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Abstract

We consider the Banach algebra LUC(G)∗ for a not necessarily locally compact topological group G. Our
goal is to characterize the topological centre Zt (LUC(G)∗) of LUC(G)∗. For locally compact groups G, it
is well known that Zt (LUC(G)∗) equals the measure algebra M(G). We shall prove that for every second
countable (not precompact) group G, we have Zt (LUC(G)∗) = M(Ĝ), where Ĝ denotes the completion of G
with respect to its right uniform structure (if G is precompact, then Zt (LUC(G)∗) = LUC(G)∗, of course). In
fact, this will follow from our more general result stating that for any separable (or any precompact) group G,
we have Zt (LUC(G)∗) = Leb(G), where Leb(G) denotes the algebra of uniform measures. The latter result
also partially answers a conjecture made by I. Csiszár 35 years ago [I. Csiszár, On the weak∗ continuity of
convolution in a convolution algebra over an arbitrary topological group, Studia Sci. Math. Hungar. 6 (1971)
27–40]. We shall give similar results for the topological centre Λ(GLUC) of the LUC-compactification
GLUC of G. In particular, we shall prove that for any second countable (not precompact) group G admitting
a group completion, we have Λ(GLUC) = Ĝ (if G is precompact, then Λ(GLUC) = GLUC). Finally, we shall
show that every linear (left) LUC(G)∗-module map on LUC(G) is automatically continuous whenever G is,
e.g., separable and not precompact.
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1. Introduction

In this paper we are concerned with the problem of describing the topological centre
Zt(LUC(G)∗) of the Banach algebra LUC(G)∗, and the topological centre Λ(GLUC) of the LUC-
compactification of G, for a not necessarily locally compact topological group G. Both problems
have been extensively studied in the locally compact case. The first problem was originally con-
sidered by A. Zappa in [38] for G = (R,+) and for discrete subgroups of (R,+). It was solved
for locally compact abelian groups by M. Grosser and V. Losert in [14], and without the assump-
tion of commutativity by A.T.-M. Lau in [20], where it was proved that, if G is a locally compact
group, then Zt(LUC(G)∗) equals the measure algebra M(G). The second problem was solved
by A.T.-M. Lau and J.S. Pym in [21], where it was established that, for locally compact groups,
Λ(GLUC) coincides with G; see also the paper [22] by A.T.-M. Lau, P. Milnes and J.S. Pym.
A simpler proof of the slightly stronger assertion Λ(GLUC \ G) = ∅ was given by I. Protasov
and J.S. Pym in [35]. The second author of the present paper considered in [26] the topological
centre problem for the algebra L1(G)∗∗ endowed with the first Arens product, as well as for its
quotient LUC(G)∗ and, by introducing a new, unified approach to these problems, proved that
Zt(L1(G)∗∗) = L1(G) and Zt(LUC(G)∗) = M(G). He was then able to show in [27] by a similar
technique that, when G is a locally compact group, Λ(GLUC \ G) = ∅.

We show that for every second countable (not precompact) group G, the equality

Zt

(
LUC(G)∗

) = M(Ĝ)

holds, where Ĝ denotes the completion of G with respect to its right uniform structure (generated
by the sets {(x, y) ∈ G ×G: xy−1 ∈ U}, where U is a neighbourhood of the identity e of G); note
that if G is precompact, then obviously Zt(LUC(G)∗) = LUC(G)∗. We even prove a more general
result which has the above as a consequence: for any separable (or any precompact) group G, we
have

Zt

(
LUC(G)∗

) = Leb(G), (1.1)

where Leb(G) denotes the algebra of uniform measures. This also gives a partial—affirmative—
answer to a conjecture made by I. Csiszár in 1971 (see [8, Remark (ii), p. 33]). Moreover, as we
shall see, the inclusions

M(Ĝ) ⊆ Leb(G) ⊆ Zt

(
LUC(G)∗

)
(1.2)

hold for any topological group G. The main tool for the proof of (1.1) is our Theorem 3.4, an
analogue for non-locally compact groups of [25, Satz 3.6.2] (see also [28]).

Moreover, we shall derive similar results for the topological centre Λ(GLUC) of the LUC-
compactification GLUC of G. Namely, for any second countable (not precompact) group G ad-
mitting a group completion, we have Λ(GLUC) = Ĝ; analogously to the above situation, if G is
precompact, then Λ(GLUC) = GLUC. As shown in [12], the inclusion Ĝ ⊆ Λ(GLUC) holds for any
topological group G. In fact, we shall consider a natural subsemigroup DL(G) of GLUC defined
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by a double limit criterion, which plays the role of the algebra Leb(G) of uniform measures in
the setting of semigroup compactifications; we then obtain the precise analogue of (1.2):

Ĝ ⊆ DL(G) ⊆ Λ
(
GLUC)

(1.3)

for any topological group G.
Finally, we shall prove a result on automatic continuity: every linear (left) LUC(G)∗-module

map on LUC(G) is automatically bounded whenever G is, for instance, separable and not pre-
compact.

2. Preliminaries

Given any group G and s ∈ G we denote by rs (�s ) the right (left) translation by s, defined
by (rsf )(t) := f (ts) ((�sf )(t) := f (st)) for t ∈ G and f :G → C. We denote the identity of G
by e.

