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Stochastic Approximation for Consensus: A New
Approach via Ergodic Backward Products
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Abstract—This paper considers both synchronous and asyn-
chronous consensus algorithms with noisy measurements. For
stochastic approximation based consensus algorithms, the existing
convergence analysis with dynamic topologies heavily relies on
quadratic Lyapunov functions, whose existence, however, may
be difficult to ensure for switching directed graphs. Our main
contribution is to introduce a new analytical approach. We first
show a fundamental role of ergodic backward products for mean
square consensus in algorithms with additive noise. Subsequently,
we develop ergodicity results for backward products of degener-
ating stochastic matrices converging to a 0–1 matrix via a discrete
time dynamical system approach. These results complement the
existing ergodic theory of stochastic matrices and provide an
effective tool for analyzing consensus problems. Under a joint
connectivity assumption, our approach may deal with switching
topologies, delayed measurements and correlated noises, and
it does not require the double stochasticity condition typically
assumed for the existence of quadratic Lyapunov functions.

Index Terms—Backward product, consensus, delay, ergodicity,
mean square convergence, measurement noise, stochastic approx-
imation, synchronous and asynchronous algorithms.

I. INTRODUCTION

D URING the past decade, an enormous amount of research
effort has been devoted to consensus problems and var-

ious closely related formulations for multi-agent systems [8],
[16], [20], [23], [32], [36]. A comprehensive survey may be
found in [31], [37]. In recent years, consensus algorithms
with imperfect information exchange have attracted significant
attention, addressing additive noise [2], [3], [12], [30], [34],
[38], [39], [46], [47] or quantization effect [4], [10], [11], [22].
The classic work [44] considered consensus algorithms for dis-
tributed function optimization with noisy gradient information.
Models with noisy measurements take into account random
uncertainty in signal reception and characterize more realistic
network conditions. Also, when probabilistic quantizers are
used to eliminate bias, quantization errors may be modeled as
additive noise of zero mean [4].
For consensus models with noisy measurements, stochastic

approximation with a decreasing step size may be applied such
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that each agent can gradually reduce the weights to its neighbors
and hence attenuate the noise [18], [21], [35], [41]. A typical
algorithm takes the form

(1)

where is a vector consisting of the states of nodes;
is a matrix with zero row sums and nonnegative

off-diagonal entries; is the step size; and is a noise
vector with coefficient matrix . For , is nonzero
if and only if there is an edge from node to node at time .
For fixed network topologies, may be selected as a con-

stant matrix , and mean square and probability one conver-
gence of the algorithm may be proved by either quadratic Lya-
punov functions [18], [27] or change of coordinates [19].
Convergence analysis in switching networks has heavily re-

lied on quadratic Lyaponuv functions [3], [17], [21], [28], [42],
and an assumption often used is that the weight matrix

is doubly stochastic for each (or starting from some ).
The double stochasticity assumption was initially introduced for
noiseless average-consensus problems to make the state average
invariant [32]. For algorithm (1), this assumption ensures that
the squared norm of the disagreement vector [28], [32] becomes
a quadratic Lyapunov function. However, it is also very restric-
tive [5] and brings about serious feasibility issues in directed
networks. To elucidate this aspect, let the nonnegative
matrix be the same as except for all zero diagonal entries.
We call a weight balanced matrix if the th row sum equals
the th column sum for each . Suppose that is a non-
negative matrix and ; then obviously is doubly
stochastic if and only if is weight balanced, and it is known
that such a matrix exists if and only if the directed graph
modeling the network is strongly semiconnected [15] (i.e., if
there exists a directed path from node to node , then there
exists one from to ). In randomly varying directed networks,
it is demanding to maintain strong semiconnectedness, and so
one cannot in general expect the existence of doubly stochastic
weight matrices at all times.
In addition to the above nonexistence issue, the double

stochasticity requirement also imposes significant computa-
tional difficulties. For undirected graphs, doubly stochastic
weight matrices may be constructed online via Metropolis
weights [46]. However, on time-varying directed graphs it is
generally infeasible to construct such matrices online without
global instantaneous network topology information even if they
exist. Although distributed iterative algorithms are available for
constructing doubly stochastic matrices over directed graphs
[15], they are not applicable for dynamic topologies. So, it is
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of practical importance to study models using general weight
matrices without double stochasticity.
The recent work [3] considers the consensus algorithm

