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Abstract—We consider linear quadratic Gaussian (LQG) games
in large population systems where the agents evolve according to
nonuniform dynamics and are coupled via their individual costs. A
state aggregation technique is developed to obtain a set of decen-
tralized control laws for the individuals which possesses an -Nash
equilibrium property. A stability property of the mass behavior is
established, and the effect of inaccurate population statistics on an
isolated agent is also analyzed by variational techniques.

Index Terms—Cost-coupled agents, large-scale systems, linear
quadratic Gaussian (LQG) systems, Nash equilibria, noncooper-
ative games, state aggregation.

I. INTRODUCTION

THE control and optimization of large-scale complex sys-
tems is of importance due to their ubiquitous appearance

in engineering, industrial, social, and economic settings. These
systems are usually characterized by features such as high di-
mensionality and uncertainty, and the system evolution is as-
sociated with complex interactions among its constituent parts
or subsystems. Techniques for dealing with various large-scale
systems include model reduction, aggregation, and hierarchical
optimization, just a few examples being [1], [7], [22], [28], and
[29].

In many social, economic, and engineering models, the indi-
viduals or agents involved have conflicting objectives and it is
natural to consider optimization based upon individual payoffs
or costs. This gives rise to noncooperative game theoretic
approaches partly based upon the vast corpus of relevant work
within economics and the social sciences [6], [11], [12]; for
recent engineering applications, see [9] and [10]. Game theo-
retic approaches may effectively capture the individual interest
seeking nature of agents; however, in a large-scale dynamic
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model this approach results in an analytic complexity which is
in general prohibitively high. We note that the so-called evolu-
tionary games which have been used to treat large population
dynamic models at reduced complexity [6], [12] are useful
mainly for analyzing the asymptotic behavior of the overall
system, and do not lead to a satisfactory framework for the
dynamic quantitative optimization of individual performance.

In this paper, we investigate the optimization of large-scale
linear quadratic Gaussian (LQG) control systems wherein many
agents have similar dynamics and will evolve independently
when state regulation is not included. To facilitate our exposi-
tion the individual cost based optimization shall be called the
LQG game. In this framework, each agent is weakly coupled
with the other agents only through its cost function. The study of
such large-scale cost-coupled systems is motivated by a variety
of scenarios, for instance, dynamic economic models involving
agents linked via a market [11], [21], and wireless power control
[15], [16]. LQ and LQG games have been considered by other
authors, see, e.g., [3], [23]–[25], and [27], where the coupled
Riccati equations play an important role for studying feedback
Nash equilibria. In general, it is very difficult to compute solu-
tions to these equations, even if they exist. For dynamic games
with weak coupling in dynamics and costs, extensive effort has
been devoted to numerical approximations, see, e.g., [25], [30].
In contrast with such existing research, our concentration is on
games with large populations. We analyze the -Nash equilib-
rium properties for a control law by which each individual opti-
mizes its cost function using local information depending upon
its own state and the average state of all other agents taken to-
gether, hereon referred to as “the mass.” In this setup, a given
agent knows its own dynamics, and the information concerning
other agents is available in a statistical sense as described by
a randomized parametrization for agents’ dynamics across the
population.

Due to the particular structure of the individual cost, the mass
formed by all other agents impacts any given agent as a nearly
deterministic quantity. In response to any known mass influ-
ence, a given individual will select its localized control strategy
to minimize its own cost. In a practical situation the mass influ-
ence cannot be assumed known a priori. It turns out, however,
that this does not present any difficulty for applying the indi-
vidual-mass interplay methodology in a population limit frame-
work. In the noncooperative game setup, an overall rationality
assumption for the population, to be characterized later, implies
the potential of achieving a stable predictable mass behavior in
the following sense: If some deterministic mass behavior were
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to be given, rationality would require that each agent synthe-
size its individual cost based optimal response as a tracking
action. Thus the mass trajectory corresponding to rational be-
havior would guide the agents to collectively generate the tra-
jectory which, individually, they were assumed to be reacting to
in the first place.