We write Cb(G) for the space of complex-valued, bounded, continuous functions on G. We
denote by LUC(G) the subspace of Cb(G) consisting of left uniformly continuous functions on G,
i.e., the functions f ∈ Cb(G) for which the map G � s �→ �sf ∈ (Cb(G),‖ · ‖∞) is continuous.
Note that there is no common notation in the literature; e.g., our space LUC(G) is written as
Ur(G) in [8].

If n ∈ LUC(G)∗ and f ∈ LUC(G), then the function n · f defined by

(n · f )(x) := 〈n, �xf 〉 (x ∈ G)

belongs to LUC(G) (see, for example, [6, Theorem 4.4.3]), i.e., LUC(G) is left introverted.
This operation induces a natural product on LUC(G)∗ defined by

〈m · n,f 〉 := 〈m,n · f 〉 (
m,n ∈ LUC(G)∗, f ∈ LUC(G)

)
,

which turns LUC(G)∗ into a Banach algebra and LUC(G) into a left LUC(G)∗-module with the
action introduced above.

Definition 2.1. The topological centre Zt(LUC(G)∗) of LUC(G)∗ is defined as the set of ele-
ments m ∈ LUC(G)∗ such that left multiplication by m is w∗–w∗-continuous.

Remark 2.2. Let us briefly note that the question of determining Zt(LUC(G)∗) is only in-
teresting for groups G that are not precompact. Indeed, in the precompact case, we have
LUC(G) = WAP(G), the algebra of weakly almost periodic functions on G (cf., e.g., [6, Corol-
lary 4.4.11]), and it is well known that multiplication in WAP(G)∗ (defined as in LUC(G)∗) is
separately w∗–w∗-continuous. Hence Zt(LUC(G)∗) = LUC(G)∗ whenever G is precompact.

If we denote by δx the point evaluation at x (x ∈ G) and consider the w∗-closure δGw∗ ⊆
LUC(G)∗ of the set of all point evaluations, then (cf. [6]) this set with the induced product (and
the topology inherited from the w∗-topology on LUC(G)∗) is a semigroup compactification of G;
this compactification is denoted by GLUC. It equals the spectrum of the commutative C∗-algebra
LUC(G). It can also be shown that GLUC is the largest semigroup compactification, in the sense
that any other semigroup compactification of G is a natural quotient of GLUC. Moreover, GLUC
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can be characterized as the greatest ambit of G, i.e., the greatest G-flow which has a point with
dense orbit (see [19] or [32]).

Definition 2.3. The topological centre Λ(GLUC) of GLUC is defined as the set of all points x ∈
GLUC such that left multiplication by x is continuous.

We now recall the definition and basic properties of uniform measures which—under different
names—have first been introduced and studied by Berezanskii [5], Fedorova [11] and LeCam
[23,24]; Csiszár [8] investigated an equivalent property for positive functionals on LUC(G)

which he called ρ-continuity. Below we shall use Csiszár’s terminology (extended to not neces-
sarily positive functionals). Caution is advised with the notion of “measure”: uniform measures
are generally not measures in the usual sense, but merely functionals on LUC(G) with an ad-
ditional continuity property (which they share in particular with ordinary measures). For very
recent interesting developments in this area we recommend Pachl’s work [30] which moreover
gives an excellent survey of the subject—and in fact also refers to (an earlier version of) the
present paper.

Definition 2.4. Let G be a topological group.

(i) A family of functions {fi | i ∈ I } ⊆ LUC(G) is equi-LUC if for all ε > 0 there exists a
neighbourhood U of e such that ‖�xfi − fi‖∞ < ε for all i ∈ I and x ∈ U .

(ii) The algebra Leb(G) of ρ-continuous functionals on LUC(G) (or of uniform measures) is
defined to be the subalgebra of LUC(G)∗ consisting of all functionals m ∈ LUC(G)∗ such
that, if (fα) ⊆ Ball(LUC(G)) is an equi-LUC net of functions with fα → 0 pointwise, then
〈m,fα〉 → 0. The algebra consisting of the functionals m ∈ LUC(G)∗ which satisfy the
above property only for equi-LUC sequences will be denoted by Lebs(G).

Remark 2.5. Let G be a topological group.

(i) Clearly, Leb(G) and Lebs(G) are norm-closed subalgebras of LUC(G)∗.
(ii) Leb(G) and Lebs(G) are bands in LUC(G)∗; this follows from [24, Lemma 3].

(iii) If G is separable, we have Leb(G) = Lebs(G). Indeed, if m ∈ Leb(G) (respectively, m ∈
Lebs(G)), then on every bounded equi-LUC subset of LUC(G), the functional m is (sequen-
tially) continuous for the topology of pointwise convergence. But on such a set pointwise
convergence is equivalent to pointwise convergence on a dense subset. Since the topology
of pointwise convergence on a countable set is metrizable, sequential continuity implies
continuity.

(iv) If G is precompact, then Leb(G) = LUC(G)∗; see [24, Note, p. 18].

Finally, we recall various notions of boundedness for a topological group. These concepts are
studied in detail in [1–3,15].

Definition 2.6. A topological group G is called:

(i) bounded if, given any neighbourhood V of e, there exist n ∈ N and a finite subset F ⊆ G
such that G = V nF ;
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(ii) totally bounded (or precompact) if, given any neighbourhood V of e, there exists a finite
subset F ⊆ G such that G = V F ;

(iii) ω-bounded if, given any neighbourhood V of e, there exists a countable subset C ⊆ G such
that G = V C.

