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Abstract. In this paper, we consider several interesting multiplier algebras associated with a locally

compact quantum group G. Firstly, we study the completely bounded right multiplier algebra Mr
cb(L1(G)).

We show that Mr
cb(L1(G)) is a dual Banach algebra with a natural operator predual Qr(L1(G)), and

the completely isometric representation of Mr
cb(L1(G)) on B(L2(G)), studied recently by Junge, Neufang

and Ruan, is actually weak*-weak* continuous. Secondly, we study the left uniformly continuous space

LUC(G) and its Banach algebra dual LUC(G)∗. We prove that LUC(G) is a unital C*-subalgebra of

L∞(G) if the quantum group G is semi-regular. We show the connection between LUC(G)∗ and the quan-

tum measure algebra M(G), as well as their representations on L∞(G) and B(L2(G)). Finally, we study

the right uniformly complete qotient space UCQr(L1(G)) and its Banach algebra dual UCQr(L1(G))∗.

For co-amenable quanum groups G, we obtain the weak*-homeomorphic completely isometric algebra iso-

morphism Mr
cb(L1(G)) ∼= M(G) and the completely isometric isomorphism UCQr(L1(G)) ∼= LUC(G).

1. Introduction

Let G = (L∞(G),Γ, ϕ, ψ) be a locally compact quantum group. Then the operator predual L1(G) of

L∞(G) with the multiplication Γ∗ is a faithful completely contractive Banach algebra. If we let C0(G)

denote the associated Hopf C*-subalgebra of L∞(G), then its operator dual M(G) = C0(G)∗ is a faithful

completely contractive Banach algebra, containing L1(G) as a closed two-sided ideal. Therefore, we

can study the quantum group analogue of many other Banach algebras interesting in abstract harmonic

analysis, and we can develop a corresponding theory for quantum harmonic analysis. The aim of this paper

is to study the following spaces associated with locally compact quantum groups G: (1) the completely

bounded right multiplier algebra Mr
cb(L1(G)) of L1(G) and its predual Qr(L1(G)); (2) the left uniformly

continuous space LUC(G) and its operator dual LUC(G)∗; (3) the right uniformly complete quotient

space UCQr(L1(G)) and its the operator dual UCQr(L1(G))∗.

Date: August 02, 2009.

2000 Mathematics Subject Classification. 43A10, 43A20, 43A30, 46H05 (primary).

The first and the second authors were partially supported by NSERC. The third author was partially supported by the

National Science Foundation DMS-0500535.

1



2 ZHIGUO HU, MATTHIAS NEUFANG, AND ZHONG-JIN RUAN

In Section 2, we recall notations and definitions of locally compact quantum groups introduced by

Kustermann and Vaes in [20] and [21]. We also collect some module properties for the Hopf C*-algebra

C0(G) and the quantum measure algebra M(G).

Sections 3 and 4 are devoted to the study of the completely bounded right multiplier algebra Mr
cb(L1(G)).

It is shown in the recent paper [17] by Junge, Neufang, and Ruan that for any locally compact quantum

group G, there exists a completely isometric algebra isomorphism

(1.1) Θr : Mr
cb(L1(G)) ∼= CBσ,L∞(G)

L∞(Ĝ)
(B(L2(G))),

where CBσ,L∞(G)

L∞(Ĝ)
(B(L2(G))) is the algebra of normal completely bounded L∞(Ĝ)-bimodule homomor-

phisms on B(L2(G)), which map L∞(G) into L∞(G). We show in Theorem 3.4 and Proposition 3.5 that

Mr
cb(L1(G)) is a dual Banach algebra with a natural operator predual Qr(L1(G)). This generalizes the

results by Haagerup and Kraus [12] on completely bounded Fourier multiplier algebra McbA(G) and the

results by Kraus and Ruan [19] on completely bounded Kac multiplier algebra McbA(K). We prove in

Theorem 4.1 that the isomorphism Θr in (1.1) is actually a weak* homeomorphism. This generalizes the

weak*-homeomorphic representation theorems for measure algebras M(G) and for completely bounded

Fourier multiplier algebras McbA(G) proved by Neufang, Ruan, and Spronk in [30, Theorem 3.2 and

Theorem 4.5]. We also study the relation between Qr(L1(G)) and C0(G), and obtain the weak*-weak*

continuity of the canonical embedding M(G) → Mr
cb(L1(G)). This leads to some characterizations of

co-amenable quantum groups, generalizing results in [19, §7] for Kac algebras to locally compact quantum

groups. Since the argument for completely bounded left (respectively, double) multiplier algebra is quite

similar, we only remark briefly the corresponding results at the end of Section 4.

Section 5 is focused on the left uniformly continuous space LUC(G) (respectively, the right uniformly

continuous space RUC(G)) on a locally compact quantum group G. In the case of the commutative

quantum group Ga = L∞(G), where G is a locally compact group, the space LUC(Ga) is the usual

space LUC(G) of bounded left uniformly continuous functions on G. On the other hand, if we consider

Gs = L(G), the dual quantum group of Ga, then LUC(Gs) is the space UCB(Ĝ) of uniformly continuous

linear functionals on A(G) introduced by Granirer [10]. It is known that both LUC(G) and UCB(Ĝ) are

unital C*-algebras. It is also easy to see that if G is a discrete (respectively, compact) quantum group,

then LUC(G) = L∞(G) (respectively, LUC(G) = C0(G)) is a unital C*-algebra. However, it is still

an open question whether LUC(G) is a C*-algebra for an arbitrary locally compact quantum group G.

Runde showed in [37] that LUC(G) is an operator system in L∞(G) such that

(1.2) C0(G) ⊆ LUC(G) ⊆ M(C0(G)),

where M(C0(G)) ⊆ L∞(G) denotes the multiplier algebra of C0(G). He further showed that LUC(G) is

a unital C*-subalgebra of M(C0(G)) if G is co-amenable and C0(G) has a bounded approximate identity
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contained in the centre of C0(G). Moreover, Salmi [38] introduced a left uniformly continuous C*-algebra

LUC(G) by a different C*-algebra approach. Results in [38] indicate that if G is co-amenable and the

associated right fundamental unitary operator V is regular, then our LUC(G) is equal to LUC(G) and

thus is a unital C*-algebra. Our main result Theorem 5.6 in Section 5 shows that for the large class of

semi-regular locally compact quantum groups G, which includes Kac algebras, LUC(G) and RUC(G) are

indeed unital C*-subalgebras of M(C0(G)).

Given a locally compact quantum group G, the Arens products on L∞(G)∗ induce a natural completely

contractive Banach algebra structure on LUC(G)∗ and RUC(G)∗, respectively. We study in Section 6

the Banach algebras LUC(G)∗ and RUC(G)∗, their relations with the quantum measure algebra M(G),

and characterizations of co-amenable quantum groups in terms of representations of these algebras. We

shall focus our study on LUC(G)∗. The corresponding results for RUC(G)∗ can be obtained analogously.

In Section 7, we introduce the right uniformly quotient space UCQr(L1(G)) and its operator dual

UCQr(L1(G))∗. We show that there is a natural completely contractive Banach algebra structure on

UCQr(L1(G))∗, and we study the completely isometric representation of UCQr(L1(G))∗ on B(L2(G)).

We show in Theorem 7.3 that ifG is co-amenable, then UCQr(L1(G)) = LUC(G) completely isometrically.

In particular, if Ga and Gs are the commutative and the co-commutative quantum groups associated with

a locally compact group G, respectively, then we have UCQr(L1(Ga)) = LUC(G), and UCQr(L1(Gs))

is the right-hand side version of the uniformly complete quotient space UCQ(G) introduced (via the left

fundamental unitary operator W ) by Popa and Ruan in [33]. Therefore, results obtained in this section

unify and generalize some results on LUC(G)∗ and UCQ(G)∗ in [29], [30], and [33].

2. Definitions and preliminary results

Let us first recall from [21] and [39] that a (von Neumann algebraic) locally compact quantum group is

a quatriple G = (L∞(G), Γ, ϕ, ψ), where L∞(G) is a Hopf von Neumann algebra with a co-associative co-

multiplication Γ : L∞(G) → L∞(G)⊗̄L∞(G), and ϕ and ψ are normal faithful left and right Haar weights

on L∞(G), respectively. For each locally compact quantum group G, there exist a left fundamental unitary

operator W on L2(G, ϕ)⊗ L2(G, ϕ) and a right fundamental unitary operator V on L2(G, ψ)⊗ L2(G, ψ)

which satisfy the pentagonal relation; that is,

(2.1) W12W13W23 = W23W12 and V12V13V23 = V23V12.

The co-multiplication Γ on L∞(G) can be expressed as

(2.2) Γ(x) = W ∗(1⊗ x)W = V (x⊗ 1)V ∗
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for all x ∈ L∞(G). We identify L2(G, ϕ) and L2(G, ψ), and simply use L2(G) for this Hilbert space in

the rest of this paper. In this case, there exists a unitary operator U on L2(G) such that

(2.3) V = Σ(1⊗ U)W (1⊗ U∗)Σ,

where Σ is the flip operator on L2(G)⊗ L2(G) given by Σ(ξ ⊗ η) = η ⊗ ξ (ξ, η ∈ L2(G)).

The pre-adjoint of Γ induces an associative completely contractive multiplication

(2.4) ? : f1 ⊗ f2 ∈ L1(G)⊗̂L1(G) → f1 ? f2 = (f1 ⊗ f2) ◦ Γ ∈ L1(G)

on L1(G) = L∞(G)∗. It is known from [13, Proposition 1] that the multiplication ? is faithful in the

sense that for any f ∈ L1(G), we have f = 0 if f ? g = 0 (respectively, g ? f = 0) for all g ∈ L1(G). Let

〈L1(G) ? L1(G)〉 denote the closed linear span of f ? g with f , g ∈ L1(G). Then we have

(2.5) 〈L1(G) ? L1(G)〉 = L1(G),

since the multiplication ? is a complete quotient from L1(G)⊗̂L1(G) onto L1(G). A locally compact

quantum group G is called co-amenable if L1(G) has a bounded left (respectively, right, or two-sided)

approximate identity. It is shown in [13] that G is co-amenable if and only if L1(G) has an approximate

identity, which consists of normal states on L∞(G).

If G is a locally compact group, we let Ga = (L∞(G),Γa, ϕa, ψa) denote the commutative quantum

group associated with the commutative Hopf von Neumann algebra L∞(G) with the co-multiplication

Γa(f)(s, t) = f(st). The dual quantum group Ĝa of Ga is the co-commutative quantum group Gs =

(L(G),Γs, ϕs, ψs), where L(G) is the left group von Neumann algebra with the co-multiplication Γs(λ(t)) =

λ(t)⊗ λ(t). We can also consider the dual quantum group Ĝ′a = G′s associated with the right group von

Neumann algebra R(G) and the co-multiplication Γ′s(ρ(t)) = ρ(t)⊗ ρ(t). In this case, L1(Ga) is the usual

convolution algebra L1(G), and L1(Gs) = L1(G′s) is the Fourier algebra A(G). Therefore, the commutative

quantum group Ga is always co-amenable, and the co-commutative quantum group Gs (respectively, G′s)

is co-amenable if and only if the associated group G is amenable.

Given a locally compact quantum group G, we can obtain the left regular representation λ : L1(G) →
B(L2(G)) defined by

λ : f ∈ L1(G) → λ(f) = (f ⊗ ι)(W ) ∈ B(L2(G)),

which is an injective completely contractive algebra homomorphism from L1(G) into B(L2(G)). Then

L∞(Ĝ) = {λ(f) : f ∈ L1(G)}′′ is the Hopf von Neumann algebra in the dual quantum group Ĝ. Corre-

spondingly, we can obtain the right regular representation ρ : L1(G) → B(L2(G)) defined by

ρ : f ∈ L1(G) → ρ(f) = (ι⊗ f)(V ) ∈ B(L2(G)),

which is also an injective completely contractive algebra homomorphism from L1(G) into B(L2(G)). Then

L∞(Ĝ′) = {ρ(f) : f ∈ L1(G)}′′ is the Hopf von Neumann algebra in the dual quantum group Ĝ′. It follows
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that W ∈ L∞(G)⊗̄L∞(Ĝ) and V ∈ L∞(Ĝ′)⊗̄L∞(G). We can conclude from (2.3) that

(2.6) ρ(f) = Uλ(f)U∗

for all f ∈ L1(G).

We can also define the completely contractive injections

λ∗ : f̂ ∈ L1(Ĝ) → λ∗(f̂) = (ι⊗ f̂)(W ) ∈ L∞(G)

and

ρ∗ : f̂ ′ ∈ L1(Ĝ′) → ρ∗(f̂ ′) = (f̂ ′ ⊗ ι)(V ) ∈ L∞(G).