Indeed, if a mass trajectory with this fixed point property ex-
isted, if it were unique, and, furthermore, if each individual had
enough information to compute it, then rational agents who were
assuming all other agents to be rational would anticipate their
collective state of agreement and select a control policy consis-
tent with that state. Thus, in the context of our game problem,
we make the following rationality assumption which forms the
basis for each agent’s optimization behavior: Each agent is ra-
tional in the sense that it both: (i) optimizes its own cost func-
tion; and (ii) assumes that all other agents are being simultane-
ously rational when evaluating their competitive behavior.

In fact, the resulting situation is seen to be that of a Nash
equilibrium holding between any agent and the mass of the
other agents. This equilibrium then has the rationality and op-
timality interpretations but we underline that these rationality
hypotheses are not employed in the mathematical derivation of
the results.

It is worth noting that the large population limit formula-
tion presented here is relevant to economic problems involving
(mainly static) models with a large number or a continuum of
agents; see, e.g., [13]. Instead of a direct continuum popula-
tion modeling, we induce a probability distribution on a param-
eter space via empirical statistics; this approach avoids certain
measurability difficulties arising in continuum population mod-
eling [19]. Furthermore, we develop state aggregation using the
population empirical distribution, and our approach differs from
the well-known aggregation techniques based upon time-scales
[26], [28].

The paper is organized as follows: in Section II we intro-
duce the dynamically independent and cost-coupled systems.
Section III gives preliminary results on linear tracking.
Section IV contains the individual and mass behavior analysis
via a state aggregation procedure. In Section V we establish
the -Nash equilibrium property of the decentralized individual
control laws. Section VI illustrates a cost gap between the
individual and global cost based controls, and Section VII
addresses the effect of inaccuracy in population statistics.

II. DYNAMICALLY INDEPENDENT AND COST-COUPLED

SYSTEMS

We consider an dimensional linear stochastic system where
the evolution of each state component is described by

(2.1)

where denotes independent standard scalar
Wiener processes. The initial states are mutually indepen-
dent and are also independent of . In addition,

and . Each state component shall be re-
ferred to as the state of the corresponding individual (also to be
called an agent or a player).

We investigate the behavior of the agents when, apart from the
impact of feedback, they only interact with each other through
coupling terms appearing in their individual cost functions:

(2.2)

We term this type of model a dynamically independent and
cost-coupled system. For simplicity of analysis, we assume in
this paper

In particular, we assume the cost-coupling to be of the following
form for most of our analysis:

and we study the large-scale system behavior in the dynamic
noncooperative game framework. Evidently, the linking term
gives a measure of the average effect of the mass formed by all
other agents. Here we assume , , , , and throughout the
paper is described by the dynamics (2.1).

A. A Production Output Planning Example

This production output adjustment problem is based upon the
early work [2] where a quadratic nonzero-sum game was consid-
ered for a static duopoly model with linear price decrease when
the total production level increases. A noncooperative game was
also formulated by Lambson for output adjustment in a large dy-
namic market via nonlinear payoff and price models [21]. Here
we study a dynamic model consisting of many players. Our for-
mulation differs from Lambson’s dynamic optimization in that
we introduce dynamics into the adjustment and further assume
that the rate of change of the production output level incurs an
explicit cost.

Consider firms , , supplying the same product
to the market. First, let be the production level of firm and
suppose is subject to adjustment by the following model:

(2.3)

which is a special form of (2.1). Here denotes the action of
increasing or decreasing the production level , and de-
notes uncertainty in the change of .

Second, we assume the price of the product is given by

(2.4)

where , . In (2.4) the overall production level
is scaled by the factor . A justification for scaling is

that this may be used to model the situation when an increasing
number of firms distributed over different areas join together
to serve an increasing number of consumers. In fact, (2.4) may
be regarded as a simplified form of a more general price model
introduced by Lambson for many agents producing the same
goods [21].

We now assume that firm adjusts its production level
by referring to the current price of the product. Indeed, an in-
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creasing price calls for more supplies of the product to con-
sumers and a decreasing price for less.

We seek a production level which is approximately in propor-
tion to the price that the current market provides, i.e.

(2.5)

where is a constant. Based upon (2.5), we intro-
duce a penalty term

. On the other hand, in the adjustment of , the
control corresponds to actions of shutting down or restarting
production lines, or even the construction of new ones; these
may further lead to hiring or laying off workers [5]. Each of
these actions will incur certain costs to the firm; for simplicity
we denote the instantaneous cost of the adjustment by ,
where . We now write the infinite horizon discounted cost
for firm as follows:

(2.6)

where and we use the superscript in to indicate that
the associated dynamics are (2.3). Due to the penalty on the
change rate , this situation may be regarded as falling into the
framework of smooth planning [5], [20]. Here obviously

. Notice that

in this example and

in the generic case (2.2) share the common feature of taking an
average over a mass.