For the following, let us recall a very useful combinatorial result on partitions of groups.

Theorem 2.7. If G = A1 ∪ · · · ∪ Am is a finite partition of an arbitrary group G, then there exists
a subset A = Ai of the partition such that G = A−1AF for some finite subset F ⊆ G.

Proof. This is [34, Theorem 11.5.1]. �
Remark 2.8. Let G be a topological group.

(i) Suppose that, for every neighbourhood V of e, there exist finite subsets A,B ⊆ G and n ∈ N

such that

G =
⋃
x∈A
y∈B

xV ny,

then G is bounded.
(ii) Suppose that, for every neighbourhood V of e, there exist finite subsets A,B ⊆ G such that

G =
⋃
x∈A
y∈B

xVy,

then G is totally bounded.

Proof. We shall only prove (i) since (ii) is obtained similarly.
We can obviously assume V to be symmetric. By Theorem 2.7, there exist points x̃ ∈ A and

ỹ ∈ B and a finite subset F ⊆ G such that

G =
⋃
x∈F

(
x̃V nỹ

)−1(
x̃V nỹ

)
x.

Hence, G = ⋃
x∈F ỹ−1V 2nỹx, which implies that G = ỹG = ⋃

x∈F V 2nỹx. �
When G is locally compact, the concepts of boundedness and compactness coincide. In

the realm of non-locally compact groups the class of unbounded, separable (in particular, ω-
bounded) groups is very large indeed. Here we recall a few examples of such groups.

• The abelian groups (Qn,+), (Q \ {0}, ·), (An,+) and (A \ {0}, ·) are separable and un-
bounded. Here by A we denote the set of algebraic numbers over Z with the topology induced
by the standard topology of R.

• Any separable locally convex (in particular, Banach) space is an unbounded, separable
abelian group.
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• Let X be a path-connected, compact, metric space. Denote by Cb(X,T) the abelian group
(with pointwise multiplication) of continuous functions f :X → T, endowed with the topol-
ogy of uniform convergence on bounded subsets. Then the connected component C0

b(X,T)

of the identity is a separable, unbounded group (see [31, Lemma 7]).
• Any closed subgroup of the infinite permutation group S∞ with the pointwise convergence

topology is a group admitting “small open subgroups” (i.e., it has a countable neighbourhood
basis at e consisting of open subgroups), and is Polish (see [4, 1.5]); hence it is unbounded
if and only if it is not precompact.

• If F is a Fraïssé structure (see for instance [33] or [19]), then its automorphism group Aut(F)

is a separable, unbounded group. This class in particular contains the automorphism group
Aut(Γ ) of the infinite, countable random graph Γ and the automorphism group of (Q,�).

3. The factorization theorem

We start by recalling a well-known concept.

Definition 3.1. A family {Ai | i ∈ I } of subsets of G is left uniformly separated if there exists a
neighbourhood V of e such that V Ai ∩ V Aj = ∅ whenever i, j ∈ I with i �= j .

The following lemma shows that pointwise sums of LUC-functions still belong to LUC(G)

under suitable conditions involving the above notion.

Lemma 3.2. Let G be a topological group. Consider a family of functions {ui | i ∈ I } ⊆ LUC(G)

that is bounded and equi-LUC. Suppose further that the sets supp(ui) are left uniformly sepa-
rated. Then the ( pointwise defined) function u = ∑

i∈I ui belongs to LUC(G).

Proof. This is [25, Proposition 3.2.6]; see also [28]. �
We now come to the factorization theorems which constitute the main tool of the paper, and

are of interest in their own right. They show that the factorization result [25, Satz 3.2.7] (cf. also
[28])—which concerns families of functions of cardinality κ(G) (the compact covering number
of G) on locally compact, non-compact groups—can be extended beyond the realm of local
compactness under some weak assumptions on G.

Theorem 3.3. Let G be an unbounded, ω-bounded group. Then there exists a sequence (ψn) ⊆
GLUC such that for every equi-LUC sequence (fn) ⊆ Ball(LUC(G)) there is a single function
f ∈ Ball(LUC(G)) such that the factorization

fn = ψn · f
holds for all n ∈ N.

Proof.1 By Remark 2.8(i) there exists a symmetric (open) neighbourhood V of e such that, for
all m ∈ N, the group G cannot be covered by finitely many sets of the form sV mt with s, t ∈ G.

1 Note added in proof: Theorem 3.3 can also be shown with the assumption ‘unbounded’ replaced by ‘not precompact’
by an argument similar to the one given for Theorem 3.4.
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Since G is ω-bounded, there is a countable set {xk | k ∈ N} in G such that the family {V xk | k ∈ N}
is a covering of G.

Let Wk,m := V mxk . Consider the family of all unions of finitely many sets Wk,m. This family
still forms a countable covering of G which we denote by {Kn | n ∈ I }, with |I | = ω.

We define a relation on I by

n ≺′ l ⇔ V Kn � Kl.

Obviously, ≺′ is transitive. Moreover, ≺′ directs I . In order to see this, let n, l ∈ I . Since G is
unbounded, there exists p ∈ I such that Kp �⊆ V Kn ∪ V Kl . By construction, there exists q ∈ I

such that Kq = V Kn ∪ V Kl ∪ Kp . This implies that n ≺′ q and l ≺′ q .
We consider the set Ĩ := I × J , where |J | = ω. For ñ = (n,h) ∈ Ĩ we define Kñ := Kn and

Añ := V 2Kñ.
We construct by induction a net (yñ)ñ∈Ĩ

with the property that

Añy
−1
ñ

∩ Am̃y−1
m̃

= ∅ if ñ �= m̃. (3.1)

To this end we well-order Ĩ by ≺w and impose that y−1
ñ

/∈ A−1
ñ

Am̃y−1
m̃

for all m̃ ≺w ñ. This is

possible because each set A−1
ñ

Am̃y−1
m̃

is a finite union of double translates of powers of V .

