Ŵ12Ŵ23W
∗
12(1 ⊗ 1 ⊗ x)W12Ŵ

∗
23Ŵ

∗
12(id ⊗ ξα ⊗ ξ) | (id ⊗ ξα ⊗ η)〉

= 〈Ŵ23Ŵ13(1 ⊗ 1 ⊗ x)Ŵ ∗
13Ŵ

∗
23(id ⊗ ξα ⊗ ξ) | (id ⊗ ξα ⊗ η)〉,

which clearly converges to

a = 〈Ŵ (1⊗x)Ŵ ∗(id⊗ξ) | (id⊗η)〉 = 〈Ŵ13(1⊗1⊗x)Ŵ ∗
13(id⊗ξα⊗ξ) | (id⊗ξα⊗η)〉

in norm by (6.9) and (6.10). This shows that a = ωξ,η · x ∈ UCB(Ĝ). Since
Cc(G) is norm dense in L2(G), we get ωξ,η · x ∈ UCB(Ĝ) for all ξ, η ∈ L2(G)
and x ∈ B(L2(G)). Moreover, since every ω in T (L2(G)) can be expressed as
a norm convergent series ω =

∑∞
n=1 ωξn,ηn

in T (L2(G)), we can conclude that
ω · x ∈ UCB(Ĝ).

It is easy to see that the map

S : ω ⊗ x ∈ T (L2(G)) ⊗ B(L2(G)) → ω · x = 〈id ⊗ ω, Γ̂(x)〉 ∈ UCB(Ĝ)

extends to a complete contraction from T (L2(G))⊗̂B(L2(G)) into UCB(Ĝ). More-
over, for each n ∈ N, Mn(UCB(Ĝ)) is a commutative completely contractive A(G)-
bimodule with the module structure given by ω · [xij ] = [ω · xij ]. Using Herz’s idea
(see [19, footnote (2) on page 373]), it is easy to show that A(G) ·Mn(UCB(Ĝ)) =
Mn(UCB(Ĝ)). For any [xij ] ∈ Mn(UCB(Ĝ)) with ‖[xij ]‖ < 1, we may apply Co-
hen’s factorization theorem (since A(G) has a contractive approximate identity) to
find ω ∈ A(G) with ‖ω‖ < 1 and [x̃ij ] ∈ Mn(UCB(Ĝ)) with ‖[x̃ij ]‖ < 1 such that

[xij ] = ω · [x̃ij ] = [S(ω ⊗ x̃ij)].

This shows that S is a complete quotient map from T (L2(G))⊗̂B(L2(G)) onto
UCB(Ĝ).

To see (2), it is obvious (from the definition) that

SL(G) : ω ⊗ x ∈ A(G) ⊗ L(G) → ω · x = 〈id ⊗ ω, Γ̂(x)〉 ∈ UCB(Ĝ)

extends to a complete contraction from the operator projective tensor product
A(G)⊗̂L(G) into UCB(Ĝ). The complete quotient property can be proved by
using the same argument as the one given at the end of the above proof. �

In the rest of this section, let us assume that G is an amenable group. By
Lemma 6.1, we may always apply n ∈ UCB(Ĝ)∗ to ω ·x for any ω ∈ T (L2(G)) and
x ∈ B(L2(G)). Then, for any n ∈ UCB(Ĝ)∗ and x ∈ B(L2(G)), we may obtain a

bounded linear operator, which is denoted by ˜̂Θ(n)(x), in B(L2(G)) such that

〈 ˜̂Θ(n)(x)ξ | η〉 = 〈n, ωξ,η · x〉 = lim
α
〈nα, ωξ,η · x〉

= lim
α
〈nα ⊗ ωξ,η, Γ̂(x)〉 = lim

α
〈nα · ωξ,η, x〉,

(6.11)
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where the module action nα · ωξ,η ∈ T (L2(G)) of A(G) on T (L2(G)) is induced by
the co-multiplication Γ̂. If we let {hk}k∈I be an orthonormal basis of L2(G), then
we may identify L2(G) with �2(I) and may write

˜̂Θ(n)(x) =
[
h∗

k
˜̂Θ(n)(x)hl

]
=

[
〈 ˜̂Θ(n)(x)hl | hk〉

]
=

[
〈n ⊗ ωhl,hk

, Γ̂(x)〉
]

= 〈n ⊗ id, Γ̂(x)〉.
(6.12)

It is easy to see that for each n ∈ UCB(Ĝ)∗, ˜̂Θ(n) is a completely bounded linear

map on B(L2(G)) with ‖ ˜̂Θ(n)‖cb ≤ ‖n‖, and it follows from the definition that ˜̂Θ

is equal to the adjoint of S. Then we can conclude from Lemma 6.1 that ˜̂Θ is a
weak∗-weak∗ continuous complete isometry from UCB(Ĝ)∗ into CB(B(L2(G))). Let
CBL(G)

L∞(G)(B(L2(G))) denote the space of all completely bounded L∞(G)-bimodule
morphisms which map L(G) into L(G). We now obtain the following completely
isometric representation theorem for UCB(Ĝ)∗, which can be regarded as the dual
result to Neufang’s representation theorem [33] indicated in Remark 3.7.