III. THE PRELIMINARY LINEAR TRACKING PROBLEM

To begin with, for large , assume

in Section II is approximated by a deterministic continuous
function defined on . For a given , we construct the
individual cost for the th player as follows:

(3.1)

And for this cost we shall consider the general
tracking problem with bounded . For minimiza-
tion of , the admissible control set is taken as

is adapted to the -algebra
and . The set is
nonempty due to controllability of (2.1). Define

where

, for . Under the norm ,
is a Banach space [32].

Let be the positive solution to the algebraic Riccati equa-
tion

(3.2)

It is easy to verify that . Denote

(3.3)

Clearly, . Propositions (3.1)–(3.3) may be proved by
an algebraic approach [4], [14], [17].

Proposition 3.1: Assume (i) and
; (ii) is the solution to (3.2) and

; and (iii) is deter-
mined by the differential equation

(3.4)

Then the control law

(3.5)

minimizes , for all .
Proposition 3.2: Suppose assumptions (i)-(iii) in Proposition

3.1 hold and satisfies

(3.6)

Then the cost for the control law (3.5) is given by
.

Remark: In Proposition 3.1, assumption (i) ensures that
has a finite minimum attained at some . Assumption (ii)
means that the resulting closed-loop system has a stable pole.

Remark: We point out that in Proposition 3.1 may be
uniquely determined only utilizing its boundedness, and it is
unnecessary to specify the initial condition for (3.4) separately.
Similarly, after is obtained, in Proposition 3.2
can be uniquely determined from its boundedness. We state
these facts in Proposition 3.3.

Proposition 3.3: Under the assumptions of Proposition 3.1,
there exists a unique initial condition such that the
associated solution to (3.4) is bounded, i.e., .
And moreover, for the obtained , there is a unique
initial condition for (3.6) such that the solution

.

IV. COMPETITIVE BEHAVIOR AND CONTINUUM MASS

BEHAVIOR

For control synthesis, each agent is assumed to be rational
in the sense that it both optimizes its own cost and its strategy
is based upon the assumption that the other agents are rational.
Due to the specific cost structure, under the rationality assump-
tion it is possible for the agents to achieve mutual anticipa-
tion and approximate the linking term by a purely determin-
istic process , and as a result, if deterministic tracking is em-
ployed by the th agent, its optimality loss will be negligible in
large population conditions. Hence, over the large population,
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all agents would tend to adopt such a tracking based control
strategy if an approximating were to be given.

However, we stress that the rationality notion is only used to
construct the aggregation procedure, and all the theorems in the
paper will be based solely upon their mathematical assumptions.

A. State Aggregation

Assume is given, and is a
solution to (3.4). For the th agent, after applying the optimal
tracking based control law (3.5), the closed loop equation is

(4.1)

Denoting and taking expectation on both
sides of (4.1) yields

(4.2)

where the initial condition is . We further de-
fine the population average of means (simply called population
mean) as .

So far, the individual reaction is easily determined if a mass
effect is given a priori. Here one naturally comes up with the
important question: how is the deterministic process chosen?
Since we wish to have ,
for large it is reasonable to express in terms of the popula-
tion mean as

(4.3)

As increases, accuracy of the approximation of by
given in (4.3) is expected to improve.

Our analysis below will be based upon the observation that
the large population limit may be employed to determine the
effect of the mass of the population on any given individual.
Specifically, our interest is in the case when , , is “ad-
equately randomized” in the sense that the population exhibits
certain statistical properties. In this context, the association of
the value , and the specific index plays no essential
role, and the more important fact is the frequency of occurrence
of on different segments in the range space of the sequence

.
Within this setup, we assume that the sequence ,

has an empirical distribution function , for which a more
detailed specification will be stated in Section V. For the Riccati
equation (3.2), when the coefficient is used in place of ,
we denote the corresponding solution by . Accordingly, we
express and when and are substituted into
(3.3). Straightforward calculation gives

(4.4)

(4.5)

1) Example 4.1: For the set of parameters: , ,
, , , , , we have
, , .