We define a relation on Ĩ by

ñ ≺ m̃ ⇔ V Kñ � Km̃.

Clearly, this relation is transitive and directs Ĩ . Note that, for all (n,h) and (m, k) in Ĩ , we have
(n,h) ≺ (m, k) if and only if n ≺′ m.

Let {Ui}∞i=1 be a sequence of symmetric (open) neighbourhoods of e such that U1 = V and
U2

i+1 ⊆ Ui for all i ∈ N. By [16, Theorem 8.2], there exists a right invariant pseudo-metric d on
G such that:

(i) d is uniformly continuous for the right uniform structure of G × G;
(ii) 1

2i−1 � d(x, y) whenever xy−1 /∈ Ui .

For ñ ∈ Ĩ , we define the functions

uñ(x) := 1 − min
{
1, d(x,Kñ)

}
(x ∈ G).

Since d is right invariant and continuous, {uñ | ñ ∈ Ĩ } is an equi-LUC family. Moreover, the
functions uñ have values in [0,1] and satisfy uñ|Kñ

≡ 1. Also,

supp(uñ) ⊆ V Kñ. (3.2)

For if x /∈ V Kñ, then by property (ii) of d , we have d(x,Kñ) � 1, whence uñ(x) = 0. We con-
clude that, for ñ, m̃ ∈ Ĩ ,

uñum̃ = uñ whenever ñ ≺ m̃. (3.3)

By (3.1), for each ñ ∈ Ĩ , we have

V supp(uñ) ⊆ V 2Kñ = Añ. (3.4)
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Consider the functions

vñ = v(n,h) := ry(n,h)
(u(n,h)fh) ∈ LUC(G)

for ñ = (n,h) ∈ Ĩ .
For ñ = (n,h), m̃ = (m, k) ∈ Ĩ with ñ �= m̃ we have

V supp(vñ) ∩ V supp(vm̃) = V supp(u(n,h)fh)y
−1
(n,h) ∩ V supp(u(m,k)fk)y

−1
(m,k)

⊆ V supp(u(n,h))y
−1
(n,h)

∩ V supp(u(m,k))y
−1
(m,k)

⊆ A(n,h)y
−1
(n,h) ∩ A(m,k)y

−1
(m,k)

(
by (3.4)

)
= Añy

−1
ñ

∩ Am̃y−1
m̃

= ∅ (
by (3.1)

)
.

Hence, the sets supp(vñ), ñ ∈ Ĩ , are uniformly separated in the right uniformity of G. Since
the families {u(n,h) | (n,h) ∈ Ĩ } and {fh}h∈J are equi-LUC and norm-bounded, the family
{vñ | ñ ∈ Ĩ } is equi-LUC. Moreover, the family {vñ | ñ ∈ Ĩ } is norm-bounded. By Lemma 3.2,
the last three facts imply that the function f defined pointwise by

f :=
∑
ñ∈Ĩ

vñ =
∑
n∈I

∑
h∈J

ry(n,h)
(u(n,h)fh)

belongs to LUC(G). Obviously, ‖f ‖∞ � 1.
Let F be an ultrafilter on I which dominates the order filter. For h ∈ J , we define

ψh := w∗- lim
n→F

δ
y−1
(n,h)

∈ GLUC.

We now show that the factorization

fh = ψh · f

holds for all h ∈ J . By (3.1) and (3.4) we know that for all (n,h), (m, k) ∈ Ĩ with (n,h) �= (m, k):

supp(ry(n,h)
u(n,h)) ∩ supp(ry(m,k)

u(m,k)) = ∅. (3.5)

We note that for all (n,h), (m, k), (l, c) ∈ Ĩ with (l, c) ≺ (m, k):

u(l,c)

(
r
y−1
(m,k)

ry(n,h)
(u(n,h)fh)

) = u(l,c)

(
u(m,k)ry−1

(m,k)
ry(n,h)

(u(n,h)fh)
) (

by (3.3)
)

= u(l,c)

(
r
y−1
(m,k)

(
ry(m,k)

(u(m,k))ry(n,h)
(u(n,h)fh)

))
= δ(n,h),(m,k)u(l,c)fk

(
by (3.3) and (3.5)

)
.

Fix x ∈ G. By the above we obtain for all k ∈ J and (l, c) ∈ Ĩ :
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u(l,c)(x)〈ψk, �xf 〉 = lim
m→F

u(l,c)(x)
(
r
y−1
(m,k)

(f )
)
(x)

= lim
m→F

∑
n∈I

∑
h∈J

u(l,c)(x)
(
r
y−1
(m,k)

ry(n,h)
(u(n,h)fh)

)
(x)

= u(l,c)(x)fk(x).

Since u(l,c) → 1 pointwise, we have ψk · f = fk for all k ∈ J , as desired. �
If the group G is not just assumed to be ω-bounded but separable, we can considerably

weaken the condition of unboundedness, namely to non-precompactness (recall that for pre-
compact groups, the topological centre problem is trivial).