In fact, we have

〈λ∗(f̂), f〉 = 〈f̂ , λ(f)〉 and 〈ρ∗(f̂ ′), f〉 = 〈f̂ ′, ρ(f)〉

for all f ∈ L1(G), f̂ ∈ L1(Ĝ), and f̂ ′ ∈ L1(Ĝ′). We then obtain the corresponding Hopf C*-subalgebra

C0(G) = λ∗(L1(Ĝ))
‖·‖

= ρ∗(L1(Ĝ′))
‖·‖

of L∞(G) with the co-multiplication

Γ : x ∈ C0(G) → Γ(x) = V (x⊗ 1)V ∗ ∈ M(C0(G)⊗ C0(G)),

where M(C0(G)⊗C0(G)) is the multiplier algebra of the C*-algebra C0(G)⊗C0(G). It is known that for

any locally compact quantum group G,

Γ(C0(G))(C0(G)⊗ 1) and Γ(C0(G))(1⊗ C0(G))

are norm dense in C0(G)⊗ C0(G) (cf. [21, Corollary 6.11]).

Let M(G) = C0(G)∗ denote the operator dual of C0(G). Then M(G) is a completely contractive

C0(G)-bimodule with the module operation given by

〈µ • x, y〉 = 〈µ, xy〉 and 〈x • µ, y〉 = 〈µ, yx〉

for µ ∈ M(G) and x, y ∈ C0(G). Since the linear span of µ • x (respectively, x • µ) with µ ∈ M(G)

and x ∈ C0(G) is norm dense in M(G), we can obtain the following proposition by Cohen’s factorization

theorem and the fact that C0(G) is weak* dense in L∞(G).

Proposition 2.1. Let G be a locally compact quantum group. Then the following assertions holds.

(1) M(G) is a C0(G)-bimodule with M(G) = M(G) • C0(G) = C0(G) •M(G).

(2) L1(G) is a C0(G)-bimodule with L1(G) = L1(G) • C0(G) = C0(G) • L1(G).
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Suppose that µ ∈ M(G) = C0(G)∗. It is known that µ has a unique strictly continuous extension

µ̃ ∈ M(C0(G))∗. It is also known that for any C*-algebra B, the right slice map µ⊗ ι : C0(G)⊗ B → B

is completely bounded and has a unique extension

µ̃⊗ ι : M(C0(G)⊗B) → M(B)

that is strictly continuous on the unit ball of M(C0(G)⊗ B) (cf. [2, Theorem 2.1]). This is also true for

the left slice map ι⊗ µ : B ⊗ C0(G) → B. Therefore, for all µ, ν ∈ M(G), we have

(2.7) (µ̃⊗ ν) ◦ Γ = µ̃(ι̃⊗ ν) ◦ Γ = ν̃(µ̃⊗ ι) ◦ Γ

(cf. [2, Proposition 2.2]). If there is no confusion, we will omit the symbol “∼” for these extensions.

Clearly, these extensions are norm preserving. Note that (µ ⊗ ι)Γ(x) ∈ C0(G) and (ι ⊗ µ)Γ(x) ∈ C0(G)

for µ ∈ M(G) and x ∈ C0(G) (cf. [20, Definition 4.1]). Then we can express (2.7) as

µ ? ν = µ¤ν = µ♦ν.

See Section 6 for the precise meaning of the products ¤ and ♦.

Thus (µ, ν) 7→ (µ ⊗ ν) ◦ Γ defines a completely contractive multiplication ? on M(G). With this

multiplication, M(G) is a completely contractive dual Banach algebra (i.e., the multiplication on M(G)

is separately weak*-weak* continuous), and M(G) contains L1(G) as a norm closed two-sided ideal.

For x ∈ C0(G) and µ ∈ M(G), by (2.7), we get

µ ? x = (ι⊗ µ)Γ(x) ∈ C0(G) and x ? µ = (µ⊗ ι)Γ(x) ∈ C0(G).

We have the following proposition on the canonical M(G)-bimodule action on C0(G).

Proposition 2.2. Let G be a locally compact quantum group. Then C0(G) is an operator M(G)-bimodule

such that

C0(G) = 〈L1(G) ? C0(G)〉 = 〈M(G) ? C0(G)〉 = 〈C0(G) ? L1(G)〉 = 〈C0(G) ? M(G)〉.

Therefore, the multiplication ? on M(G) is faithful, and C0(G) can be expressed as

C0(G) = 〈L1(G) ? L1(Ĝ′)〉 = 〈L1(Ĝ′) ? L1(G)〉

via the completely contractive injection ρ∗ : L1(Ĝ′) → C0(G).

Proof. It suffices to show that the linear span of f ?x (respectively, x?f) with f ∈ L1(G) and x ∈ C0(G) is

norm dense in C0(G). This follows from the Hahn-Banach theorem and the fact that the set {Γ(x)(1⊗y) :

x, y ∈ C0(G)} (respectively, {Γ(x)(y ⊗ 1) : x, y ∈ C0(G)}) is norm dense in C0(G) ⊗ C0(G). Indeed, if

µ ∈ M(G) and µ(f ? x) = 0 for all f ∈ L1(G) and x ∈ C0(G), then for any y ∈ C0(G), we have

〈µ⊗ f, Γ(x)(1⊗ y)〉 = µ((y • f) ? x) = 0.
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This shows that C0(G) = 〈L1(G) ? C0(G)〉. We can similarly prove that C0(G) = 〈C0(G) ? L1(G)〉. ¤

Remark 2.3. It was shown by Bédos and Tuset [3] that a locally compact quantum group G is co-

amenable if and only if M(G) is unital. Therefore, when G is co-amenable, we have M(G)?M(G) = M(G).

However, it seems open whether we have 〈M(G) ? M(G)〉 = M(G) for non-co-amenable quantum groups

G with M(G) 6= L1(G) (cf. (2.5)).

If G is a locally compact group, then C0(Ga) = C0(G) is the space of continuous functions on G

vanishing at infinity, and M(Ga) = M(G) is the measure algebra of G. Correspondingly, C0(Ĝa) = C∗λ(G)

is the left group C*-algebra (respectively, C0(Ĝ′a) = C∗ρ(G) is the right group C*-algebra) of G, and we

have M(Ĝa) = Bλ(G) (respectively, M(Ĝ′a) = Bρ(G)).

To end this section, we note that there is a universal quantum group C*-algebra Cu(G) such that

its dual space Cu(G)∗ is a completely contractive unital Banach algebra, containing M(G) as a norm

closed two-sided ideal. For the commutative quantum group Ga, we have Cu(Ga) = C0(G); for the co-

commutative quantum group Gs, we have Cu(Gs) = C∗(G), the full group C*-algebra of G. It is known

that G is co-amenable if and only if M(G) = Cu(G)∗ (respectively, C0(G) = Cu(G)). The reader is

referred to [1] and [3] for details.

3. The dual Banach algebra structure on Mr
cb(L1(G))

Let G be a locally compact quantum group. Let us first recall from [16] that a linear map T on L1(G)

is called a right centralizer (respectively, a left centralizer) if

T (f ? g) = f ? T (g) (respectively, T (f ? g) = T (f) ? g)

for all f , g ∈ L1(G). A double centralizer is a pair (S, T ) of maps on L1(G) such that

f ? S(g) = T (f) ? g

for f , g ∈ L1(G). We let Cr
cb(L1(G)), Cl

cb(L1(G)), and Ccb(L1(G)) denote the spaces of completely

bounded right, left, and double centralizers on L1(G), respectively. We regard Cr
cb(L1(G)) and Cl

cb(L1(G))

as operator subspaces of CB(L1(G)). Then Cr
cb(L1(G)) and Cl

cb(L1(G)) are unital (and thus faithful)

completely contractive Banach algebras with multiplication given by the opposite composition and the

composition, respectively. The operator space matrix norm on Ccb(L1(G)) is given by

‖[(Sij , Tij)]‖cb = max{‖[Sij ]‖cb, ‖[Tij ]‖cb},

and the multiplication is given by

(S1, T1) ◦ (S2, T2) = (S1 ◦ S2, T2, ◦T1).
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For each µ ∈ M(G), we can obtain the left and right multiplication maps

ml
µ(f) = µ ? f and mr

µ(f) = f ? µ

on L1(G). It is easy to see that (ml
µ,mr

µ) is a double centralizer on L1(G) such that

‖(ml
µ,mr

µ)‖cb = max{‖ml
µ‖cb, ‖mr

µ‖cb} ≤ ‖µ‖.

This defines an injective completely contractive algebra homomorphism from M(G) into Cr
cb(L1(G)),

Cl
cb(L1(G)), and Ccb(L1(G))), respectively.

Proposition 3.1. Let G be a locally compact quantum group. Then G is co-amenable if and only if we

have the completely isometric algebra isomorphisms

(3.1) Cl
cb(L1(G)) = M(G) = Cr

cb(L1(G))

via the maps ml and mr, respectively. When G is co-amenable, we also have

(3.2) Cl
cb(L1(G)) = Ccb(L1(G)) = Cr

cb(L1(G)).

Proof. If (3.1) holds, then M(G) is unital and thus G is co-amenable (cf. [3, Theorem 3.1]).

Conversely, suppose that G is co-amenable. Then L1(G) has a contractive approximate identity {fα}.
Let

mr : µ ∈ M(G) → mr
µ ∈ Cr

cb(L1(G))

be the completely contractive algebra homomorphism, and T ∈ Cr
cb(L1(G)). We may assume that the net

{T (fα)} has a weak*-limit µ ∈ M(G) with ‖µ‖ ≤ ‖T‖ ≤ ‖T‖cb. Then we have T = mr
µ, since

〈mr
µ(f), x〉 = 〈f ? µ, x〉 = 〈µ, x ? f〉 = lim

α
〈T (fα), x ? f〉

= lim
α
〈f ? T (fα), x〉 = lim

α
〈T (f ? fα), x〉 = 〈T (f), x〉

for all f ∈ L1(G) and x ∈ C0(G). This shows that mr is an isometric algebra isomorphism from M(G)

onto Cr
cb(L1(G)). By a standard matricial argument, it is easy to see that mr is completely isometric.

Similarly, we have the completely isometric algebra isomorphism M(G) = Cl
cb(L1(G)) via ml.

Now if (S, T ) is a double centralizer in Ccb(L1(G)), then T ∈ Cr
cb(L1(G)) and thus T = mr

µ for some

µ ∈ M(G). In this case, we must have S = ml
µ, since

f ? S(g) = T (f) ? g = mr
µ(f) ? g = (f ? µ) ? g = f ? (µ ? g) = f ? ml

µ(g)

for all f , g ∈ L1(G) and the multiplication ? on L1(G) is faithful. This shows that the map

m : µ ∈ M(G) → (ml
µ,mr

µ) ∈ Ccb(L1(G))

is a completely isometric algebra isomorphism from M(G) onto Ccb(L1(G)), and thus (3.2) holds. ¤
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In the rest of this section and in Section 4, we will mainly study results related to completely bounded

right centralizers. The corresponding results can be obtained analogously for completely bounded left or

double centralizers, which will be mentioned briefly at the end of Section 4.

Let us recall from [17] that the adjoint mapping

T ∈ Cr
cb(L1(G)) → T ∗ ∈ CBσ

L1(G)(L∞(G))

defines a completely isometric algebra isomorphism from Cr
cb(L1(G)) onto the algebra CBσ

L1(G)(L∞(G))

of normal completely bounded right L1(G)-module homomorphisms on L∞(G). Moreover, it was shown

in [17] that each T ∈ Cr
cb(L1(G)) is uniquely associated with a completely bounded right multiplier b̂′ in

L∞(Ĝ′), for which we have ρ(f)b̂′ ∈ ρ(L1(G)) for all f ∈ L1(G), the map

(3.3) mr
b̂′ : f ∈ L1(G) → ρ−1(ρ(f)b̂′) ∈ L1(G)

is completely bounded, and T = mr
b̂′

. Therefore, we may regard b̂′ as a concrete realization of the

right centralizer T . This can be regarded as the quantum group analogue of Wendel’s theorem [40] for

centralizers on convolution algebras L1(G) and Losert’s theorem [27] for centralizers on Fourier algebras

A(G), where G is a locally compact group.

We let Mr
cb(L1(G)) denote the space of completely bounded right multipliers on L1(G). Then Mr

cb(L1(G))

is a unital subalgebra of L∞(Ĝ′). Clearly, ρ(L1(G)) ⊆ Mr
cb(L1(G)), and mr

ρ(f) = mr
f for f ∈ L1(G). We

can completely isometrically and algebraically identify Cr
cb(L1(G)) with Mr

cb(L1(G)) if Mr
cb(L1(G)) is

equipped with the operator space matrix norm from Cr
cb(L1(G)), i.e., we let

‖[b̂′ij ]‖Mn(Mr
cb(L1(G))) = ‖[mr

b̂′ij

]‖cb.

Remark 3.2. We note that double (respectively, right and left) multipliers for Kac algebras K have been

studied by Kraus and Ruan in [19], where they obtained a representation of bounded double centralizers

(respectively, completely bounded double centralizers) as closed and densely defined operators (respec-

tively, bounded operators) on a dense subspace of L2(K). The existence of a nice antipode κ on K plays

an important role in their proof. Using the representation theorem in [17], we are able to prove the above

much stronger result on one-sided (i.e., right or left) completely bounded centralizers over general locally

compact quantum groups.

The following proposition is the quantum group analogue of [19, Proposition 5.8]. We include the proof

here for the convenience of the reader.