(2)

where is a random matrix of unit row sums and is the
additive noise. This model has considerable generality with
respect to the past research; in particular, is not required
to be nonnegative. The authors succeeded in developing Lya-
punov analysis without double stochasticity conditions. They
proved probability one convergence of the algorithm and
estimated the convergence rate. Let , where

is an matrix of all ones. The convergence proof
in [3] uses as a stochastic Lyapunov function
and requires i) , where de-
notes the largest eigenvalue of a symmetric matrix, and ii)

, in addition to as-
sumptions on the noise term. Although this approach achieves
considerable modeling generality, the eigenvalue conditions
i) and ii) are quite restrictive for application to stochastic
approximation as illustrated by the following example.
Example: Let be a deterministic sequence. Each
takes a value from , where

for some and

The sequence consists of independent random vec-
tors, , , , and

.
By the structure of and , the network underlying al-

gorithm (2) is always strongly connected. However, the criteria
in [3] cannot be used to assert convergence. Denote the char-
acteristic polynomial

, . Then , and by
direct calculations, ,

. For sufficiently small ,
has a root in by the intermediate value theorem; so

and conditions i)–ii) are violated.
To overcome the inherent limitations of the existing methods,

we develop a new approach to analyze stochastic approximation
for consensus, and it will cover many practical models and the
above example as well. In a very general setup of noisy con-
sensus algorithms, we show that ergodicity of the backward
products of the weight matrices is a necessary and sufficient
condition for mean square consensus, which reveals the funda-
mental mechanism governing the convergent algorithms studied
by different authors [3], [17], [21], [28], [42]. By checking er-
godicity of backward products in switching models, one may be
saved from the challenging task of searching for Lyapunov func-
tions. For nonexistence of quadratic Lyapunov functions with
general weight matrices, see [33].

The weight matrices in our stochastic approximation algo-
rithm, starting with an appropriate initial time to ensure non-
negative matrices, form a sequence of stochastic matrices con-
verging to a 0–1 matrix, which will be called degenerating sto-
chastic matrices due to this convergence feature. We note that
there has existed an extensive literature (see [40] and refer-
ences therein) on ergodicity of backward products of stochastic
matrices. In particular, for analyzing inhomogeneous backward
products, Wolfowitz’s ergodicity theorem [20], [36], [45] and
paracontraction [13], [25], [26] are well known powerful tools.
Also, for the iterations of a nonnegative matrix with stationary
delays, multiplicative ergodicity was studied via Lyaponov ex-
ponents in [14]. However, these results are not applicable to our
model. To our best knowledge, this paper is the first to sys-
tematically establish ergodic theorems for backward products
of degenerating stochastic matrices. We introduce a key notion
of compatible nonnegative matrices and develop a dynamical
system approach to prove ergodicity, which differs from the
classical approaches in [40], [45].
Our approach to analyze the stochastic approximation algo-

rithm differs from the Lyapunov approach by a shift of atten-
tion from ensuring steady energy decay to ergodicity check.
This strategy makes it possible to overcome the weakness of the
existing methods. Also, we note that this paper only addresses
mean square convergence of the stochastic approximation al-
gorithm. The further analysis of its sample path behavior is an
interesting problem.
The main contributions of the paper are summarized as

follows:
• We show a fundamental role of ergodic backward products
for mean square consensus, and establish ergodic theorems
for degenerating stochastic matrices.