Theorem 3.4. Let G be a separable, not precompact group. Then there exists a sequence (ψn) ⊆
GLUC such that for every equi-LUC sequence (fn) ⊆ Ball(LUC(G)) there is a single function
f ∈ Ball(LUC(G)) such that the factorization

fn = ψn · f

holds for all n ∈ N.

Proof. The argument is similar to the one given for Theorem 3.3 but quicker. Since G is not
precompact, in view of Remark 2.8(ii), there exists a symmetric neighbourhood V of e such that
G cannot be covered by finitely many sets of the form sV 4t with s, t ∈ G. Let {xk | k ∈ N} be a
countable dense set in G, and set Kn := {x1, . . . , xn} for all n ∈ N.

For ñ = (n,h) ∈ N × N we define Kñ := Kn and Añ := V 2Kñ.
We construct by induction a net (yñ)ñ∈N×N satisfying

Añy
−1
ñ

∩ Am̃y−1
m̃

= ∅ if ñ �= m̃.

To this end we well-order N × N by ≺w and impose that y−1
ñ

/∈ A−1
ñ

Am̃y−1
m̃

for all m̃ ≺w ñ. This

is possible because each set A−1
ñ

Am̃y−1
m̃

is of the form F1V
4F2 with finite sets F1,F2 ⊆ G.

Let the sequence of neighbourhoods {Ui}∞i=1, the pseudo-metric d and the functions uñ

(ñ ∈ N × N) be as in the proof of Theorem 3.3. (Note that instead of (3.3) we will only use
uñ|Kñ

≡ 1.) Also, define the LUC-functions vñ (ñ ∈ N × N) and f as before. Consider N with its
natural order, and let F be an ultrafilter on N which dominates the order filter. For h ∈ N, define

ψh := w∗- lim
n→F

δ
y−1
(n,h)

∈ GLUC.

To prove the factorization, note that, as before, for all (n,h), (m, k) ∈ N × N with (n,h) �=
(m, k):

supp(ry(n,h)
u(n,h)) ∩ supp(ry(m,k)

u(m,k)) = ∅.

Using this and the fact that uñ|Kñ
≡ 1 (ñ ∈ N × N), we have for all (n,h), (m, k) ∈ N × N, j ∈ N

with j � m:
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(
r
y−1
(m,k)

ry(n,h)
(u(n,h)fh)

)
(xj ) = (

u(m,k)ry−1
(m,k)

ry(n,h)
(u(n,h)fh)

)
(xj )

= (
r
y−1
(m,k)

(
ry(m,k)

(u(m,k))ry(n,h)
(u(n,h)fh)

))
(xj )

= δ(n,h),(m,k)fk(xj ).

Since for any k ∈ N, both functions ψk · f and fk are continuous, we only need to check that
they coincide on the set {xj | j ∈ N}. For fixed j ∈ N, using the above, we obtain for all k ∈ N:

(ψk · f )(xj ) = 〈ψk, �xj
f 〉 = lim

m→F

(
r
y−1
(m,k)

(f )
)
(xj )

= lim
m→F

∑
n∈N

∑
h∈N

(
r
y−1
(m,k)

ry(n,h)
(u(n,h)fh)

)
(xj )

= fk(xj ).

We thus obtain our factorization. �
4. The topological centres of LUC(G)∗ and GLUC

This section contains the main results of the paper. In particular, we shall employ Theorem 3.4
to completely determine the topological centres of LUC(G)∗ and GLUC for all second countable
groups G.

We shall start with relating the algebra Leb(G) of uniform measures (as defined in Section 2)
both with the measure algebra M(G) and the topological centre Zt(LUC(G)∗) for an arbitrary
topological group G. Let us briefly recall the definition and basic properties of M(G); in our
discussion we follow [7].

Definition 4.1. Let G be a topological group.

(1) A positive measure μ is called K-regular if

μ(E) = sup
E⊃K∈K

μ(K),

where K denotes the class of all compact subsets of G.
(2) A finite, complex Borel measure μ on G is called K-regular if |μ| is K-regular.
(3) By M(G) we denote the measure algebra of G, i.e., the collection of all finite, complex,

K-regular Borel measures on G.

Regarding (3) in the definition above we recall that the convolution of finite, complex, K-
regular measures on G may be defined in the usual way to give another K-regular measure; in
fact, M(G) with convolution is a Banach algebra. Moreover, M(G) is isometrically embedded in
LUC(G)∗ via integration.

For any topological group G, we shall denote by Ĝ the completion of G with respect to its
right uniform structure. As is well known, Ĝ is a subsemigroup of GLUC with jointly continuous
multiplication. Analogously to the above definition, one considers the measure algebra M(Ĝ ),
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i.e., the space of finite, complex, K-regular Borel measures on Ĝ, which is a closed subalgebra
of LUC(Ĝ )∗ = LUC(G)∗. Indeed, the topological semigroup Ĝ is C-distinguished, i.e., the real-
valued functions in Cb(Ĝ ) separate the points of Ĝ (for this, use, e.g., [17, Exercise 21.5.3]);
hence, by [10, Theorem 3.7], M(Ĝ ) with convolution product and the usual total variation norm,
is a Banach algebra.

Proposition 4.2. Let G be any topological group. Then we have

M(Ĝ ) ⊆ Leb(Ĝ ) = Leb(G) ⊆ Zt

(
LUC(G)∗

)
.