Theorem 6.2. Let G be an amenable group. Then ˜̂Θ is a weak∗-weak∗ com-
pletely isometric homomorphism from UCB(Ĝ)∗ into CBL(G)

L∞(G)(B(L2(G))) such

that ˜̂Θ|McbA(G) = Θ̂.

Moreover, ˜̂Θ preserves the natural involutions and matrix orders on UCB(Ĝ)∗

and CBL(G)
L∞(G)(B(L2(G))).

Proof. Let us first show that ˜̂Θ is an algebraic homomorphism from UCB(Ĝ)∗

into CB(B(L2(G))). Suppose that we are given m, n ∈ UCB(Ĝ)∗. Then for any
x ∈ B(L2(G)) and ξ, η ∈ L2(G),

〈 ˜̂Θ(m � n)(x)ξ | η〉 = 〈m � n, ωξ,η · x〉 = 〈m � n, 〈id ⊗ ωξ,η, Γ̂(x)〉〉
= lim

β
lim
α
〈nα ⊗ mβ ⊗ ωξ,η, (Γ̂ ⊗ id)Γ̂(x)〉

= lim
β

lim
α
〈nα · mβ · ωξ,η, x〉.

On the other hand,

〈 ˜̂Θ(m)( ˜̂Θ(n)(x))ξ | η〉 = 〈m, ωξ,η · ˜̂Θ(n)(x)〉 = lim
β
〈mβ ⊗ ωξ, η, Γ̂( ˜̂Θ(n)(x))〉

= lim
β
〈mβ · ωξ, η,

˜̂Θ(n)(x)〉

= lim
β
〈n, (mβ · ωξ, η) · x〉 = lim

β
lim
α
〈nα ⊗ (mβ · ωξ, η), Γ̂(x)〉

= lim
β

lim
α
〈nα · mβ · ωξ,η, x〉.

This shows that
˜̂Θ(m � n) = ˜̂Θ(m) ◦ ˜̂Θ(n).

Therefore, ˜̂Θ is a completely contractive homomorphism from UCB(Ĝ) into
CB(B(L2(G))).
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Since Ŵ is contained in L(G)⊗̄L∞(G), for any f, g ∈ L∞(G) and x ∈ B(L2(G)),
we have

Ŵ (1 ⊗ fxg)Ŵ ∗ = (1 ⊗ f)W (1 ⊗ x)Ŵ ∗(1 ⊗ g)
and thus obtain

˜̂Θ(n)(fxg) = f
˜̂Θ(n)(x)g

from (6.12). This shows that ˜̂Θ(n) is an L∞(G)-bimodule morphism in
CB(B(L2(G))). For any x ∈ L(G) we have Γ̂(x) ∈ L(G)⊗̄L(G) = CB(A(G),L(G)).
It follows that

˜̂Θ(n)(x) : ω ∈ A(G) → lim
α
〈nα ⊗ ω, Γ̂(x)〉 ∈ C

defines an element in L(G). Therefore, ˜̂Θ(n) maps L(G) into L(G).
Suppose that we are given ϕ ∈ McbA(G) and ξ, η ∈ L2(G). From the proof of

Theorem 4.2, we get

〈Θ̂(ϕ)(λ(s))ξ | η〉 = ϕ(s)〈λ(s)ξ | η〉 = 〈ϕ · ωξ,η, λ(s)〉
for all s ∈ G and

〈Θ̂(ϕ)(f)ξ | η〉 = 〈Θ̂(ϕ)(1)fξ | η〉 = ϕ(1)〈fξ | η〉 = 〈ϕ · ωξ,η, f〉

for any f ∈ L∞(G). By the normality of Θ̂ this implies that

〈Θ̂(ϕ)(x)ξ | η〉 = 〈ϕ · ωξ,η, x〉 = 〈ϕ, ωξ,η · Γ̂(x)〉 = 〈 ˜̂Θ(ϕ)(x)ξ | η〉

for all x ∈ B(L2(G)). This shows ˜̂Θ|McbA(G) = Θ̂. It follows from (6.12) that we
can write

Θ̂(ϕ)(x) = 〈ϕ ⊗ id, Γ̂(x)〉 = 〈ϕ ⊗ id, Ŵ (1 ⊗ x)Ŵ ∗〉
for ϕ ∈ McbA(G) and x ∈ B(L2(G)).