Proposition 3.3. Let G be a locally compact quantum group. Then, for each n ∈ N, the closed unit ball

of Mn(Mr
cb(L1(G))) is weak* closed in Mn(L∞(Ĝ′)).
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Proof. We first consider the case when n = 1. Let {b̂′i} be a net in the closed unit ball Mr
cb(L1(G))1

of Mr
cb(L1(G)) such that b̂′i → b̂′ ∈ L∞(Ĝ′) in the weak* topology. Then ρ(f)b̂′i → ρ(f)b̂′ in the weak*

topology for all f ∈ L1(G), and we have

(3.4) 〈ρ∗(b̂′i · f̂ ′), f〉 = 〈b̂′i · f̂ ′, ρ(f)〉 = 〈ρ(f)b̂′i, f̂
′〉 → 〈ρ(f)b̂′, f̂ ′〉 = 〈b̂′ · f̂ ′, ρ(f)〉 = 〈ρ∗(b̂′ · f̂ ′), f〉

for all f̂ ′ ∈ L1(Ĝ′) and f ∈ L1(G). By [17, Proposition 4.1], ‖b̂′i‖Mr
cb(L1(G)) ≤ 1 is equivalent to that

‖[ρ∗(b̂′i · f̂ ′kl)]‖ ≤ ‖[ρ∗(f̂ ′kl)]‖

for all [f̂ ′kl] ∈ Mm(L1(Ĝ′)) and m ∈ N. Then we can conclude from (3.4) that for any [fst] ∈ Mp(L1(G))1,

we have

‖[〈ρ∗(b̂ · f̂ ′kl), fst〉]‖ = lim
i
‖[〈ρ∗(b̂′i · f̂ ′kl), fst〉]‖ ≤ ‖[ρ∗(f̂ ′kl)]‖.

It follows that

‖[ρ∗(b̂′ · f̂ ′kl)]‖ ≤ ‖[ρ∗(f̂ ′kl)]‖,
and hence b̂′ ∈ Mr

cb(L1(G))1.

We can analogously prove that the closed unit ball of Mn(Mr
cb(L1(G))) is weak* closed in Mn(L∞(Ĝ′))

for general n ∈ N. The only thing we need to remark here is that for this purpose, we need a matricial

version of [17, Proposition 4.1]. That is, we need to show that a matrix element [b̂′ij ] ∈ Mn(L∞(Ĝ′)) is

contained in the unit ball of Mn(Mr
cb(L1(G))) if and only if

‖[ρ∗(b̂′ij · f̂ ′kl)]‖ ≤ ‖[ρ∗(f̂ ′kl)]‖

for all [f̂ ′kl] ∈ Mm(L1(Ĝ′)) (m ∈ N). This can be shown by the same argument as used in the proof of [17,

Proposition 4.1]. We omit the details here. ¤

For any f̂ ′ ∈ L1(Ĝ′), we may define a linear functional αf̂ ′ on Mr
cb(L1(G)) via

(3.5) 〈αf̂ ′ , b̂
′〉 = 〈b̂′, f̂ ′〉.

Since ‖ · ‖L∞(Ĝ′) ≤ ‖ · ‖Mr
cb(L1(G)), we see that αf̂ ′ ∈ Mr

cb(L1(G))∗ with ‖αf̂ ′‖ ≤ ‖f̂ ′‖. Hence, we obtain

an injective contraction

α : L1(Ĝ′) → Mr
cb(L1(G))∗.

The map α is actually completely contractive, since ρ(L1(G)) is weak*-dense in L∞(Ĝ′), and we have

‖·‖Mn(L∞(Ĝ′)) ≤ ‖·‖Mn(Mr
cb(L1(G))) for all n ∈ N. Thus we can identify L1(Ĝ′) with the subspace α(L1(Ĝ′))

of Mr
cb(L1(G))∗, which yields a new operator space norm on L1(Ĝ′). We let

Qr(L1(G)) = α(L1(Ĝ′))
‖·‖
⊆ Mr

cb(L1(G))∗.

Then

(3.6) α : f̂ ′ ∈ L1(Ĝ′) → αf̂ ′ ∈ Qr(L1(G))
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defines an injective complete contraction from L1(Ĝ′) into Qr(L1(G)). Now we are ready to prove the

following quantum group analogue of [19, Theorem 6.2].

Theorem 3.4. Let G be a locally compact quantum group. Then the adjoint of the inclusion map

Qr(L1(G)) ↪→ Mr
cb(L1(G))∗ induces a complete isometry

Mr
cb(L1(G)) = Qr(L1(G))∗.

Proof. For every b̂′ ∈ Mr
cb(L1(G)), we define a linear functional Fb̂′ on L1(Ĝ′) by

〈Fb̂′ , f̂
′〉 = 〈b̂′, f̂ ′〉.

The definition of Qr(L1(G)) yields that

|〈Fb̂′ , f̂
′〉| = |〈b̂′, f̂ ′〉| ≤ ‖b̂′‖Mr

cb(L1(G))‖f̂ ′‖Qr(L1(G))

for all f̂ ′ ∈ L1(Ĝ′). Thus Fb̂′ extends to a bounded linear functional on Qr(L1(G)), which is still denoted

by Fb̂′ , such that ‖Fb̂′‖ ≤ ‖b̂′‖Mr
cb(L1(G)). Analogously, we see that ‖[Fb̂′ij

]‖ ≤ ‖[b̂′ij ]‖Mr
cb(L1(G)), whence

F : Mr
cb(L1(G)) → Qr(L1(G))∗ is a complete contraction.

On the other hand, suppose that f ∈ Qr(L1(G))∗ with ‖f‖ = 1. Since

|〈f, f̂ ′〉| ≤ ‖f̂ ′‖Qr(L1(G)) ≤ ‖f̂ ′‖

for all f̂ ′ ∈ L1(Ĝ′), we have b̂′f = f |L1(Ĝ′) ∈ L1(Ĝ′)∗ = L∞(Ĝ′). We claim that b̂′f lies in the closed unit

ball of Mr
cb(L1(G)). Assume that this were false. Then, in view of Proposition 3.3, the Hahn-Banach

theorem entails that there is f̂ ′ ∈ L1(Ĝ′) such that

|〈b̂′, f̂ ′〉| ≤ 1(3.7)

for all b̂′ ∈ Mr
cb(L1(G))1, while

〈b̂′f , f̂ ′〉 > 1.(3.8)

By (3.7), we have ‖f̂ ′‖Qr(L1(G)) ≤ 1, whence

|〈b̂′f , f̂ ′〉| = |〈f, f̂ ′〉| ≤ ‖f‖‖f̂ ′‖Qr(L1(G)) ≤ 1,

which contradicts (3.8). Therefore, b̂′f ∈ Mr
cb(L1(G))1 as claimed. Since Fb̂′f

= f , this shows that F

is surjective and ‖Fb̂′f
‖ = ‖b̂′f‖Mr

cb(L1(G)). Thus, F is an isometric isomorphism from Mr
cb(L1(G)) onto

Qr(L1(G))∗. A corresponding matricial argument shows that F is in fact a complete isometry. ¤

As Mr
cb(L1(G)) is a completely contractive Banach algebra, there is a canonical Mr

cb(L1(G))-bimodule

structure on Mr
cb(L1(G))∗. In particular, for ω ∈ Qr(L1(G)) and â′ ∈ Mr

cb(L1(G)), we have the bounded

linear functionals â′ · ω and ω · â′ on Mr
cb(L1(G)) via

〈b̂′, â′ · ω〉 = 〈b̂′â′, ω〉 and 〈b̂′, ω · â′〉 = 〈â′b̂′, ω〉 (b̂′ ∈ Mr
cb(L1(G))),
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which induce the complete contractions

cl : Mr
cb(L1(G))⊗̂Qr(L1(G)) → Mr

cb(L1(G))∗ and cr : Qr(L1(G))⊗̂Mr
cb(L1(G)) → Mr

cb(L1(G))∗.

When ω ∈ L1(Ĝ′), viewing â′ ∈ Mr
cb(L1(G)) in L∞(Ĝ′), we see that â′·ω describes exactly the canonical left

action of L∞(Ĝ′) on L1(Ĝ′), and hence we have â′ ·ω ∈ L1(Ĝ′). Since L1(Ĝ′) is norm dense in Qr(L1(G)),

we conclude that the ranges of the complete contractions cl and cr are contained in Qr(L1(G)), and thus

Qr(L1(G)) is an operator Mr
cb(L1(G))-bimodule. Therefore, we have the following quantum group version

of [19, Proposition 6.3].

Proposition 3.5. Let G be a locally compact quantum group. Then Qr(L1(G)) is an operator Mr
cb(L1(G))-

bimodule, and Mr
cb(L1(G)) is a completely contractive dual Banach algebra.

Identifying L1(G) with the subalgebra ρ(L1(G)) of Mr
cb(L1(G)), we obtain an L1(G)-bimodule action

on Qr(L1(G)) given by

f · ω = ρ(f) · ω and ω · f = ω · ρ(f)

for f ∈ L1(G) and ω ∈ Qr(L1(G)). Recall that ρ(L1(G)) is weak* dense in L∞(Ĝ′). We can thus conclude

this section with the following analogue of Proposition 2.2. See Section 4 for further discussions on the

relation between Qr(L1(G)) and C0(G).

Proposition 3.6. Let G be a locally compact quantum group. Then we have

Qr(L1(G)) = 〈L1(G) ·Qr(L1(G))〉 = 〈Qr(L1(G)) · L1(G)〉.

This also implies that

Qr(L1(G)) = 〈Mr
cb(L1(G)) ·Qr(L1(G))〉 = 〈Qr(L1(G)) ·Mr

cb(L1(G))〉.

Therefore, the space Qr(L1(G)) can be expressed as

Qr(L1(G)) = 〈L1(G) · L1(Ĝ′)〉 = 〈L1(Ĝ′) · L1(G)〉

via the completely contractive injections ρ : L1(G) → Mr
cb(L1(G)) and α : L1(Ĝ′) → Qr(L1(G)).

4. weak*-weak* continuity of the representation Θr of Mr
cb(L1(G))

Let G be a locally compact quantum group. In this section, we first show that the completely isometric

algebra isomorphism Θr in (1.1) is weak*-weak* continuous from Mr
cb(L1(G)) onto CBσ,L∞(G)

L∞(Ĝ)
(B(L2(G))).

Let us recall from operator space theory that the space CBσ(B(L2(G))) of normal completely bounded

maps on B(L2(G)) is a dual operator space with K(L2(G))⊗̂T (L2(G)) as its operator predual, i.e., we

have the complete isometries

(4.1) CBσ(B(L2(G))) = CB(K(L2(G)),B(L2(G))) = (K(L2(G))⊗̂T (L2(G)))∗.
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Note that the operator projective tensor product space K(L2(G))⊗̂T (L2(G)) can be completely isometri-

cally identified with the Haagerup tensor product space T (L2(G))⊗h T (L2(G)) via the identification

xξ,η ⊗ ωξ′,η′ = ωξ,η′ ⊗ ωξ′,η,

where xξ,η is the rank one operator given by xξ,η(ζ) = 〈ζ|η〉ξ, and ωξ′,η′ is the normal linear functional

given by ωξ′,η′(x) = 〈xξ′|η′〉. Thus we can also write

CBσ(B(L2(G))) = (T (L2(G))⊗h T (L2(G)))∗ = B(L2(G))⊗eh B(L2(G)),

where ⊗eh is the extended Haagerup tensor product (cf. [11], [6], [4], and [7]). Under these identifications,

a map Φ on B(L2(G)) is contained in CBσ(B(L2(G))) if and only if there exist two nets {ai} and {bi} in

B(L2(G)) such that sup{‖ai‖} sup{‖bi‖} = ‖Φ‖cb < ∞ and

〈Φ(xξ,η), ωξ′,η′〉 =
∑

i

〈aixξ,ηbi, ωξ′,η′〉 =
∑

i

〈aiξ|η′〉〈biξ
′|η〉 = 〈Φ, ωξ,η′ ⊗ ωξ′,η〉

for all ξ, η, ξ′, η′ ∈ L2(G).

Considering the complete quotient

πĜ′ : ω ∈ T (L2(G)) → f̂ ′ = ω|L∞(Ĝ′) ∈ L1(Ĝ′)

via the restriction to L∞(Ĝ′) (see Section 5 for details), we can obtain the complete quotient

πĜ′ ⊗ πĜ′ : T (L2(G))⊗h T (L2(G)) → L1(Ĝ′)⊗h L1(Ĝ′).

The adjoint of πĜ′ ⊗ πĜ′ is a weak*-weak* continuous completely isometry from (L1(Ĝ′)⊗h L1(Ĝ′))∗ into

CBσ(B(L2(G))), whose range space is the weak* closed subspace CBσ
L∞(Ĝ)

(B(L2(G))) of CBσ(B(L2(G)))

consisting of normal completely bounded L∞(Ĝ)-bimodule homomorphisms on B(L2(G)). This provides

us a weak*-homeomorphic completely isometric isomorphism

CBσ
L∞(Ĝ)

(B(L2(G))) ∼= (L1(Ĝ′)⊗h L1(Ĝ′))∗ = L∞(Ĝ′)⊗eh L∞(Ĝ′).