Proof. A bounded, equi-LUC net of functions on Ĝ that converges pointwise to 0, converges
to 0 uniformly on compact subsets of Ĝ. Combining this observation with the K-regularity of a
measure μ ∈ M(Ĝ ), one easily deduces the first inclusion.

For the equality Leb(Ĝ ) = Leb(G), note that LUC(Ĝ ) can be identified with LUC(G), and
that the corresponding bounded equi-LUC sets coincide, as well as the topologies of pointwise
convergence on such sets.

To prove the last inclusion, let n ∈ Leb(G), and let (fα) ⊆ Ball(LUC(G)∗) be a net which
converges w∗ to 0. We need to show that, for every g ∈ LUC(G), we have 〈n · fα,g〉 → 0.
By definition, 〈n · fα,g〉 = 〈n,fα · g〉 and, since for every x ∈ G we have that (fα · g)(x) =
〈fα, �xg〉 → 0, (fα · g) is a bounded net of LUC functions which converges pointwise to 0.
Moreover, the net (fα · g) is equi-LUC since, for all x ∈ G, we have that

∥∥�x(fα · g) − fα · g∥∥∞ = ∥∥fα · (�xg) − fα · g∥∥∞ � ‖�xf − f ‖∞.

Hence, we get the desired convergence 〈n · fα,g〉 = 〈n,fα · g〉 → 0 since n is ρ-continuous. �
Remark 4.3. The inclusion M(Ĝ ) ⊆ Zt(LUC(G)∗) was shown for locally compact groups in [37,
Lemma 3.1]. An alternative proof for arbitrary topological groups is as follows. Fix μ ∈ M(Ĝ ).
Let (nα) ⊆ Ball(LUC(Ĝ )∗) = Ball(LUC(G)∗) be a net that converges to 0 in the w∗-topology.
We have to show that μ · nα → 0 (w∗). Fix f ∈ LUC(Ĝ ) = LUC(G). Then we have:

〈μ · nα,f 〉 = 〈μ,nα · f 〉 =
∫
Ĝ

(nα · f )(x) dμ(x) =
∫
Ĝ

〈nα, �xf 〉dμ(x),

where the net of functions nα · f in LUC(Ĝ ) converges to 0 pointwise, is bounded, and—
as an easy calculation shows—is equi-LUC. Since μ ∈ M(Ĝ ) is K-regular, we conclude that
〈μ · nα,f 〉 → 0.

We shall now give the proof of the difficult inclusion for the topological centre of LUC(G)∗
which is the main application of our factorization results (Theorems 3.3 and 3.4). Our argument
follows the lines of [25, Satz 3.5.1] (see also [28]), which is concerned with locally compact
groups.

Theorem 4.4. Let G be a topological group.

(i) If G is separable and not precompact, then Zt(LUC(G)∗) ⊆ Lebs(G) = Leb(G).
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(ii) If G is ω-bounded and unbounded, then Zt(LUC(G)∗) ⊆ Lebs(G).

Proof. Let m ∈ Zt(LUC(G)∗). Consider a bounded, equi-LUC sequence of functions (fn) in
LUC(G) such that fn → 0 pointwise. In either case (i) or (ii), we only have to show that
〈m,fn〉 → 0. It is enough to prove that every convergent subsequence of (〈m,fn〉)n converges
to 0. Let (〈m,fnk

〉)k be such a sequence. Now we factorize the sequence (fn)n∈N. According to
Theorem 3.4 for case (i), and Theorem 3.3 for case (ii), there exist a sequence (ψn)n∈N ⊆ GLUC

and a single function f ∈ LUC(G) such that

fn = ψn · f

for all n ∈ N. Consider the subsequence (ψnk
)k of (ψn)n. There exists a w∗-convergent subnet

whose limit we denote by E:

E := w∗- lim
γ

ψnkγ
∈ GLUC ⊆ Ball

(
LUC(G)∗

)
.

Now, on the one hand, we have, using that m ∈ Zt(LUC(G)∗):

〈m,E · f 〉 = 〈m · E,f 〉
= lim

γ
〈m · ψnkγ

, f 〉
= lim

γ
〈m,ψnkγ

· f 〉
= lim

γ
〈m,fnkγ

〉
= lim

k
〈m,fnk

〉,

since the latter limit exists. On the other hand, we obtain for arbitrary x ∈ G:

(E · f )(x) = 〈E,�xf 〉
= lim

γ
〈ψnkγ

, �xf 〉
= lim

γ
(ψnkγ

· f )(x)

= lim
γ

fnkγ
(x)

= lim
n

fn(x) = 0.

Thus we have E · f = 0, whence

lim
k

〈m,fnk
〉 = 〈m,E · f 〉 = 0,

which proves our claim. �
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Remark 4.5. The above proof shows that the points in GLUC are enough to determine the topo-
logical centre of LUC(G)∗ in the sense that w∗-continuity of left multiplication by m ∈ LUC(G)∗
on GLUC only already implies that m ∈ Lebs(G). This phenomenon has first been observed, in
the locally compact case, in [25, Bemerkung 3.5.2]; see also [26]. In the intriguing recent mem-
oir [9], H.G. Dales, A.T.-M. Lau and D. Strauss introduce and study the concept of a dtc set
(i.e., a set which is determining for the topological centre), a notion that captures abstractly the
situation described above. In fact, it is shown in [9] that for every locally compact, non-compact
group G, there exists a 2-point dtc set in GLUC; see [13] and [18] for related results in the lo-
cally compact setting. Since the present paper characterizes completely the topological centre of
LUC(G)∗ for all separable groups G, one might now ask if two testing points are also sufficient
in the non-locally compact, non-precompact case.