Since UCB(Ĝ) is a C∗-algebra, there exist a natural involution and a matrix

order on its dual space UCB(Ĝ)∗. We leave it to the reader to verify that ˜̂Θ
preserves the involutions and matrix orders on UCB(Ĝ)∗ and CBL(G)

L∞(G)(B(L2(G))).
�

We note that as a consequence of Theorem 4.5 and Theorem 6.2, it is easy to
show that if G is an amenable group, then

Θ̂(McbA(G)) = ˜̂Θ(UCB(Ĝ)∗) ∩ CBσ(B(L2(G))),

i.e. the image space of McbA(G) is exactly the normal part of ˜̂Θ(UCB(Ĝ)∗). This
is dual to Neufang’s result [33, Proposition 3.4 (i)], which shows that Θr(M(G)) =
Θ̃r(LUC(G)∗) ∩ CBσ(B(L2(G))) is the normal part of Θ̃r(LUC(G)∗).

Let G be an amenable group. For any n ∈ UCB(Ĝ)∗, we may define a bounded
linear map nL(G) on L(G) given by

(6.13) 〈nL(G)(x), ω〉 = 〈n, ω · x〉 = 〈n, 〈id ⊗ ω, Γ̂(x)〉〉
for all x ∈ L(G) and ω ∈ A(G). The map nL(G) is equal to the map nR discussed
in [29, §6]. Since A(G) is commutative it is also equal to Lau’s map nL. Lau
showed that this determines an isometric isomorphism from UCB(Ĝ)∗ onto the
space BA(G)(L(G)) of all bounded A(G)-bimodule morphisms on L(G). We note

that for each n ∈ UCB(Ĝ)∗, we actually have nL(G) = ˜̂Θ(n)|L(G), the restriction
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of ˜̂Θ(n) to L(G). Therefore, each nL(G) is a completely bounded A(G)-bimodule
morphism contained in CBA(G)(L(G)), and it can be shown by applying Lemma
6.1 that the map

n ∈ UCB(Ĝ)∗ → nL(G) = ˜̂Θ(n)|L(G) ∈ CBA(G)(L(G))

is a completely isometric isomorphism from UCB(Ĝ)∗ onto CBA(G)(L(G)). There-
fore, we may obtain the following completely bounded characterization of UCB(Ĝ)∗.

Proposition 6.3. Let G be an amenable group. Then we have the completely
isometric isomorphism

UCB(Ĝ)∗ ∼= CBA(G)(L(G)).

Remark 6.4. Similar to the situation described in Remark 3.7, it is still an open
question whether the map ˜̂Θ studied in Theorem 6.2 is onto CBL(G)

L∞(G)(B(L2(G)))
for general locally compact amenable groups. This is true when G is an amenable
discrete group, since in this case we have UCB(Ĝ) = C∗

λ(G) = Q(G) and thus
UCB(Ĝ)∗ = C∗

λ(G)∗ = McbA(G). It follows from (2.2) that
(6.14)

˜̂Θ(UCB(Ĝ)∗) = Θ̂(McbA(G)) = CBσ,L(G)
L∞(G)(B(L2(G))) = CBL(G)

L∞(G)(B(L2(G))).

The following result extends the map m ◦ (λ ⊗ κ̂ ◦ λ) in Corollary 4.7 to the
extended Haagerup tensor product L1(G) ⊗eh L1(G).

Proposition 6.5. Let G be an amenable group. The map m ◦ (λ ⊗ κ̂ ◦ λ) extends
to a complete quotient map, which is denoted by m̃λ⊗κ̂◦λ, from L1(G) ⊗eh L1(G)
onto UCB(Ĝ).

Proof. We first note from §2 that T has a natural weak∗-weak∗ continuous com-
pletely isometric extension T̃ from L∞(G) ⊗σh L∞(G) onto CBL∞(G)(B(L2(G))).

Then Γ ˜̂
Θ

= T̃−1 ◦ ˜̂Θ is a weak∗-weak∗ continuous completely isometric homomor-

phism from UCB(Ĝ)∗ into L∞(G) ⊗σh L∞(G). The preadjoint of Γ ˜̂
Θ

defines a

complete quotient from L1(G) ⊗eh L1(G) onto UCB(Ĝ). Since ˜̂Θ|McbA(G) = Θ̂, it
is easy to see from Proposition 4.4 and Corollary 4.7 that this map is the natural
extension of m ◦ (λ ⊗ κ̂ ◦ λ). �
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