Then a map Φ on B(L2(G)) is contained in CBσ
L∞(Ĝ)

(B(L2(G))) if and only if there exist two nets {â′i} and

{b̂′i} in L∞(Ĝ′) such that Φ(x) =
∑

i â′ixb̂′i for all x ∈ B(L2(G)). In this case, for given f̂ ′, ĝ′ ∈ L1(Ĝ′),

we can find ξ, ξ′, η, η′ ∈ L2(G) such that f̂ ′ and ĝ′ are the restrictions of ωξ,η′ and ωξ′,η to L∞(Ĝ′),

respectively. Therefore, we have the duality

〈Φ, f̂ ′ ⊗ ĝ′〉 =
∑

i

f̂ ′(â′i)ĝ
′(b̂′i) =

∑

i

〈â′iξ|η′〉〈b̂′iξ′|η〉 = 〈Φ(xξ,η), ωξ′,η′〉.

It is also easy to see that CBσ,L∞(G)

L∞(Ĝ)
(B(L2(G))) is a weak* closed subspace of CBσ

L∞(Ĝ)
(B(L2(G))) (and

hence of CBσ(B(L2(G)))). Then it is a dual operator space and its operator predual is a complete quotient
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of L1(Ĝ) ⊗h L1(Ĝ) (and hence of T (B(L2(G))) ⊗h T (B(L2(G)))). Let us still use Θr for the completely

isometric inclusion

(4.2) Θr : Mr
cb(L1(G)) ↪→ CBσ

L∞(Ĝ)
(B(L2(G))) ∼= L∞(Ĝ′)⊗eh L∞(Ĝ′).

Then the restriction πr
Q = (Θr)∗|L1(Ĝ′)⊗hL1(Ĝ′) of the adjoint map (Θr)∗ defines a complete contraction

from L1(Ĝ′)⊗h L1(Ĝ′) into Mr
cb(L1(G))∗.

Theorem 4.1. Let G be a locally compact quantum group. Then the induced map πr
Q is a complete

quotient from L1(Ĝ′)⊗h L1(Ĝ′) onto Qr(L1(G)) so that (πr
Q)∗ = Θr. Therefore,

Θr : Mr
cb(L1(G)) ∼= CBσ,L∞(G)

L∞(Ĝ)
(B(L2(G)))

is a weak*-homeomorphic completely isometric algebra isomorphism.

Proof. The theorem has been proved in [30, Proposition 4.4 and Proposition 4.8] for the case where G

is commutative or co-commutative. For general G, we need to consider the antipode Ŝ′ of Ĝ′, which, in

general, is an unbounded operator on L∞(Ĝ′). Recall that the domain D(Ŝ′) of Ŝ′ is a dense subspace of

L∞(Ĝ′), which contains all (ι⊗ f)(V ∗) = (f ⊗ ι)(V̂ ) with f ∈ L1(G), and we have

Ŝ′((ι⊗ f)(V ∗)) = Ŝ′((f ⊗ ι)(V̂ )) = (f ⊗ ι)(V̂ ∗) = (ι⊗ f)(V ),

where V̂ = ΣV ∗Σ. It is seen that, for f̂ ′ ∈ L1(Ĝ′), the map f̂ ′ ◦ Ŝ′ is not necessarily contained in L1(Ĝ′).

Thus we need to consider a relatively smaller space

L1,∗(Ĝ′) = {f̂ ′ ∈ L1(Ĝ′) : there exists ĝ′ ∈ L1(Ĝ′) such that ĝ′(x̂′) = f̂ ′∗ ◦ Ŝ′(x̂′) for all x̂′ ∈ D(Ŝ′)},

where f̂ ′∗(x̂′) = 〈f̂ ′, x̂′∗〉 (x̂′ ∈ L∞(Ĝ′)). It is known by [39, §1.13] that L1,∗(Ĝ′) is a dense subalgebra of

L1(Ĝ′). It is worthy to note, though it is not needed here, that there is an involution on L1,∗(Ĝ′) given

by f̂ ′o = f̂ ′∗ ◦ Ŝ′ such that L1,∗(Ĝ′) is an involutive Banach algebra with the norm given by

‖f̂ ′‖L1,∗(Ĝ′) = max{‖f̂ ′‖, ‖f̂ ′o‖}.

Let f ∈ L1(G). Then ρ(f) ∈ Mr
cb(L1(G)), and we have

Θr(ρ(f))(·) = Θr
0(f)(·) = (ι⊗ f)(V (· ⊗ 1)V ∗) ∈ CBσ

L∞(Ĝ)
(B(L2(G))) ∼= L∞(Ĝ′)⊗eh L∞(Ĝ′).

It follows from the duality (4.2) that for all f̂ ′ ∈ L1(Ĝ′) and ĝ′ ∈ L1,∗(Ĝ′), we have

〈πr
Q(f̂ ′ ⊗ ĝ′), ρ(f)〉 = 〈f̂ ′ ⊗ ĝ′, Θr(ρ(f))〉 = 〈(f̂ ′ ⊗ ι)(V )(ĝ′ ⊗ ι)(V ∗), f〉

= 〈(f̂ ′ ⊗ (ĝ′∗ ◦ Ŝ′)∗ ⊗ ι)(V13V23), f〉 = 〈(f̂ ′ ⊗ (ĝ′∗ ◦ Ŝ′)∗ ⊗ ι)(V ∗
12V23V12), f〉

= 〈f̂ ′ ⊗ (ĝ′∗ ◦ Ŝ′)∗, V ∗(1⊗ ρ(f))V 〉 = 〈(ĝ′∗ ◦ Ŝ′)∗ ⊗ f̂ ′, V̂ (ρ(f)⊗ 1)V̂ ∗〉
= 〈(ĝ′∗ ◦ Ŝ′)∗ ? f̂ ′, ρ(f)〉,
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where we use in the second equality the fact that

V = ΣV̂ ∗Σ = Σ(ι⊗ Ŝ′)(V̂ )Σ = (Ŝ′ ⊗ ι)(V ∗),

and thus

(ĝ′ ⊗ ι)(V ∗) = (ĝ′∗ ⊗ ι)(V )∗ = [(ĝ′∗ ◦ Ŝ′ ⊗ ι)(V ∗)]∗ = ((ĝ′∗ ◦ Ŝ′)∗ ⊗ ι)(V ).

This shows that

πr
Q(f̂ ′ ⊗ ĝ′) = (ĝ′∗ ◦ Ŝ′)∗ ? f̂ ′ ∈ L1(Ĝ′) ⊆ Qr(L1(G))??

Therefore, πr
Q is a complete contraction from L1(Ĝ′)⊗h L1(Ĝ′) into Qr(L1(G)), and hence the adjoint

map (πr
Q)∗ is a weak*-weak* continuous complete contraction from Mr

cb(L1(G)) into L∞(Ĝ′)⊗eh L∞(Ĝ′).

Clearly, by definition, we have (π∗Q)∗ = Θr. It follows that πr
Q is a complete quotient from L1(Ĝ′)⊗hL1(Ĝ′)

onto Qr(L1(G)), and thus Θr is a weak*-weak* continuous completely isometric algebra isomorphism from

Mr
cb(L1(G)) onto CBσ,L∞(G)

L∞(Ĝ)
(B(L2(G))). ¤

Remark 4.2. It is shown in [30, Proposition 4.4] that if G is a locally compact group equipped with the

left Haar measure µ, then the map

m ◦ (id⊗ κ∗) : f ⊗ g ∈ L1(G)⊗h L1(G) → f ? κ∗(g) ∈ L1(G)

induces a complete quotient map from L1(G) ⊗h L1(G) onto Q(G). If we replace µ by the right Haar

measure ν = µ ◦ κa, then a simple calculation shows that this map is actually the same as the map πr
Q

discussed in Theorem 4.1.

Next, we consider the weak*-weak* continuity of the following canonical embedding of M(G) into

Mr
cb(L1(G)). Let

ρ̃ : M(G) → Mr
cb(L1(G))

be the composition of the injective completely contractive algebra homomorphism M(G) → Cr
cb(L1(G)),

µ 7→ mr
µ (see Section 3) and the completely isometric algebra isomorphism Cr

cb(L1(G) ∼= Mr
cb(L1(G)),

mr
b̂′
7→ b̂′ as shown in [17]. Then ρ̃ : M(G) → Mr

cb(L1(G)) is an injective completely contractive algebra

homomorphism satisfying ρ̃(f) = ρ(f) (f ∈ L1(G)). Therefore, for all f ∈ L1(G) and µ ∈ M(G), we have

ρ(f)ρ̃(µ) = ρ̃(f)ρ̃(µ) = ρ̃(f ? µ) = ρ(f ? µ),

and hence mr
ρ̃(µ) = mr

µ.

Note that (ρ̃|L1(G))∗ : Mr
cb(L1(G))∗ → L∞(G). We let

ρ̃∗ = (ρ̃|L1(G))∗|Qr(L1(G)) : Qr(L1(G)) → L∞(G).

Then ρ̃∗ is completely contractive. Moreover, for all f̂ ′ ∈ L1(Ĝ′) and f ∈ L1(G), we have

〈ρ̃∗(f̂ ′), f〉 = 〈f̂ ′, ρ̃(f)〉 = 〈f̂ ′, ρ(f)〉 = 〈ρ∗(f̂ ′), f〉,
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and thus ρ̃∗(f̂ ′) = ρ∗(f̂ ′) ∈ C0(G). Therefore, we have

ρ̃∗ : Qr(L1(G)) → C0(G).

Clearly, we have the following two commutative diagrams of complete contractions:

(4.3)

L1(Ĝ′)
ρ∗−→ C0(G)

α ↘ ↗ ρ̃∗

Qr(L1(G)) ,

and

(4.4)

L1(G)
ρ−→ Mr

cb(L1(G))

i ↘ ↗ ρ̃

M(G) ,

where i : L1(G) → M(G) is the inclusion map.

Recall that Qr(L1(G)) is an operator Mr
cb(L1(G))-bimodule. It is easy to see that the diagrams (4.3) and

(4.4) are compatible with the associated canonical bimodule structures. More precisely, for all µ ∈ M(G)

and ω ∈ Qr(L1(G)), we have

(4.5) ρ̃∗(ρ̃(µ) · ω) = µ ? ρ̃∗(ω) and ρ̃∗(ω · ρ̃(µ)) = ρ̃∗(ω) ? µ.

Therefore, not only formally analogous, Proposition 2.2 and Proposition 3.6 are actually related via

the intrinsic connection between the M(G)-bimodule structure on C0(G) and the Mr
cb(L1(G))-bimodule

structure on Qr(L1(G)).

Proposition 4.3. Let G be a locally compact quantum group. Then ρ̃∗ : Qr(L1(G)) → C0(G) is a

complete contraction, and

ρ̃ = (ρ̃∗)∗ : M(G) → Mr
cb(L1(G))

is a weak*-weak* continuous injective completely contractive algebra homomorphism.

Proof. We only need to show that ρ̃ = (ρ̃∗)∗. It is easy to see that ρ̃ and (ρ̃∗)∗ agree on L1(G). Let

f ∈ L1(G) and µ ∈ M(G). Then

(ρ̃∗)∗(f ? g) = ρ̃(f ? g) = ρ̃(f)ρ̃(g) = ρ(f)(ρ̃∗)∗(g)

for all g ∈ L1(G). Since M(G) and Mr
cb(L1(G)) are dual Banach algebras and L1(G) is σ(M(G), C0(G))-

dense in M(G), we have

(ρ̃∗)∗(f ? µ) = ρ(f)(ρ̃∗)∗(µ).

On the other hand, since f ? µ ∈ L1(G), we have

(ρ̃∗)∗(f ? µ) = ρ̃(f ? µ) = ρ(f)ρ̃(µ).
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It follows that

ρ(f)ρ̃(µ) = ρ(f)(ρ̃∗)∗(µ) in Mr
cb(L1(G)) and hence in L∞(Ĝ′).

Therefore, ρ̃(µ) = (ρ̃∗)∗(µ) for all µ ∈ M(G), since ρ(L1(G)) is weak*-dense in L∞(Ĝ′). ¤

The following theorem is the quantum group analogue of Kraus and Ruan [19, Proposition 7.4 and

Theorem 7.6]. We are able to provide a much simpler proof here due to the representation theorem in

[17].

Theorem 4.4. Let G be a locally compact quantum group. Then the following are equivalent:

(1) G is co-amenable;

(2) ρ̃ : M(G) → Mr
cb(L1(G)) is a weak*-homeomorphic completely isometric algebra isomorphism;

(3) ρ̃∗ : Qr(L1(G)) → C0(G) is a completely isometric linear isomorphism;

(3’) ρ̃∗ : Qr(L1(G)) → C0(G) is a bounded linear isomorphism.

In particular, L1(G) is unital, i.e., G is a discrete quantum group, if and only if we have

L1(G) = M(G) = Mr
cb(L1(G)).

Proof. (1) ⇔ (2) ⇔ (3) follows from Proposition 3.1 and Proposition 4.3, and (3) ⇒ (3′) is obvious.

Suppose that (3′) holds. Then ρ̃∗ is a bounded linear isomorphism from Qr(L1(G)) onto C0(G), and

hence ρ̃ = (ρ̃∗)∗ : M(G) → Mr
cb(L1(G)) is surjective. Therefore, M(G) is unital, and thus the quantum

group G is co-amenable (cf. [3, Theorem 3.1]). ¤

Using Theorem 4.4 and a similar argument as that given in [19], we can easily obtain the following

quantum group analogue of [19, Theorem 7.6]. A direct proof can be found in the recent paper [18] by

Kalantar and Neufang.