To simplify the aggregation procedure we assume zero mean
for initial conditions of all agents, i.e., , . The
above analysis suggests we introduce the equation system:

(4.6)

(4.7)

(4.8)

(4.9)

In the above, each individual equation is indexed by the pa-
rameter . For the same reasons as noted in Proposition 3.3, here
it is unnecessary to specify the initial condition for . Equa-
tion (4.7) with is based upon (4.2). Hence is
regarded as the expectation given the parameter in the indi-
vidual dynamics. Also, in contrast to the arithmetic average for
computing appearing in (4.3), (4.8) is derived by use of an
empirical distribution function for the sequence of param-
eters , , with the range space . Equation (4.9)
is the large population limit form for the equality relation (4.3).
With a little abuse of terminology, we shall conveniently refer to
either being affine in , or in some cases itself as the mass
trajectory.

Remark: For the sake of simplicity, the integration in (4.8)
assumes a zero mean initial condition for all agents. In the more
general case with nonzero , we may introduce a joint
empirical distribution for the two dimensional sequence

. Then the function in (4.7) is to be la-
belled by both the dynamic parameter and an associated initial
condition, and furthermore, the integration in (4.8) is computed
with respect to . In this paper we only consider the zero
mean to avoid notational complication.

We introduce the assumptions:
(H1) For , defined by (4.4)–(4.5),
holds for all , and ,
where , is an interval containing all ,

, and is the empirical distribution function for
, which is assumed to exist.

(H2) All agents have zero mean initial condition, i.e.,
, .

We state a sufficient condition to ensure for
. The proof is trivial and is omitted.

Proposition 4.2: If , then for all
.

Remark: Under (H1), we have where
is the stable pole of the closed-loop system for the agent

with parameter and measures the stability margin. The
ratio depends
upon the stability margin and the linking parameter . Notice
that (H1) holds for the system of uniform agents with param-
eters specified in Example 4.1.
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Given , Proposition 3.3 implies that (4.6) leads
to the bounded solution

(4.10)

By expressing and in terms of , we obtain from
(4.9)

(4.11)

The theorems below may be proved by following the methods
in [14] and [17].

Theorem 4.3: Under (H1), we have (i) , for
any , and (ii) has a
unique fixed point which is uniformly Lipschitz continuous on

.
Theorem 4.4: Under (H1)–(H2), the equation system

(4.6)–(4.9) admits a unique bounded solution.

B. The Virtual Agent and Policy Iteration

We proceed to investigate asymptotic properties of the inter-
action between the individual and the mass, and the formulation
shall be interpreted in the large population limit (i.e., an infinite
population) context. Assume each agent is assigned a cost ac-
cording to (3.1), i.e.

(4.12)
We now introduce a so-called virtual agent to represent the mass
effect and use to describe the behavior of the
virtual agent. Here the virtual agent acts as a passive player in
the sense that appears as an exogenous function of time to be
tracked by the agents.

After each selection of the set of individual control laws, a
new will be induced as specified below; subsequently, the in-
dividual shall consider its optimal policy (over the whole time
horizon) to respond to this updated . Thus, the interplay be-
tween a given individual and the virtual agent may be described
as a sequence of virtual plays which may be employed by the
individual as a calculation device to eventually learn the mass
behavior. In the following policy iteration analysis in function
spaces, we take the virtual agent as a passive leader and the in-
dividual agents as active followers.

Now, we describe the iterative update of an agent’s
policy from its policy space. For a fixed iteration number

, suppose that there is a priori .
Then by Proposition 3.1 the optimal control for the th
agent using the cost (4.12) with respect to is given as

where
is given by

(4.13)

By Proposition 3.3, the unique solution to
(4.13) may be represented by

(4.14)

Subsequently, the control laws produce a

mass trajectory , where

(4.15)

with initial condition by (H2). Notice that (4.15)
is indexed by the parameter instead of all . Then the
virtual agent’s state (function) corresponding to all ,

, is determined as . From the
above and using the operator introduced in (4.11), we get the
recursion for as

where for all .
By the sequential adjustments of the individual strategies in

response to the virtual agent, we induce the mass behavior by
a sequence of functions . We
note that the rule for the individual strategy selection here is
comparable to the well-known best response map for static game
models [11]. The next proposition, which may be proved by
Theorems 4.3–4.4, establishes that as the population grows, a
statistical mass equilibrium exists and it is globally attracting.