Corollary 4.6. Let G be any separable, or any precompact group. Then the topological centre of
LUC(G)∗ equals precisely the algebra of uniform measures, i.e., Zt(LUC(G)∗) = Leb(G).

Proof. If G is separable and not precompact, this follows from Theorem 4.4(i) and Proposi-
tion 4.2. If G is precompact, the assertion is clear by Remarks 2.2 and 2.5(iv). �

To characterize the topological centre in terms of standard measure theory for a very large
class of groups, we shall invoke the following result.

Proposition 4.7. Let X be a complete, metric uniform space. Then the space M(X) of all finite,
complex, K-regular Borel measures on X coincides with the space Leb(X) of uniform measures
on X (defined analogously to Leb(G)).

Proof. This is [30, Theorem 2.1.3]; for proofs, see [24, Note, p. 18], [5], or [11]. �
We can now state one of the main results of this paper which gives a simple, complete de-

scription of the topological centre of LUC(G)∗ for a class of groups comprising every second
countable group.

Corollary 4.8. Let G be a topological group.

(i) If G is precompact, then Zt(LUC(G)∗) = LUC(G)∗.
(ii) If G is second countable, then Zt(LUC(G)∗) = M(Ĝ ).

Proof. For (i), see Remark 2.2. To show (ii), first note that since G is separable, our Corollary 4.6
implies that Zt(LUC(G)∗) = Leb(G) = Leb(Ĝ ). But G is metric, whence Proposition 4.7 applied
to X := Ĝ yields Leb(Ĝ ) = M(Ĝ ), as desired. �

Let us point out that in the locally compact case, our results hold without any further condition
on the group:

Theorem 4.9. Let G be a locally compact group. Then we have

Zt

(
LUC(G)∗

) = M(G) = Leb(G).
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Proof. The first equality is the main result of [20] (see [26] for another proof). The second
equality follows from [25, Korollar 3.1.5] (see also [29]). �

We shall now give yet another important application of our Theorem 4.4. In [8, Remark
(ii), p. 33], I. Csiszár formulates the following conjecture: if L ∈ Zt(LUC(G)∗) then we have

Lα · Mα
w∗→ L · M whenever Lα

w∗→ L and Mα
w∗→ M , where Lα,Mα,M ∈ LUC(G)∗. The ques-

tion is motivated by Theorem 1 in [8] which says that the above is in fact true if L is assumed to
be ρ-continuous, Lα,L are positive functionals, and the net Mα is bounded (note that the latter
condition is missing in the statement of [8, Theorem 1] but needed in the proof given there; we
shall therefore consider Csiszár’s conjecture only for bounded nets Mα). As Csiszár points out
(cf. [8, Remark (i), p. 33]), dropping the positivity conditions on Lα and L, while “interesting,” is
of course “irrelevant” from his main point of view, which is the one of probability theory. Hence,
his question is mainly concerned with the condition of ρ-continuity. Now, our Theorem 4.4(i)
shows that it is indeed possible to drop the latter condition—since it is automatically satisfied—
whenever G is separable and not precompact, thus answering partially Csiszár’s conjecture:

Corollary 4.10. Let G be a separable, not precompact group, and let L ∈ Zt(LUC(G)∗). Then

we have Lα ·Mα
w∗→ L ·M whenever Lα

w∗→ L and Mα
w∗→ M , where Lα,Mα,M ∈ LUC(G)∗ with

Lα,L positive and the net Mα bounded.

Finally, we shall turn to the description of the topological centre Λ(GLUC) of the semigroup
GLUC. To this end, let us consider the analogue of uniform measures in the context of the LUC-
compactification of G:

DL(G) := GLUC ∩ Leb(G) and DLs(G) := GLUC ∩ Lebs(G).

Clearly, DL(G) and DLs(G) are subsemigroups of GLUC. They may be characterized by the
following double limit criterion: m ∈ DL(G) (respectively, m ∈ DLs(G)) if and only if m can be
approximated in the w∗-topology by a net (xα) in G such that, given any bounded, pointwise
convergent, equi-LUC net (respectively, sequence) (fβ), we have:

lim
β

lim
α

fβ(xα) = lim
α

lim
β

fβ(xα).

We shall derive descriptions of Λ(GLUC) analogous to the ones given above for Zt(LUC(G)∗).
We start with an immediate consequence of our Proposition 4.2.

Proposition 4.11. Let G be any topological group. Then we have

Ĝ ⊆ DL(Ĝ ) = DL(G) ⊆ Λ
(
GLUC)

.

Remark 4.12. The inclusion Ĝ ⊆ Λ(GLUC) also follows from [12, Theorem 3.4], where a differ-
ent method is used.

Theorem 4.13. Let G be a topological group.

(i) If G is separable and not precompact, then Λ(GLUC) ⊆ DLs(G) = DL(G).



168 S. Ferri, M. Neufang / Journal of Functional Analysis 244 (2007) 154–171
(ii) If G is ω-bounded and unbounded, then Λ(GLUC) ⊆ DLs(G).

Proof. This can be shown in the same way as Theorem 4.4 (cf. Remark 4.5). �
Corollary 4.14. Let G be any separable, or any precompact group. Then Λ(GLUC) = DL(G).