• The ergodicity approach is applied to prove mean square
consensus for a large class of models which the existing
Lyapunov approaches cannot handle; specifically, it en-
ables us to treat general weight matrices over switching
networks, delayed noisy measurements, synchronous and
asynchronous algorithms, and also correlated noises.

The organization of the paper is as follows. Section II formu-
lates the stochastic consensus problem. Section III shows a nec-
essary and sufficient condition for mean square consensus via
ergodic backward products. Section IV introduces compatible
nonnegative matrices and Section V proves ergodicity of de-
generating stochastic matrices. Section VI shows mean square
consensus, and Section VII concludes the paper.
We make some convention about notation. The node index is

often used as a superscript in different variables ( , , etc.) and
should not be interpreted as an exponent of a number. For a ma-
trix , the element in the th row and the th column is called
the th element and denoted by . For a vector or ma-
trix , denote the Frobenius norm . Let

denote a column vector of ones. For column vectors
, denotes the column vector obtained by

vertical concatenation of the vectors. For two sets and ,
the set consists of all elements which are in but not
in . The abbreviation w.p.1 stands for “with probability one.”
We use (or ) to denote a generic positive constant
which may vary at different places.
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II. STOCHASTIC CONSENSUS ALGORITHM

For the reader’s convenience, we provide a list of key notation
used in the analysis.1

Digraph with nodes and edges
.
Adjacency matrix of

Random digraph with nodes and edges .

Union of the digraphs , .

State of node .

Noisy measurement node obtains from node .

Additive noise in .

Measurement delay along edge .

Deterministic upper bound of all .
.

Counters of nodes.

Step size for state update.

Weight parameter node assigns to node .

matrix of zero row sums.

matrix.

stochastic matrix of 0–1 elements.

noise coefficient matrix.

-dimensional vector.

-dimensional vector.

-dimensional noise vector.

-dimensional vector obtained by re-ordering en-
tries in .

stochastic matrix.

Stochastic matrices.

Backward product of stochastic matrices.

We introduce some standard preliminaries on graphmodeling
of the network topology. A directed graph (or digraph)

consists of a set of nodes and a set
of directed edges . A directed edge (simply called an edge) is
denoted by an ordered pair , where . A
directed path from node to node consists of a sequence of
nodes , , such that for all

. The digraph is strongly connected if from any node
to any other node, there exists a directed path. A directed tree
is a digraph where each node , except the root, has exactly
one parent node so that . We call
a subgraph of if and . The digraph is
said to contain a spanning tree if there exists a directed tree

as a subgraph of . The adjacency matrix of
is an matrix , where if

, and otherwise.
The dynamic network topology to specify the signal reception

is modeled by a sequence of digraphs ,
where and randomly changes with time.
We may view as a set-valued random process. The

1Letters in boldface usually denote vectors or matrices built upon more basic
ones in lower dimensions.

adjacency matrix is a matrix-valued random variable. So
is completely determined by . If , node receives
information from node which is called a neighbor of node .
The neighbor set of node is denoted by .

A. Stochastic Approximation Algorithm

Let the underlying probability space be denoted by ,
corresponding to the sample space, the collection of all
events, and the probability measure, respectively. At time

, node is associated with a real-valued state
. Each node knows its own state exactly. Define the state

vector

The initial state vector is . At time , if (the empty
set), node receives possibly outdated information from its
neighbors, which is modeled by

(3)

where is the noise and is an integer-valued random
delay. Since the system starts at , the implicit requirement
for the neighbor set is that

(4)

A fixed upper bound for will be specified later. Each node
will use its own state and its noisy measurements to form a
weighted average.
According to the local information exchange, we define the

matrix as follows. If , define

for (5)

If , set

(6)

where are two deterministic constants. We
may interpret as the generator of a continuous timeMarkov
chain with states. The specification (5), (6) is a generalization
of the weights with a fixed network [19] to randomly varying
networks, and is a matrix-valued random process.
Each node maintains a counter . Denote .