Theorem 4.5. Let G be a locally compact quantum group. Then the following are equivalent:

(1) Ĝ′ is co-amenable;

(2) ‖ρ(f)‖ = ‖f‖ for all positive f ∈ L1(G);

(3) There exists c > 0 such that ‖f‖ ≤ c ‖ρ(f)‖ for all positive f ∈ L1(G).

Remark 4.6. (i) For a locally compact group G, it is known by Bożejko [5] (for discrete case) and Losert

[28] and Ruan [36] (for non-discrete case) that G is amenable if and only if B(G) = Mcb(A(G)). However,

it is still open whether the corresponding result holds for general locally compact quantum groups.

(ii) It is seen from Proposition 4.3 that ρ̃∗ : Qr(L1(G)) → C0(G) is injective if and only if ρ̃(M(G))

is weak*-dense in Mr
cb(L1(G)), which is true if and only if ρ(L1(G)) is weak*-dense in Mr

cb(L1(G)). By

Theorem 4.4, this is the case if G is co-amenable. It is not clear whether this is true for non-co-amenable

quantum groups G.
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(iii) Considering the connection between Propositions 2.2 and 3.6, it might be interesting to see whether

there exists a Qr(L1(G)) action on Mr
cb(L1(G)) that is compatible with the canonical C0(G)-bimodule

structure on M(G) (cf. Proposition 2.1).

Finally, we note that the corresponding results for the completely bounded left centralizer algebra

Cl
cb(L1(G)) and the completely bounded left multiplier algebra M l

cb(L1(G)) can be obtained via the

left regular representation λ and the left fundamental unitary W . For instance, there is a one-to-one

correspondence between S ∈ Cl
cb(L1(G)) and â ∈ M l

cb(L1(G)) (⊆ L∞(Ĝ)) such that

(4.6) S = ml
â : f ∈ L1(G) → λ−1(âλ(f)) ∈ L1(G).

We can define the space Ql(L1(G)), show the complete isometry

M l
cb(L1(G)) = Ql(L1(G))∗,

and obtain a weak*-homeomorphic completely isometric anti-algebra isomorphism

Θl : M l
cb(L1(G)) ∼= CBσ,L∞(G)

L∞(Ĝ′) (B(L2(G))).

Also, we can prove that G is co-amenable if and only if Ql(L1(G)) = C0(G), or equivalently, M l
cb(L1(G)) =

M(G), and so on.

It is interesting to remark that, since the two regular representations ρ and λ are related by the unitary

operator U = ĴJ on L2(G), i.e., we have ρ(·) = Uλ(·)U∗ (see (2.6)), we can also express S in (4.6) by

S(f) = ρ−1(â′ρ(f)),

where â′ = UâU∗ ∈ L∞(Ĝ′). That is, we can identify M l
cb(L1(G)) with U(M l

cb(L1(G)))U∗, the space of

elements â′ in L∞(Ĝ′) such that â′ρ(f) ∈ ρ(L1(G)) and

(4.7) ml
â′ : f ∈ L1(G) → ρ−1(â′ρ(f)) ∈ L1(G)

is completely bounded.

With this setting, we can obtain the following correspondence between completely bounded double

centralizers and completely bounded double multipliers for general locally compact quantum groups.

Theorem 4.7. Let G be a locally compact quantum group. Then every completely bounded double central-

izer (S, T ) ∈ Ccb(L1(G)) is uniquely associated with an operator b̂′ ∈ L∞(Ĝ′) such that for all f ∈ L1(G),

we have b̂′ρ(f), ρ(f)b̂′ ∈ ρ(L1(G)) and

ml
b̂′(·) = ρ−1(b̂′ρ(·)) and mr

b̂′(·) = ρ−1(ρ(·)b̂′)

are completely bounded maps on L1(G) with S = ml
b̂′

and T = mr
b̂′
.

Therefore, we can define the completely bounded double multiplier algebra Mcb(L1(G)) to be the space

of all these operators b̂′ in L∞(Ĝ′), and we can completely identify Ccb(L1(G)) with Mcb(L1(G)).
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Proof. Given any (S, T ) ∈ Ccb(L1(G)), it follows from our discussion above that there exist â′ and b̂′ in

L∞(Ĝ′) such that â′ρ(f), ρ(f)b̂′ ∈ ρ(L1(G)) and

S(f) = ρ−1(â′ρ(f)) and T (f) = ρ−1(ρ(f)b̂′)

for all f ∈ L1(G). It suffices to show that â′ = b̂′. Since (S, T ) is a double centralizer on L1(G), we have

f ? ρ−1(â′ρ(g)) = f ? S(g) = T (f) ? g = ρ−1(ρ(f)b̂′) ? g

for all f , g ∈ L1(G). Applying ρ to both sides of the above identity, we obtain

ρ(f)â′ρ(g) = ρ(f)b̂′ρ(g),

and this implies that â′ = b̂′, since ρ(L1(G)) is weak*-dense in L∞(Ĝ′). ¤

We can analogously define the space Q(L1(G)) and prove the complete isometry

Q(L1(G))∗ = Mcb(L1(G)) = M l
cb(L1(G)) ∩Mr

cb(L1(G)).

In this case, Q(L1(G)) is actually completely isometric to Ql(L1(G)) + Qr(L1(G)) in the category of

operator spaces. We omit the details here.

5. LUC(G) and RUC(G)

Let G be a locally compact quantum group. We recall that the right fundamental unitary V of G

induces a co-associate co-multiplication

Γr : x ∈ B(L2(G)) → V (x⊗ 1)V ∗ ∈ B(L2(G))⊗̄B(L2(G))

on B(L2(G)), and the restriction of Γr to L∞(G) is equal to the co-multiplication Γ on L∞(G). The

pre-adjoint of Γr induces an associative completely contractive multiplication

. : ω1 ⊗ ω2 ∈ T (L2(G))⊗̂T (L2(G)) → ω1 . ω2 = (ω1 ⊗ ω2) ◦ Γr ∈ T (L2(G)).

Correspondingly, the left fundamental unitary W of G induces a co-associate co-multiplication

Γl : x ∈ B(L2(G)) → W ∗(1⊗ x)W ∈ B(L2(G))⊗̄B(L2(G))

on B(L2(G)), and the restriction of Γl to L∞(G) is also equal to the co-multiplication Γ on L∞(G). The

pre-adjoint of Γl induces another associative completely contractive multiplication

/ : ω1 ⊗ ω2 ∈ T (L2(G))⊗̂T (L2(G)) → ω1 / ω2 = (ω1 ⊗ ω2) ◦ Γl ∈ T (L2(G)).

We remark that in the setting of locally compact groups G, the above type of multiplicative structure

on T (L2(G)) has been studied in [29], [31], [30], and [32]. Let Ĵ be the conjugate linear isomorphism on

L2(G) obtained via the von Neumann algebra L∞(Ĝ) with the left Haar weight ϕ̂. Then R̃(x) = Ĵx∗Ĵ

defines an *-anti-automorphism on B(L2(G)), which maps L∞(G) onto L∞(G) and maps L∞(Ĝ) onto
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L∞(Ĝ′). The restriction R = R̃|L∞(G) is the unitary antipode of G. Using R̃, we obtain a completely

isometric involution o on T (L2(G)) given by ωo = ω∗◦R̃ (ω ∈ T (L2(G))). We can also obtain a completely

isometric involution o on L1(G) given by fo = f∗ ◦R (f ∈ L1(G)).

Proposition 5.1. Let G be a locally compact quantum group. Then the involution o on T (L2(G)) satisfies

(ω1 . ω2)o = ωo
2 / ωo

1 (ω1, ω2 ∈ T (L2(G)).

Proof. Recall that the left and right fundamental unitary operators W and V are related by the formula

V = Σ(Ĵ ⊗ Ĵ)W ∗(Ĵ ⊗ Ĵ)Σ.

Thus, for given ω1 and ω2 in T (L2(G)) and x in B(L2(G)), we can obtain

〈(ω1 . ω2)o, x〉 = 〈ω1 . ω2, R̃(x∗)〉 = 〈ω1 . ω2, ĴxĴ〉 = 〈ω1 ⊗ ω2, V (ĴxĴ ⊗ 1)V ∗〉
= 〈ω1 ⊗ ω2, Σ(Ĵ ⊗ Ĵ)W ∗(1⊗ x)W (Ĵ ⊗ Ĵ)Σ〉 = 〈ωo

2 / ωo
1, x〉.

Therefore, we have (ω1 . ω2)o = ωo
2 / ωo

1 (ω1, ω2 ∈ T (L2(G))). ¤

We note that the multiplication . on T (L2(G)) is always left faithful, since ω1 . ω2 = 0 for all

ω2 ∈ T (L2(G)) implies that ω1 = 0. However, the multiplication . is not right faithful on T (L2(G)) if

L∞(G) 6= B(L2(G)), or equivalently, if G is non-trivial. Indeed, since V ∈ L∞(Ĝ′)⊗̄L∞(G), it is easy to

see that for ω1 ∈ T (L2(G)) and x ∈ B(L2(G)), we have

(ω1 ⊗ ι) ◦ Γr(x) = (ω1 ⊗ ι)(V (x⊗ 1)V ∗) ∈ L∞(G).

Therefore, if ω2 is any element in the pre-annihilator L∞(G)⊥ of L∞(G) in T (L2(G)), then ω1 . ω2 = 0

for all ω1 ∈ T (L2(G)). Corresponding, the multiplication / on T (L2(G)) is right faithful, but not left

faithful if G is non-trivial.

The following Lemma shows that we may regard (T (L2(G), .) (respectively, (T (L2(G), /)) as a lifting

of L1(G). This phenomenon has been observed in [29], [31], and [30] for L1(G) and A(G) of a locally

compact group G.

Lemma 5.2. Let G be a locally compact quantum group. Then the pre-annihilator L∞(G)⊥ of L∞(G)

in T (L2(G)) is a norm closed two-sided ideal in (T (L2(G)), .) (respectively, in (T (L2(G)), /) ), and the

complete quotient map

ω ∈ T (L2(G)) → f = ω|L∞(G) ∈ L1(G)

is an involutive completely contractive algebra homomorphism from (T (L2(G)), .) (respectively, from

(T (L2(G)), /)) onto L1(G).

Therefore, we have the completely isometric involutive Banach algebra identification

(L1(G), ?) ∼= (T (L2(G))/L∞(G)⊥, .) (respectively, (L1(G), ?) ∼= (T (L2(G))/L∞(G)⊥, /)).
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Proof. It suffices to show that for ω ∈ T (L2(G)) and ω′ ∈ L∞(G)⊥, the products ω . ω′ and ω′ . ω are

contained in L∞(G)⊥. To see this, let x be an arbitrary element of L∞(G). Then we have

〈ω . ω′, x〉 = 〈ω ⊗ ω′, V (x⊗ 1)V ∗〉 = 〈ω ⊗ ω′, Γ(x)〉 = 0.

This shows that ω . ω′ ∈ L∞(G)⊥. Similarly, we have ω′ . ω ∈ L∞(G)⊥. Therefore, L∞(G)⊥ is a

norm closed two-sided ideal in (T (L2(G)), .). We can analogously prove that L∞(G)⊥ is a norm closed

two-sided ideal in (T (L2(G)), /). The final statement follows from Proposition 5.1 and the fact that

(ω1 . ω2)|L∞(G) = (ω1 / ω2)|L∞(G) for all ω1, ω2 ∈ (T (L2(G)). ¤

The multiplications . and / define on B(L2(G)) a completely contractive right (T (L2(G)), .)-module

structure

(x, ω) ∈ B(L2(G))× T (L2(G)) → x . ω = (ω ⊗ ι)(V (x⊗ 1)V ∗) ∈ L∞(G) ⊆ B(L2(G))

and a completely contractive left (T (L2(G)), /)-module structure

(ω, x) ∈ T (L2(G))⊗̂B(L2(G)) → ω / x = (ι⊗ ω)(W ∗(1⊗ x)W ) ∈ L∞(G) ⊆ B(L2(G)).

In particular, if x ∈ L∞(G) and f = ω|L∞(G) with ω ∈ T (L2(G)), then we get

(5.1) x . ω = (ω ⊗ ι)Γ(x) = x ? f and x / ω = (ι⊗ ω)Γ(x) = f ? x,

where x ? f and f ? x are the natural right and left L1(G)-module actions on L∞(G), respectively.

Recall that the subspaces LUC(G) and RUC(G) of L∞(G) are defined by

LUC(G) = 〈L∞(G) ? L1(G)〉 and RUC(G) = 〈L1(G) ? L∞(G)〉

(cf. [13] and [37]).

Proposition 5.3. Let G be a locally compact quantum group. Then we have

(1) LUC(G) = 〈LUC(G) ? L1(G)〉 = 〈B(L2(G)) . T (L2(G))〉;
(2) RUC(G) = 〈L1(G) ? RUC(G)〉 = 〈T (L2(G)) / B(L2(G))〉.