Proof. If G is separable and not precompact, use Theorem 4.13(i) and Proposition 4.11. If G is
precompact, the equality is obvious in view of Remark 2.2, which yields Λ(GLUC) = GLUC, and
Remark 2.5(iv). �

In order to derive a simple description of Λ(GLUC) for a very large class of second countable
groups, we need the following lemma. We recall that for a topological group G, the topological
semigroup Ĝ (i.e., its completion with respect to the right uniform structure) is a topological
group if and only if G admits a group completion; cf. [36, Theorem 10.15]. This in turn is the case,
for instance, if G is an almost SIN (= ASIN) group; cf. [36, Proposition 10.16]. A topological
group G is called ASIN if there is a neighbourhood U of e in G on which the left and right
uniform structures coincide. The class of ASIN groups comprises, for example, all topological
groups containing an open SIN group, and all locally precompact groups; see [36, Remark–
Definition 9.27].

Lemma 4.15. Let G be any topological group that admits a group completion (e.g., any ASIN
group). Then we have

M(Ĝ ) ∩ GLUC = Ĝ.

Proof. Note in the following that due to our assumption, Ĝ is a topological group. Let
m ∈ M(Ĝ ) ∩ GLUC. Then m ∈ M(Ĝ )+, hence there is a compact set K ⊆ Ĝ such that for all
f ∈ LUC(Ĝ ) = LUC(G) with 0 � f � 1 and f |K ≡ 0 we have m(f ) < 1

2 . Since m ∈ GLUC,
there is a net (xα)α∈I ⊆ G such that m = w∗- limα xα .

Now, assume towards a contradiction that there is a symmetric (open) neighbourhood V ⊆ Ĝ
of e such that for all α ∈ I we have xα ∈ Ĝ \ V K . For the topological group Ĝ, consider
the pseudo-metric d used in the proof of Theorem 3.3. Then d ∈ LUC(Ĝ × Ĝ ), and we have
d(x,K) � 1 for all x ∈ Ĝ \ V K . Define f (x) := min{1, d(x,K)} (x ∈ Ĝ). Then f ∈ LUC(Ĝ ),
0 � f � 1, and f |K ≡ 0; thus, m(f ) < 1

2 . But xα /∈ V K for all α ∈ I implies that m(f ) =
limα f (xα) = 1, a contradiction. Hence, for any symmetric (open) neighbourhood V ⊆ Ĝ of e

there is αV ∈ I such that xαV
∈ V K . It now follows easily from the compactness of K that, if V

runs through a descending symmetric (open) neighbourhood base of e in Ĝ, some subnet of (xαV
)

converges to some y ∈ K , whence m = y ∈ Ĝ. �
We are now ready to present another main result of this paper.

Corollary 4.16. Let G be a topological group.

(i) If G is precompact, then Λ(GLUC) = GLUC.
(ii) If G admits a group completion (e.g., G is ASIN) and is second countable, then Λ(GLUC) = Ĝ.
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Proof. (i) follows from Remark 2.2. Regarding (ii), G being separable, our Corollary 4.14 gives

Λ
(
GLUC) = DL(G) = DL(Ĝ ) = GLUC ∩ Leb(Ĝ ).

Since G is metric, Proposition 4.7 implies Leb(Ĝ ) = M(Ĝ ), and we conclude by using
Lemma 4.15. �

Again, let us briefly recall the situation in the locally compact case.

Theorem 4.17. For a locally compact group G, we have

Λ
(
GLUC) = Ĝ = G = DL(G).

Proof. Since G is locally compact, we have Ĝ = G. The equality Λ(GLUC) = G is the main result
of [21]; see also [22,27,35]. The last equality is obvious in view of Theorem 4.9 and the simple
fact that M(G) ∩ GLUC = G. �

We close by giving an application of our factorization theorems to automatic continuity of
module maps on LUC(G). (See [25, Satz 2.4.1] and [28] for general locally compact groups.)

Theorem 4.18. Let G be a topological group. Assume that G is separable and not precompact,
or G is ω-bounded and unbounded. Then every linear left LUC(G)∗-module map on LUC(G) is
automatically continuous.

Proof. Assume towards a contradiction that Φ : LUC(G) → LUC(G) is an unbounded linear
left LUC(G)∗-module map. Then there is a sequence (gn)n∈N ⊆ LUC(G) with ‖gn‖∞ = 1 and
‖Φ(gn)‖∞ � n2 for all n ∈ N. Then (fn)n∈N, where fn := 1

n
gn, n ∈ N, is a sequence of functions

in LUC(G) such that ‖fn‖∞ → 0 and ‖Φ(fn)‖∞ � n (n ∈ N).
Obviously, the sequence (fn)n∈N is bounded and equi-LUC. Our Theorem 3.3 (respectively,

Theorem 3.4, depending on the assumption on G) yields

fn = ψn · f (n ∈ N)

with functionals ψn ∈ GLUC ⊆ Ball(LUC(G)∗) and a single function f ∈ LUC(G). So we obtain
for all n ∈ N:

n �
∥∥Φ(fn)

∥∥∞ = ∥∥Φ(ψn · f )
∥∥∞ = ∥∥ψn · Φ(f )

∥∥∞ �
∥∥Φ(f )

∥∥∞ < ∞,

a contradiction. Hence Φ is continuous. �
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