Proposition 4.5: Under (H1)–(H2), for
any , where is determined by (4.6)–(4.9).

C. Explicit Solution With Uniform Agents

For a system of uniform agents, a solution to the state ag-
gregation equation system may be explicitly calculated where

degenerates to point mass and (4.8) is no longer required.
Omitting the subscript for involved, the equation system
(4.6)–(4.9) reduces to

(4.16)

(4.17)

(4.18)

Here we shall solve the above equation system with a general
initial condition which is not necessarily zero. Setting the
derivatives to zero, we write a set of steady-state equations as
follows:

(4.19)

It can be verified that under (H1) the equation (4.19) is nonsin-
gular and has a unique solution .
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Let and . Here, we simply
write , as , . Eliminating in (4.17) by (4.10)
and (4.18), we get

(4.20)

Differentiating both sides of (4.20) gives

which combined again with (4.20) yields

(4.21)

The characteristic equation of (4.21) is
with two distinct eigenvalues:

,

, where
, which follows from (H1) for the degenerate

. Recalling the boundedness condition for , and, hence,
for , we have , and we can
check that is indeed a solution to (4.20). Consequently, we
may obtain the bounded solution for and . We summarize
the above calculation.

Proposition 4.6: Under (H1), the unique bounded solution
in (4.16)–(4.17), is given by

and , where

, ,

and .

V. THE DECENTRALIZED -NASH EQUILIBRIUM

Let denote the
individual cost with respect to the linking term

for the th player when the
th player takes control , , and is the population

size. Let (5.1), shown at the bottom of the page hold, where
. Here we use to denote the

optimal tracking based control law

(5.2)

where and the associated are derived from (4.6)–(4.9).
In particular,

. It should

be noted that in the following asymptotic analysis the control
law for the th agent among agents is constructed using
the limit empirical distribution involved in (4.8).

Within the context of a population of agents, for any
, the th agent’s admissible control set consists of all

controls adapted to the -algebra
such that the closed-loop for the agents has a unique solution.
In this setup we give the definition.

Definition 5.1: A set of controls , , for
players is called an -Nash equilibrium with respect to the costs

, , if there exists such that for any fixed
, we have

(5.3)

when any alternative control is applied by the th player.

If , Definition 5.1 reduces to the usual definition of a
Nash equilibrium.

Remark: The admissible control set is not decentralized
since the th agent has perfect information on other agents’
states. In effect, such admissible control sets lead to a stronger
qualification of the -Nash equilibrium property for the decen-
tralized control analyzed in this section.

For the sequence , we define the empirical distri-
bution associated with the first agents

We introduce the assumption on the asymptotic behavior of .
(H3) There exits a probability distribution function on

such that weakly as , i.e.,
whenever is continuous at .

(H3’) There exists a probability distribution function such
that .

Remark: It is obvious that (H3’) implies (H3). Notice that if
the sequence is sufficiently “randomized”
such that is generated by independent observations on the
same underlying distribution function , then with probability
one (H3’) holds by the Glivenko–Cantelli theorem [8].

Given the distribution function and , from
(4.6)–(4.7) it is seen that both and may be explicitly ex-
pressed as a function of taken from the parameter space .

(H4) The interval satisfies: (i) is a closed
set, and for a constant ;
and (ii) is bounded. In addition, .

Remark: For compact , the positivity condition for
in (H1) implies specified above always exists. Condition (ii)

(5.1)
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is only used for the performance estimate in proving Theorem
5.6, and it may be relaxed.