Proof. It is clear from the definition that

〈LUC(G) ? L1(G)〉 ⊆ LUC(G) ⊆ 〈B(L2(G)) . T (L2(G))〉.

Now given y ∈ B(L2(G)) and ω1, ω2 ∈ T (L2(G)), we get

x = y . ω1 = (ω1 ⊗ ι)V (y ⊗ 1)V ∗ ∈ L∞(G),

and thus if let f2 = ω2|L∞(G) ∈ L1(G), then we have

y . (ω1 . ω2) = (y . ω1) . ω2 = x ? f2 ∈ LUC(G).
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Since the multiplication . is a complete quotient from T (L2(G))⊗̂T (L2(G)) onto T (L2(G)), we have

〈T (L2(G)) .T (L2(G))〉 = T (L2(G)), and hence we get 〈B(L2(G)) .T (L2(G))〉 ⊆ LUC(G). Applying this

argument again, we conclude that

〈B(L2(G)) . T (L2(G))〉 ⊆ 〈LUC(G) ? L1(G)〉.

This proves (1). The proof for (2) is similar. ¤

Proposition 5.4. Let G be a locally compact quantum group. Then the following are equivalent:

(1) G is co-amenable;

(2) (T (L2(G)), .) has a contractive (or bounded) right approximate identity;

(3) (T (L2(G)), /) has a contractive (or bounded) left approximate identity.

Proof. We only prove (1) ⇔ (2). The equivalence (2) ⇔ (3) follows from Proposition 5.1. Let us first

assume that {fα} is a contractive right approximate identity of L1(G). For each α, we let ωα ∈ T (L2(G))

be a contractive normal extension of fα. We shall show that {ωα} is a contractive weak right approximate

identity of (T (L2(G)), .).

Indeed, for given ω1, ω2 ∈ T (L2(G)), let fi ∈ L1(G) denote the restriction of ωi to L∞(G) (i = 1, 2).

Then for any x ∈ B(L2(G)), we have x . ω1 ∈ LUC(G) ⊆ L∞(G), and hence

〈(ω1 . ω2) . ωα, x〉 = 〈ω2 . ωα, x . ω1〉 = 〈f2 ? fα, x . ω1〉
→ 〈f2, x . ω1〉 = 〈ω2, x . ω1〉 = 〈ω1 . ω2, x〉.

Since 〈T (L2(G)) . T (L2(G))〉 = T (L2(G)) and {ωα} is bounded, for all ω ∈ T (L2(G)) and x ∈ B(L2(G)),

we also have

〈ω . ωα, x〉 → 〈ω, x〉.
By a standard convexity argument, we can get a contractive right approximate identity of T (L2(G)).

Conversely, it is easy to show that if {ωα} is a contractive (or bounded) right approximate identity for

(T (L2(G)), .), then fα = ωα|L∞(G) is a contractive (or bounded) right approximate identity for L1(G). ¤

The corollary below is an immediate consequence of Proposition 5.4 and Cohen’s factorization theorem.

Corollary 5.5. If G is a co-amenable locally compact quantum group, then we have

(1) LUC(G) = LUC(G) ? L1(G) = L∞(G) ? L1(G) = B(L2(G)) . T (L2(G));

(2) RUC(G) = L1(G) ? RUC(G) = L1(G) ? L∞(G) = T (L2(G)) / B(L2(G)).

By Proposition 2.2, we see that C0(G) ⊆ LUC(G). It is shown by Runde [37] that LUC(G) is an

operator system such that

C0(G) ⊆ LUC(G) ⊆ M(C0(G)).
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Runde further showed that if G is co-amenable and C0(G) has a bounded approximate identity contained

in the centre of C0(G), then LUC(G) is a unital C*-subalgebra of M(C0(G)) (cf. [37, Theorem 5.3]).

Moreover, results obtained by Salmi [38] show that LUC(G) is a unital C*-algebra if G is co-amenable

and the right fundamental unitary operator of G is regular.

Let us recall from Baaj and Skandalis [1] that a fundamental unitary operator V is regular (respectively,

semi-regular) if {(ι⊗ ω)(ΣV ) : ω ∈ T (L2(G))}‖·‖ equals K(L2(G)) (respectively, contains K(L2(G))).

Theorem 5.6. Let G be a semi-regular locally compact quantum group. Then LUC(G) and RUC(G) are

unital C*-subalgebras of M(C0(G)).

Proof. To show that LUC(G) is a unital C*-algebra, we only need to prove that LUC(G) is closed under

multiplication. We shall use below the expression LUC(G) = 〈B(L2(G)).T (L2(G)) (cf. Proposition 5.3).

Suppose that yi ∈ B(L2(G)) and ωi = ωξi,ηi ∈ T (L2(G)) (i = 1, 2). We can write

ωi(x) = 〈xξi|ηi〉 = η∗i xξi

for x ∈ B(L2(G)). We want to show that

(5.2) (y1 . ω1)(y2 . ω2) = (η∗1 ⊗ η∗2 ⊗ ι)V13(y1 ⊗ 1⊗ 1)V ∗
13V23(1⊗ y2 ⊗ 1)V ∗

23(ξ1 ⊗ ξ2 ⊗ ι)

is contained in LUC(G). Notice that we can move η∗2 in the 2nd-leg and ξ1 in the 1st-leg together to the

middle (between V ∗
13 and V23) to form the rank one operator x = xξ1,η2 , and thus we can write (5.2) as

(5.3) (y1 . ω1)(y2 . ω2) = (η∗1 ⊗ ι)V (y1 ⊗ 1)V ∗(x⊗ 1)V (y2 ⊗ 1)V ∗(ξ2 ⊗ ι).

Since G is semi-regular, the rank one operator x can be approximated in norm by operators of the form
N∑

k=1

(ι⊗ ωξk,ηk
)(V ∗Σ) =

N∑

k=1

(ι⊗ η∗k)V ∗(ξk ⊗ ι).

Therefore, we can replace x in (5.3) by operators x̃ = (ι⊗ η∗)V ∗(ξ ⊗ ι), and it suffices now to show that

(η∗1 ⊗ ι)V (y1 ⊗ 1)V ∗(x̃⊗ 1)V (y2 ⊗ 1)V ∗(ξ2 ⊗ ι)(5.4)

= (η∗1 ⊗ η∗ ⊗ ι)V13(y1 ⊗ 1⊗ 1)V ∗
13V

∗
12V23(1⊗ y2 ⊗ 1)V ∗

23(ξ ⊗ ξ2 ⊗ ι)

is contained in LUC(G). Using the pentagonal relation

V ∗
13V

∗
12V23 = V23V

∗
12,

we replace V ∗
13V

∗
12V23 in (5.4) by V23V

∗
12, and we express (5.4) as

(η∗1 ⊗ η∗ ⊗ ι)V13(y1 ⊗ 1⊗ 1)V23V
∗
12(1⊗ y2 ⊗ 1)V ∗

23(ξ ⊗ ξ2 ⊗ ι)(5.5)

= (η∗1 ⊗ η∗ ⊗ ι)V13V23(y1 ⊗ 1⊗ 1)V ∗
12(1⊗ y2 ⊗ 1)V ∗

23(ξ ⊗ ξ2 ⊗ ι)

= (η∗1 ⊗ η∗ ⊗ ι)V ∗
12V23V12(y1 ⊗ 1⊗ 1)V ∗

12(1⊗ y2 ⊗ 1)V ∗
23(ξ ⊗ ξ2 ⊗ ι).



24 ZHIGUO HU, MATTHIAS NEUFANG, AND ZHONG-JIN RUAN

Finally, since (η∗1 ⊗ η∗)V ∗ can be approximated by finite sums
∑

j η̃∗1,j ⊗ η̃∗2,j in L2(G)⊗L2(G), we can

replace (η∗1 ⊗ η∗ ⊗ ι)V ∗
12 in (5.5) by (η̃∗1 ⊗ η̃∗2 ⊗ ι) and obtain

(η̃∗1 ⊗ η̃∗2 ⊗ ι)V23V12(y1 ⊗ 1⊗ 1)V ∗
12(1⊗ y2 ⊗ 1)V ∗

23((ξ ⊗ ξ2 ⊗ ι)) = ((y1 . ωξ,η̃1)y2) . ωξ2,η̃2 ∈ LUC(G).

This shows that LUC(G) is closed under multiplication .

We can analogously prove that RUC(G) is a unital C*-algebra by considering the left fundamental

unitary operator W . We can also show this by using the fact that RUC(G) is a C*-algebra if and only

if LUC(G) is a C*-algebra. In fact, for x ∈ B(L2(G)) and ω ∈ T (L2(G)), by Proposition 5.1 and the

argument given in [37], we have

[ω◦ / R̃(x∗)]∗ = R̃(x . ω) = (ω∗)◦ / R̃(x),

and hence R maps LUC(G) onto RUC(G). ¤

Remark 5.7. We expect that the spaces LUC(G) and RUC(G) are unital C*-algebras for all locally

compact quantum groups G.

6. LUC(G)∗

Let G be a locally compact quantum group. It is known from Banach algebra theory that there exist

left and right Arens products ¤ and ♦ on L∞(G)∗ = L1(G)∗∗, which are defined by

〈µ¤ν, x〉 = 〈µ, ν¤x〉 and 〈µ♦ν, x〉 = 〈ν, x♦µ〉

for all µ, ν ∈ L∞(G)∗ and x ∈ L∞(G). Here ν¤x and x♦µ are operators in L∞(G) defined by

〈ν¤x, f〉 = 〈ν, x ? f〉 = 〈ν, (f ⊗ ι)Γ(x)〉 and 〈x♦µ, f〉 = 〈µ, f ? x〉 = 〈µ, (ι⊗ f)Γ(x)〉.

Then (L∞(G)∗, ¤) and (L∞(G)∗,♦) are completely contractive Banach algebras. In this section, we

shall mainly study the completely contractive Banach algebra structure on LUC(G)∗ induced by the left

Arens product ¤. The corresponding results for RUC(G)∗ via the right Arens product ♦ can be obtained

analogously.

Suppose that ν ∈ LUC(G)∗. Then we can define a completely bounded linear map

(6.1) νL : x ∈ L∞(G) → ν¤x ∈ L∞(G)

on L∞(G) with ‖νL‖cb ≤ ‖ν‖. Moreover, the map νL is a right L1(G)-module homomorphism on L∞(G),

since

〈ν¤(x ? f), g〉 = 〈ν, (x ? f) ? g〉 = 〈ν, x ? (f ? g)〉 = 〈ν¤x, f ? g〉 = 〈(ν¤x) ? f, g〉
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for all x ∈ L∞(G) and f , g ∈ L1(G). Therefore, νL also maps LUC(G) into LUC(G), i.e., the space

LUC(G) is left introverted in L∞(G). In this situation, the left Arens product ¤ on L∞(G)∗ induces

naturally a completely contractive multiplication on LUC(G)∗, also denoted by ¤, so that the restriction

ν ∈ (L∞(G)∗,¤) → ν|LUC(G) ∈ (LUC(G)∗,¤)

is a weak*-weak* continuous completely contractive Banach algebra quotient from (L∞(G)∗,¤) onto

(LUC(G)∗, ¤).

In the rest of the paper, we will simply use LUC(G)∗ to denote the algebra (LUC(G)∗, ¤). It is known

from [14, Theorem 15] that LUC(G)∗ is unital (respectively, right unital) if and only if G is co-amenable.

Recall that (µ ⊗ ι)Γ(x) ∈ C0(G) and (ι ⊗ µ)Γ(x) ∈ C0(G) for all µ ∈ M(G) and x ∈ C0(G) (cf. [20,

Definition 4.1]). This means that C0(G) is two-sided introverted in L∞(G). Thus the Arens products ¤
and ♦ on L∞(G)∗ induce two completely contractive multiplications on C0(G)∗. It is seen in Section 2

that these two Arens products on C0(G)∗ are the same and both equal to the multiplication ? on M(G).

Therefore, the map LUC(G)∗ → M(G), ν 7→ ν|C0(G) is a weak*-weak* continuous completely contractive

Banach algebra quotient from LUC(G)∗ onto M(G).

As mentioned in Section 2, every µ ∈ M(G) extends uniquely to a strictly continuous linear functional

µ̃ on M(C0(G)), which automatically satisfies ‖µ̃‖ = ‖µ‖. We let

π : M(G) → LUC(G)∗, µ 7→ µ̃|LUC(G).

The following two propositions on the map π are the quantum group versions of the corresponding results

by Ghahramani, Lau and Losert [9] on L1(G), and by Lau and Losert [24] on A(G), noticing that in these

two cases, each µ ∈ M(G) has a unique norm preserving extension to LUC(G) (cf. [24, Lemma 1] and

[26, Proposition 4.4]). The situation for the C*-algebra LUC(G) introduced by Salmi is studied in [38].

We point out that the fact that π is an isometric algebra homomorphism as shown below is also stated

in [34, Lemma 4.1]. However, the proof given in [34] is not appropriately explained, missing the strictly

continuous extension property for µ in M(G).

Proposition 6.1. The map π : M(G) → LUC(G)∗ is a completely isometric algebra homomorphism

such that

LUC(G)∗ = π(M(G))⊕ C0(G)⊥,

where C0(G)⊥ = {µ ∈ LUC(G)∗ : µ|C0(G) = 0} is a weak* closed ideal in LUC(G)∗.