Remark: The method in this section may deal with the case
where consists of a finite number of disjoint closed subinter-
vals

where

This includes the special case of uniform agents.
We give two auxiliary lemmas in a more general form without

restricting to be compact.
Lemma 5.2: Assume (H1) and (H4)-(i) hold. Then sat-

isfies: (i) ; and (ii)
with a vanishing rate depending only on ,

for , .
Lemma 5.2 may be proved by the method in [17]. Now we

define

(5.4)

Lemma 5.3: Under (H1)–(H3) and (H4)-(i), we have
, where is

defined by (5.4).
Proof: Letting for , we have

Now for any fixed , there exists a sufficiently large
constant such that is continuous at and such
that

where we get the last inequality by Lemma 5.2 and the tightness
of implied by (H3) (see, e.g., [8, p. 276]). We write

where we make the convention that the domain of (as a
function of ), if necessary, is extended from to such that
properties (i) and (ii) specified in Lemma 5.2 still hold after is
replaced by . We denote the resulting function by which
is identical to on . For instance, in the case
with , we may simply set when

. Such an extension can deal with the general case when
consists of a finite number of disjoint closed subintervals.

Next we combine the equicontinuity of in with
, ensured by Lemma 5.2 and the above extension pro-

cedure, continuity of at , and the standard subinterval
dividing technique for the proof of Helly-Bray theorem (see [8,
pp. 274,275]) to conclude that there exists a sufficiently large

such that for all ,

for any fixed , and consequently .
In the proof of Lemma 5.3, in order to preserve the bound-

edness and equicontinuity (with respect to ) properties, we ex-
tend to in a specific manner and avoid directly
using (4.6)–(4.9) to calculate , , even if the equation
system may give a well defined for some .

Lemma 5.4: Under (H1)–(H4), for determined by
(4.6)–(4.9), we have

(5.5)

where is given in Lemma 5.3 and the state of the th
player, , is generated by the control law given by (5.2).

Proof: In the proof we shall omit the control associated
with in various places. Obviously, we have

Setting

we obtain from Lemma 5.3

(5.6)

where, by each agent’s closed-loop stability
and , we can show that the
higher-order term holds uniformly with respect to , and
(5.5) readily follows.
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Theorem 5.5: Under (H1)–(H4), we have

as , where is the individual cost with respect
to , is given by (5.2), and is given in Lemma 5.3.

The proof is done by a similar decomposition technique as
in proving Theorem 5.6 below and is postponed until after the
proof of the latter.

Theorem 5.6: Under (H1)–(H4), the set of controls ,
, for the players is an -Nash equilibrium with respect to

the costs , , i.e.

(5.7)

where with given in Lemma 5.3
as , is given by (5.2), and is any alternative
control which depends upon .

Proof: The second inequality is obviously true. We prove
the first one. Consider any full state dependent satis-
fying

(5.8)

By (H4), it is easy to obtain a uniform (with respect to ) upper
bound for the right-hand side (RHS) of (5.8) using each agent’s
closed-loop stability and boundedness of the feedback gain

due to compactness of . Hence, for satisfying
(5.8), there exists a fixed independent of such that

(5.9)

Here and hereafter in the proof, , ,
, denote the corresponding state-control pairs. For notational

brevity, we may omit the associated control in , ,
and simply write , without causing confusion. After

the controls , , are selected, all , , are stable
since by (H4); for satisfying (5.9) there
exists independent of such that
and , where is the same as in
Lemma 5.4.

On the other hand, we have

(5.10)

Then we have

(5.11)

(5.12)

where (5.11) follows from Theorem 5.5 and (5.12) follows from
Lemma 5.4. Moreover

(5.13)
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Hence, it follows from the above estimates that there exists
independent of such that

In other words, when all the players retain their de-
centralized controls and the th player is allowed to use a
full state based control , it can reduce its cost at most by

. This completes the proof.
Proof of Theorem 5.5: As in (5.10) we make the decompo-

sition

(5.14)

Finally, similar to (5.12) and (5.13), we apply Schwarz in-
equality and Lemma 5.4 to obtain ,
and this completes the proof.

It should be noted that the proof of Theorem 5.5 does not
depend upon Theorem 5.6.

VI. A COST GAP BETWEEN THE CENTRALIZED OPTIMAL

CONTROL AND DECENTRALIZED TRACKING

In this section, we compare the individual cost based control
with a global cost based control and identify a cost gap. Let the
global cost be defined as for a system of agents,
where is defined in (2.2), and we term minimization of the
centralized optimal control problem.

Throughout this section we consider a system of uniform
agents under (H1) with , , and assume the ini-
tial state of all agents is 0 in the two cases. We scale by
the global optimal cost (with 0 initial state for all players)

to get , and set . Here
may be interpreted as the optimal cost incurred per agent

with identically 0 initial state. Straightforward calculation gives
[14]

(6.1)

where and .
For the LQG game in the large population limit, when

each agent applies the optimal tracking based control law
, let be the resulting individual

cost. Write for any since all agents are
assumed to have 0 initial state.

With , determined from Proposition 4.6, one
can get a solution for (3.6) if and only if the initial
condition is given by

(6.2)

where , are given in Section IV-C and
. And since , it follows from Proposition

3.2 that .
We derive from (6.1) and (6.2) that

The gap between and is demonstrated in Fig. 1
where all related parameters are given in Example 4.1 but
takes values in ; we can show that (H1) holds for all

. If each agent applies the global cost based optimal
control all of them will have a lower cost. However this requires
a strong coordination in the sense that each individual player
should be restrained from taking advantage of the other agents’
presumably fixed global cost based control strategies.

VII. EFFECT OF INACCURATE INFORMATION

Within the state aggregation framework, in the case where
an individual has incorrect information on the dynamics of the
competing population, that individual will naturally optimize
with respect to an incorrectly calculated mass trajectory. An
issue of interest concerns the offset between the cost actually
attained and the expected cost (as calculated by the deviant in-
dividual based upon the incorrect mass behavior). This is related
to deviancy detection and also to robustness of our control de-
sign.

For simplicity, here we take an isolated agent, and consider
the ideal case in which all other agents have precise population
statistics, but only the th agent has an inaccurate estimate of the
density associated with the distribution . Let the error in
the density be the function satisfying

. Hence is used in the control calculation of the
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Fig. 1. (Top) Individual tracking based cost v (0). (Middle) Scaled global cost v(0). (Bottom) The cost gap jv(0)� v (0)j.

th agent; however the mass trajectory computed by other
agents is not affected by the perturbation . We consider the
large population limit; then is also the actually generated
mass effect. In addition to (H1), we consider small variations

such that for a fixed small

(H1’) ensures well posedness of the aggregation procedure,
giving an expected mass effect , for the th agent. Also, we
assume (H2) is known to the th agent. By perturbation analysis
for (4.11) and omitting higher-order error terms, we get the
equation for the first-order variation with respect to .

(7.1)

where . The th agent constructs its control law
for optimally tracking . Let be the optimal
tracking control law with respect to with cost .
Following (3.1), we use and
to denote the attained cost and expected cost, respectively.

Theorem 7.1: In addition to (H1)–(H2), assume satis-
fies (H1’) and denote .

Then we have: (i) (7.1) has a unique solution in with
the bound estimate ; (ii) the higher-
order error estimate ; and
(iii) ,

Proof: We can show the first term at the RHS of (7.1) is
bounded and continuous in by expressing it as two integrals
involving and and using (H1)–(H1’). Then, (i) follows
by a fixed point method. For proving (ii), we write the integral
equations corresponding to (4.11), satisfied by and , re-
spectively, and first show a uniform upper bound for
and then ; finally we compare the
two equations for and . For (iii), we may show the
first part by checking the structural difference between and

and using . We may estimate
by the change between the costs with respect to and

, respectively, when the same control law is used.

VIII. CONCLUDING REMARKS

In a system of uniform agents, one can adopt the so-called di-
rect approach by exploiting the coupled algebraic Riccati equa-
tions which arise in the theory of LQG dynamic games [3].
One may then find asymptotic estimates for all entries in the

Riccati solution matrix and hence obtain a limiting de-
centralized solution for the dynamic game [18]. Such asymp-
totic expansion based methods have been effective for weakly
coupled game and team problems [30], [31]. Furthermore, it
can be shown that the resulting solution is asymptotically con-
sistent with the state aggregation based approach employed in
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this paper [18]. The fundamental reason that the direct approach
works is that in estimating the magnitude of the elements of the
large Riccati matrix only a few degrees-of-freedom are involved
and hence, owing to the symmetry of the system, this number
does not increase unboundedly (in fact, is constant) with respect
to the number of agents. However, this is not the case for a
system with nonuniform agents due to the fact that the number
of degrees-of-freedom increases combinatorially with if the
number of distinct values in increases propor-
tionally to . In particular, it may not be possible to get tight
estimates when the parameters in the system’s set of coupled
Riccati equations vary as a continuum.
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