Therefore, we can completely isometrically and algebraically identify M(G) with the Banach subalgebra

π(M(G)) of LUC(G)∗.

Proof. It is easy to see that π : µ ∈ M(G) → µ̃|LUC(G) ∈ LUC(G)∗ is a well-defined linear isometry. A

natural calculation shows that π is a complete isometry. We note that the co-multiplication Γ actually
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maps M(C0(G)) into M(C0(G)⊗C0(G)) and is strictly continuous on the closed unit ball of M(C0(G)).

Then, for any ν ∈ M(G), the map

(ι̃⊗ ν) ◦ Γ : M(C0(G)) → M(C0(G))

is completely bounded and strictly continuous on the closed unit ball of M(C0(G)). Thus, by the definition

of the product ¤ on LUC(G)∗, we obtain π(ν)¤x = (̃ι⊗ ν)Γ(x) (ν ∈ M(G), x ∈ LUC(G)). Therefore,

we conclude from (2.7) that

〈π(µ)¤π(ν), x〉 = 〈π(µ), π(ν)¤x〉 = 〈µ̃, (ι̃⊗ ν)Γ(x)〉 = 〈µ̃⊗ ν, Γ(x)〉 = 〈µ̃ ? ν, x〉 = 〈π(µ ? ν), x〉

for all µ, ν ∈ M(G), and x ∈ LUC(G). It follows that π : M(G) → LUC(G)∗ is an algebra homomorphism.

It is clear that C0(G)⊥ is a weak* closed subspace of LUC(G)∗, and we can obtain the Banach space

decomposition

LUC(G)∗ = π(M(G))⊕ C0(G)⊥.

Fix ν ∈ C0(G)⊥, µ ∈ LUC(G)∗, and x ∈ C0(G). Then ν¤x = 0, since x ? f ∈ C0(G) (cf. Proposition

2.2) and thus

〈ν¤x, f〉 = 〈ν, x ? f〉 = 0

for all f ∈ L1(G). This shows that µ¤ν ∈ C0(G)⊥, and hence C0(G)⊥ is a left idea in LUC(G)∗. To get

that C0(G)⊥ is a right idea in LUC(G)∗, we let µ0 = µ|C0(G) ∈ M(G). Then

〈µ¤x, f〉 = 〈µ, x ? f〉 = 〈µ0, (f ⊗ ι)Γ(x)〉 = 〈f, (ι⊗ µ0)Γ(x)〉

for all f ∈ L1(G). Thus µ¤x = (ι ⊗ µ0)Γ(x) ∈ C0(G). This implies that ν¤µ ∈ C0(G)⊥. Therefore,

C0(G)⊥ is a right idea in LUC(G)∗. ¤

For every µ ∈ LUC(G)∗, the right multiplication map

m̃r
µ : ν ∈ LUC(G)∗ → ν¤µ ∈ LUC(G)∗

is weak*-weak* continuous on LUC(G)∗; however, this is not necessarily true for the left multiplication

map

m̃l
µ : ν ∈ LUC(G)∗ → µ¤ν ∈ LUC(G)∗.

We let

Zt(LUC(G)∗) = {µ ∈ LUC(G)∗ : m̃l
µ is weak*-weak* continuous on LUC(G)∗}

denote the topological centre of LUC(G)∗.

Proposition 6.2. Let G be a locally compact quantum group. Then we have

M(G) ⊆ Zt(LUC(G)∗) ⊆ LUC(G)∗.
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Proof. Let µ ∈ M(G). Since L1(G) is a two-sided ideal in M(G), we have L1(G) ? µ ⊆ L1(G). By

Proposition 2.1, each f ∈ L1(G) is strictly continuous on M(C0(G)), and hence π(f) = f for all f ∈ L1(G).

We conclude from [14, Corollary 3] that µ ∈ Zt(LUC(G)∗). Therefore, M(G) ⊆ Zt(LUC(G)∗). ¤

It is seen that LUC(G)∗ is a dual Banach algebra if and only if LUC(G)∗ = Zt(LUC(G)∗). In the case

where G is a locally compact group, this is equivalent to that LUC(G)∗ = M(G) (since Lau [22] showed

that Zt(LUC(G)∗) = M(G)), which is true if and only if G is compact. We show in [15] that LUC(G)∗

being a dual Banach algebra is equivalent to the compactness of G when either Zt(LUC(G)∗) = M(G)

or G is amenable with L1(G) separable.

Moreover, we can obtain that LUC(G)∗ is commutative if and only if G is co-commutative and compact.

In fact, LUC(G)∗ is commutative if and only if L1(G) is commutative and LUC(G)∗ = Zt(LUC(G)∗),

which is equivalent to that L1(G) = A(G) for a locally compact group G and UCB(Ĝ)∗ is commutative;

as shown by Lau and Losert in [25, Proposition 5.1], this is exactly the case when G is discrete.

Proposition 6.3. The multiplication ¤ on LUC(G)∗ is right faithful, and is left faithful in the following

cases:

(1) G is co-amenable, i.e., LUC(G)∗ is unital;

(2) G is an SIN quantum group, i.e., LUC(G) = RUC(G);

(3) L1(G) is quotient strongly Arens irregular, i.e., M(G) = Zt(LUC(G)∗).

Proof. Let us first show the right faithfulness of ¤. Suppose that ν ∈ LUC(G)∗ and µ¤ν = 0 for all

µ ∈ LUC(G)∗. Then for all x ∈ LUC(G) and f ∈ L1(G), we have 〈ν, x ? f〉 = 〈ν¤x, f〉 = 〈f¤ν, x〉 = 0.

Therefore, we have ν = 0 by Proposition 5.3.

We consider now the left faithfulness of ¤ in the three given cases.

Case (1). Suppose that G is co-amenable. Then LUC(G)∗ is unital, and hence ¤ is faithful.

Case (2). It is easy to see that the multiplication ¤ on LUC(G)∗ is left faithful if and only if

(6.2) LUC(G) = 〈LUC(G)∗¤ LUC(G)〉.

Suppose that G is SIN. By Proposition 5.3, we have

LUC(G) = RUC(G) = 〈L1(G) ? RUC(G)〉 = 〈L1(G) ? LUC(G)〉.

This implies (6.2) and thus the left faithfulness of the multiplication ¤.

Case (3). Suppose that Zt(LUC(G)∗) = M(G). Let µ ∈ LUC(G)∗ be such that µ¤ν = 0 for all

ν ∈ LUC(G)∗, i.e., m̃l
µ = 0 on LUC(G)∗. Then µ ∈ Zt(LUC(G)∗) and hence µ ∈ M(G). Therefore, we

have µ = 0, since the multiplication on M(G) is faithful (cf. Proposition 2.2). ¤
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Remark 6.4. At this moment, it is not clear whether the multiplication ¤ on LUC(G)∗ is always left

faithful. We observe that the left faithfulness of ¤ on LUC(G)∗ is equivalent to

Zt(LUC(G)∗)
⋂
〈L1(G) ? LUC(G)〉⊥ = {0}.

Related to (2.5) and Remark 2.3, it is also not clear whether we have

〈LUC(G)∗¤LUC(G)∗〉 = LUC(G)∗

for non-co-amenable locally compact quantum groups G.

As seen in (6.1), each ν ∈ LUC(G)∗ defines a completely bounded right L1(G)-module homomorphism

νL on L∞(G). Since LUC(G) = 〈B(L2(G)) . T (L2(G))〉, the map

(6.3) νL : x ∈ B(L2(G)) → ν¤x ∈ B(L2(G))

is also a well-defined completely bounded right T (L2(G))-module homomorphism on B(L2(G)) with

‖νL‖cb ≤ ‖ν‖, which obviously extends the map given in (6.1). Here we let

〈ν¤x, ω〉 = 〈ν, x . ω〉

for all x ∈ B(L2(G)) and ω ∈ T (L2(G)).

Let CBT (L2(G))(B(L2(G))) (respectively, CBL1(G)(L∞(G)) and CBL1(G)(LUC(G))) denote the space of

completely bounded right T (L2(G))-module homomorphisms on B(L2(G)) (respectively, the spaces of

completely bounded right L1(G)-module homomorphisms on L∞(G) and LUC(G)). Then the map

(6.4) ΦL : ν ∈ LUC(G)∗ → νL ∈ CB(B(L2(G)))

gives an injective completely contractive algebra homomorphism from LUC(G)∗ into CBT (L2(G))(B(L2(G))),

CBL1(G)(L∞(G)), and CBL1(G)(LUC(G)), respectively. Clearly, ΦL is the adjoint map of the completely

contractive module product

B(L2(G))⊗̂T (L2(G)) → LUC(G), (x, ω) 7→ x . ω

(respectively, L∞(G)⊗̂L1(G) → LUC(G), (x, f) 7→ x ? f). Therefore, ΦL maps LUC(G)∗ weak*-weak*

continuously into CBT (L2(G))(B(L2(G))) and CBL1(G)(L∞(G)), respectively.

Proposition 6.5. Let G be a locally compact quantum group. Then

ΦL : ν ∈ LUC(G)∗ → νL ∈ CB(B(L2(G)))

is a weak*-weak* continuous injective completely contractive algebra homomorphism.

Moreover, the quantum group G is co-amenable if and only if we have one (and hence all) of the

following (completely) isometric algebra isomorphisms via ΦL:

(1) LUC(G)∗ ∼= CBT (L2(G))(B(L2(G)));
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(2) LUC(G)∗ ∼= CBL1(G)(L∞(G));

(3) LUC(G)∗ ∼= CBL1(G)(LUC(G)).

Proof. It is obvious that each of (1), (2), and (3) implies the co-amenability of G, since LUC(G)∗ is unital

in these cases (cf. [14, Theorem 15]).

Conversely, suppose that G is co-amenable. Then L1(G) and (T (L2(G)), .) both have contractive right

approximate identities (cf. Proposition 5.4). Due to [23, Theorem 5.1], we have the isometric algebra

isomorphisms (1), (2), and (3). A standard matricial argument shows that they are actually complete

isometries. ¤

Finally, we note that ΦL also induces an injective completely contractive algebra homomorphism

M(G) → CBL1(G)(C0(G)), which is precisely corresponding to the left M(G)-module action on C0(G),

where CBL1(G)(C0(G)) is the space of completely bounded right L1(G)-module homomorphisms on C0(G).

Under the embedding π : M(G) ↪→ LUC(G)∗, we can obtain M(G) ∼= CBσ
T (L2(G))(B(L2(G))) via ΦL

when G is co-amenable. Therefore, replacing LUC(G)∗ by M(G) and combining Theorem 4.4 with Bédos

and Tuset [3, Theorem 3.1] and Lau [23, Theorem 5.1], we can show that the co-amenability of G is also

characterized by one (and hence all) of the following (completely) isometric algebra isomorphisms:

M(G) ∼= CBσ
T (L2(G))(B(L2(G))); M(G) ∼= CBσ

L1(G)(L∞(G)); M(G) ∼= CBL1(G)(C0(G)),

where the first two isomorphisms are also determined by the map ρ̃ in Proposition 4.3. We omit the

details here.

7. UCQr(L1(G)) and UCQr(L1(G))∗

As we have discussed in Sections 5 and 6, given a locally compact quantum group G, there exits

a completely contractive multiplication . on T (L2(G)) associated with the right fundamental unitary

V . We shall simply use T (L2(G)) to denote the algebra (T (L2(G)), .). Then . induces a completely

contractive right T (L2(G))-module structure

x . ω = (ω ⊗ ι)Γr(x) = (ω ⊗ ι)(V (x⊗ 1)V ∗)

on B(L2(G)), and thus we obtain a complete contraction

S̃r : x⊗ ω ∈ B(L2(G))⊗̂T (L2(G)) → x . ω = (ω ⊗ ι)Γr(x) ∈ LUC(G) ⊆ L∞(G).

We let UCQr(L1(G)) denote the range space of S̃r, that is equipped with the operator space matrix

norm stemming from the quotient space B(L2(G))⊗̂T (L2(G))/kerS̃r. Then we obtain the commutative
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diagram of complete contractions:

(7.1)

B(L2(G))⊗̂T (L2(G)) S̃r

−→ LUC(G)

π̃r ↘ ↗ ι̃r

UCQr(L1(G)) ,

where π̃r is the complete quotient map from B(L2(G))⊗̂T (L2(G)) onto UCQr(L1(G)), and ι̃r is the

induced completely contractive injection (or inclusion) from UCQr(L1(G)) into LUC(G).

In the following, we shall consider a natural completely contractive Banach algebra structure on the

space UCQr(L1(G))∗. First, we note that for x ∈ B(L2(G)) and ω, ω′ ∈ T (L2(G)), we have

(x . ω) . ω′ = x . (ω . ω′) ∈ UCQr(L1(G)),

and

(7.2) ‖x . ω‖UCQr(L1(G)) ≤ ‖x‖B(L2(G))‖ω‖T (L2(G)).

In particular, we have

(7.3) ‖y . ω‖UCQr(L1(G)) ≤ ‖y‖UCQr(L1(G))‖ω‖T (L2(G))

for all y ∈ UCQr(L1(G)) and ω ∈ T (L2(G)). Therefore, the right T (L2(G))-module action on B(L2(G))

induces a right T (L2(G))-module structure on UCQr(L1(G)).

Next, we note that for n ∈ UCQr(L1(G))∗ and x ∈ B(L2(G)), we can define n . x ∈ B(L2(G)) by

〈n . x, ω〉 = 〈n, x . ω〉 (ω ∈ T (L2(G))),

and we have

‖n . x‖B(L2(G)) ≤ ‖n‖‖ω‖T (L2(G)).

It is easy to see that

n . (x . ω) = (n . x) . ω ∈ UCQr(L1(G))

for all n ∈ UCQr(L1(G))∗, x ∈ B(L2(G)), and ω ∈ T (L2(G)). The argument used in the proof of [33,

Lemma 2.1] shows that for n ∈ UCQr(L1(G))∗, x1, · · · , xk ∈ B(L2(G)), and ω1, · · · , ωk ∈ T (L2(G)), we

have

‖n .

k∑

i=1

(xi . ωi)‖UCQr(L1(G)) ≤ ‖n‖‖
k∑

i=1

(xi . ωi)‖UCQr(L1(G)).

It follows that for all n ∈ UCQr(L1(G))∗ and y ∈ UCQr(L1(G)), we have n . y ∈ UCQr(L1(G)) and

(7.4) ‖n . y‖UCQr(L1(G)) ≤ ‖n‖‖y‖UCQr(L1(G)).

Finally, we are ready to define a Banach algebra multiplication on UCQr(L1(G))∗ by letting

〈m . n, y〉 = 〈m,n . y〉 (m,n ∈ UCQr(L1(G))∗, y ∈ UCQr(L1(G))).
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Then we have m . n ∈ UCQr(L1(G))∗ and

(7.5) ‖m . n‖ ≤ ‖m‖‖n‖

for all m, n ∈ UCQr(L1(G))∗. In the rest of this section, the Banach algebra (UCQr(L1(G))∗, .) will

simply be denoted by UCQr(L1(G))∗.

Let Θ̃r = (π̃r)∗ be the adjoint map of π̃r. Then Θ̃r : UCQr(L1(G))∗ → CB(B(L2(G))) is a weak*-

weak* continuous completely isometric injection. It is easy to see that Θ̃r maps UCQr(L1(G))∗ into

CBT (L2(G))(B(L2(G))). It is also easy to see that

Θ̃r : UCQr(L1(G))∗ → CBT (L2(G))(B(L2(G)))

is an algebra homomorphism. This shows in particular that UCQr(L1(G))∗ is a completely contractive

Banach algebra. Note that V ∈ L∞(Ĝ′)⊗̄L∞(G), and

〈Θ̃r(n)(x), ω〉 = 〈n, x . ω〉 = 〈n, (ω ⊗ ι)V (x⊗ 1)V ∗〉

for all n ∈ UCQr(L1(G))∗, x ∈ B(L2(G)), and ω ∈ T (L2(G)). We can express the above as

(7.6) Θr(n)(x) = n . x = (ι⊗ n)V (x⊗ 1)V ∗.

Thus for all n ∈ UCQr(L1(G))∗, the map Θ̃r(n) is an L∞(Ĝ)-bimodule homomorphism on B(L2(G))

leaving L∞(G) invariant. That is, we also have

Θ̃r : UCQr(L1(G))∗ → CBL∞(G)

L∞(Ĝ)
(B(L2(G))).

Summarizing the above discussions, we have the following.

Theorem 7.1. Let G be a locally compact quantum group. Then UCQr(L1(G))∗ is a completely contrac-

tive Banach algebra, and

Θ̃r : UCQr(L1(G))∗ → CB(B(L2(G)))

is a weak*-weak* continuous completely isometric algebra homomorphism satisfying

Θ̃r(UCQr(L1(G))∗) ⊆ CBT (L2(G))(B(L2(G))) ∩ CBL∞(G)

L∞(Ĝ)
(B(L2(G))).

Since the inclusion map ι̃r in (7.1) is a complete contraction from UCQr(L1(G)) into LUC(G) with a

norm dense range, its adjoint map

Ξ̃r = (ι̃r)∗ : LUC(G)∗ → UCQr(L1(G))∗

is a weak*-weak* continuous injective completely contractive algebra homomorphism with a weak*-dense

range. Then the composition map

Θ̃r ◦ Ξ̃r : LUC(G)∗ → CB(B(L2(G)))
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is a weak*-weak* injective continuous completely contractive algebra homomorphism, which is actually

equal to the map ΦL in (6.4). In fact, for all ν ∈ LUC(G)∗, x ∈ B(L2(G)), and ω ∈ T (L2(G)), we have

〈ΦL(ν)(x), ω〉 = 〈ν, x . ω〉 = 〈Ξ̃r(ν), x . ω〉 = 〈Θ̃r(Ξ̃r(ν))(x), ω〉.

As Θr is expressed in (7.6), we can also express ΦL by

(7.7) ΦL(ν)(x) = ν¤x = (ι⊗ ν)V (x⊗ 1)V ∗

for ν ∈ LUC(G)∗ and x ∈ B(L2(G)). Therefore, the commutative diagram below is clearly dual to the

diagram (7.1):

(7.8)

LUC(G)∗ ΦL−→ CBT (L2(G))(B(L2(G)))

Ξ̃r ↘ ↗ Θ̃r

UCQr(L1(G))∗ .

Proposition 7.2. Let G be a locally compact quantum group. then the following are equivalent:

(1) ι̃r : UCQr(L1(G)) → LUC(G) is a bounded linear isomorphism;

(2) Ξr : LUC(G)∗ → UCQr(L1(G))∗ is surjective;

(3) ΦL : LUC(G)∗ → CBT (L2(G))(B(L2(G))) is bounded from below.

Proof. Recall that the range of Ξr is weak*-dense in UCQr(L1(G))∗, and UCQr(L1(G)) ⊆ LUC(G) is

norm dense. Thus we have (1) ⇔ (2).

Note that ΦL = Θr ◦ Ξr, and Θr : UCQr(L1(G))∗ → CBT (L2(G))(B(L2(G))) is completely isometric.

Hence, we also have (2) ⇔ (3). ¤

Theorem 7.3. Let G be a co-amenable locally compact quantum group. Then the maps

ι̃r : UCQr(L1(G)) → LUC(G), Ξ̃r : LUC(G)∗ → UCQr(L1(G))∗,

and Θ̃r : UCQr(L1(G))∗ → CBT (L2(G))(B(L2(G)))

are all completely isometric surjections. In this case, we also have

UCQr(L1(G)) = UCQr(L1(G)) . T (L2(G)).

Proof. According to Proposition 6.5, the map ΦL : LUC(G)∗ → CBT (L2(G))(B(L2(G))) is surjective and

completely isometric. Since ΦL = Θr ◦ Ξr and Θr is completely isometric, the map Θ̃r must be onto

CBT (L2(G))(B(L2(G))), and the map Ξ̃r must be completely isometrically onto UCQr(L1(G))∗. In this

situation, ι̃r is also completely isometric and onto LUC(G), and we can conclude from Corollary 5.5 that

UCQr(L1(G)) = LUC(G) = LUC(G) . T (L2(G)) = UCQr(L1(G)) . T (L2(G)).

¤
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Remark 7.4. (i) Let G be a co-commutative locally compact quantum group. By [33, Theorem 4.1],

we see that each of (1) - (3) in Proposition 7.2 is equivalent to G being co-amenable. The equivalence

between (3) and the co-amenability of G can also be obtained by the fact that a locally compact group G

is amenable if and only if ‖ · ‖A(G) and ‖ · ‖McbA(G) are equivalent on A(G) (cf. Losert [28] and Ruan [36]).

It is still open whether this holds for general locally compact quantum groups (see also Remark 4.6(i)).

(ii) It is unknown, even for the commutative discrete quantum group G = L∞(Z), whether Θ̃r or ΦL

is onto CBL∞(G)

L∞(Ĝ)
(B(L2(G))).

(iii) It is interesting to compare the diagrams (4.3) and (7.1). It is not clear whether there exists a

complete contraction πρ : Qr(L1(G)) → UCQr(L1(G)) such that ι̃r ◦ πρ(ω) = ρ̃∗(ω) (ω ∈ Qr(L1(G))),

though, by Theorem 4.4 and Theorem 7.3, this is the case when G is co-amenable.

Recall that G is co-amenable if and only if LUC(G)∗ is unital (cf. [14, Theorem 15]). Therefore, by

Proposition 6.5, we have

G is co-amenable ⇐⇒ ΦL is onto CBT (L2(G))(B(L2(G)))

⇐⇒ Θr(Mr
cb(L1(G))) ⊆ ΦL(LUC(G)∗)

⇐⇒ LUC(G)∗ is unital.

However, when we replace in the above ΦL by Θ̃r, and LUC(G)∗ by UCQr(L1(G))∗, we are only able to

obtain the three implications “⇒”. We have one more implication as shown below.

Proposition 7.5. Let G be a locally compact quantum group. If UCQr(L1(G))∗ is unital, then L1(G)

has a right approximate identity.

Proof. Let us identify UCQr(L1(G))∗ with its canonical image in CBT (L2(G))(B(L2(G))) via Θ̃r. Suppose

that 1 ∈ UCQr(L1(G))∗. Since L1(G) is weak*-dense in LUC(G)∗ and ΦL(LUC(G)∗) is weak*-dense

in UCQr(L1(G))∗, there exists a net {fα} in L1(G) such that ΦL(fα) → 1 in the weak* topology on

UCQr(L1(G))∗. In particular, for all x ∈ L∞(G) and f ∈ L1(G), we have

〈x, f ? fα〉 = 〈x ? f, fα〉 = 〈ΦL(fα), x ? f〉 → 〈1, x ? f〉 = 〈x, f〉.

Therefore, {fα} is a weak right approximate identity of L1(G). By a standard convexity argument, we

can obtain a right approximate identity of L1(G) ¤

Turning to the left-hand side theory, we can analogously define the complete contraction

S̃l : ω ⊗ x ∈ T (L2(G))⊗̂B(L2(G)) → ω / x = 〈ι⊗ ω,W ∗(1⊗ x)W 〉 ∈ RUC(G).

We let UCQl(L1(G)) denote the range space of S̃l endowed with the operator space matrix norm from

the quotient space T (L2(G))⊗̂B(L2(G))/kerS̃l, and let π̃l : T (L2(G))⊗̂B(L2(G)) → UCQl(L1(G)) be
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the complete quotient map. We can consider the left (T (L2(G)), .)-module structure on UCQl(L1(G)),

and then obtain analogously a completely contractive Banach algebra structure on UCQl(L1(G))∗, which

enjoys properties perfectly analogous to UCQr(L1(G))∗. The only difference is that the corresponding

map Θ̃l = (π̃l)∗ is now an anti-homomorphism, instead of a homomorphism.

Theorem 7.6. Let G be a locally compact quantum group. Then UCQl(L1(G))∗ is a completely contrac-

tive Banach algebra, and

Θ̃l = (π̃l)∗ : UCQl(L1(G))∗ → CB(B(L2(G)))

is a weak*-weak* continuous completely isometric algebra anti-homomorphism satisfying

Θ̃l(UCQl(L1(G))∗) ⊆ (T (L2(G)),.)CB(B(L2(G))) ∩ CBL∞(G)

L∞(Ĝ′)(B(L2(G))).

When G is co-amenable, we have

UCQl(L1(G)) = RUC(G) completely isometrically,

and

UCQl(L1(G)) ∼= (T (L2(G)),.)CB(B(L2(G))) completely isometrically and anti-isomorphically via Θ̃l.
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Amer. Math. Soc. 360 (2008), 1133–1161.

[31] M. Neufang and V. Runde, Harmonic operators: the dual perspective, Math. Z. 255 (2007), 669–690.

[32] A. Yu. Pirkovskii, Biprojectivity and biflatness for convolution algebras of nuclear operators, Canad. Math. Bull. 47

(2004), 445–455.

[33] A.-M. Popa and Z.-J. Ruan, Uniformly complete quotient space UCQ(G) and completely isometric representations of

UCQ(G)∗ on B(L2(G)), Proc. Amer. Math. Soc. 134 (2005), 1223–1235.

[34] M. Ramezanpour and H. R. E. Vishki, Module homomorphisms and multipliers on locally compact quantum groups,

preprint, 2009.

[35] Z.-J. Ruan, Amenability of Hopf von Neumann algebras and Kac algebras, J. Funct. Anal. 139 (1996), 466–499.

[36] Z.-J. Ruan, A characterization of amenable groups, manuscript, 1996.

[37] V. Runde, Uniform continuity over locally compact quantum groups, J. London Math. Soc., to appear.

[38] P. Salmi, Quantum semigroup compactifications and left uniformly continuous functionals, preprint, 2008.

[39] S. Vaes, Locally compact quantum groups, Ph.D. thesis, Katholieke Universitiet Leuven, Leuven, 2001.

[40] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific Math. J. 2 (1952), 251–261.

Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

E-mail address: zhiguohu@uwindsor.ca

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

E-mail address: mneufang@math.carleton.ca

Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

E-mail address: ruan@math.uiuc.edu