We describe two cases.
(SU) Synchronous update:

(7)

where the nodes need to share slotted time.
(AU) Asynchronous update:

(8)

and , where is the number of neighbors of node
at time . So (8) means that the node increases its counter by
one whenever it receives signals from its neighbors.
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The consensus algorithms for cases (SU) and (AU) are spec-
ified in a unified manner. At time , if , set

. If , node updates its state by the rule

(9)

where is a sequence of positive step sizes. We call
the weight matrix.

When the step size is updated using (8), the resulting asyn-
chronous algorithm (9) is essentially driven by event times, i.e.,
the moments of receiving signals. Once initialized, the algo-
rithm may be implemented without synchronized time slots al-
though we use the pre-specified discrete times 0, 1, 2, to de-
scribe (9). For related literature on asynchronous stochastic ap-
proximation, see [1], [7], [24], and [43].
The actually observed network topology at time may be de-

noted by to indicate its dependence on
the sample. Denote the maximal set of communication links

for . For
convenience of statistical modeling of the noises and delay, we
make the convention: and are defined for all

. If does not appear in so that the measurement
relation (3) does not physically occur, we still introduce
and as dummy random variables. Let the random variables

be listed by a fixed ordering of to
obtain a noise vector of dimension.
Definition 1: The nodes are said to achieve mean square

consensus if , , , and there exists
a random variable such that for

.
There have existed some effective approaches to analyze

asynchronous stochastic approximation and show probability
one convergence (see, e.g., [1], [43]). These algorithms are typ-
ically associated with an underlying time-invariant mapping,
and the contraction property of the mapping may be exploited
[43] or the ordinary differential equation (ODE) approach
may be used after appropriate scaling of time [1] where the
asynchronous algorithm behaves like a synchronous one with
small perturbations. To analyze our model, due to the rapid
switches of , it is difficult to apply these approaches and it is
necessary to develop a different method.

B. Main Assumptions

(A1) The deterministic sequence satisfies

and for (10)

where and .
So (A1) implies the standard step size condition used in sto-

chastic approximation: and .
For two integers , define the digraph

, which is called the union of the collection of
digraphs . Since the sequence
depends on the sample , also depends on . We intro-
duce the following assumption.

(A2) There exists an infinite sequence of integer-valued
random variables such that
the two conditions hold:

1) is strongly connected w.p.1 for ;
2) w.p.1.

It will be helpful to provide some explanation on notation. Note
that given a sample , has the set of edges .
The random digraph has the set of nodes . Given
, is interpreted as possessing the
set of edges .

(A3) is a sequence of independent
random vectors of zero mean and is independent
of , where

w.p.1 for a fixed integer . In addition,
and .

The delay upper bound is used for analyzing the stochastic
approximation algorithm, which may be implemented without
knowing the value of . To deal with leader following, we in-
troduce another type of connectivity condition.

(A2 ) There is a fixed leader node which has no neighbor
in each . There exists an infinite sequence of integer-
valued random variables such
that w.p.1, contains a spanning tree with root
for . In addition, (A2)-2) is satisfied.

Under (A2 ), there is no edge from other nodes to node , so
that defined by (5), (6) necessarily has all zero elements on
the th row.

C. Vector Form of the Algorithm

For , denote the set of random matrices

For their diagonal elements, we take and
, , for all . For , the

off-diagonal element is nonzero and further taken as
if and only if and . Denote

(11)
The th row of contains the same set of nonzero elements
as the th row of does. Due to (4), if , we necessarily
have for all .
We write (9) in the equivalent form

(12)
where is an random matrix determined by and we
set for . If and all nodes update
their step sizes by (7), then (12) reduces to (1).
For , denote the matrix

...
...
. . .

...
...

(13)

where each identity matrix is , and denote
,

(14)
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It is clear that is determined by .
Denote . We have the

state space representation

(15)

where for . If all counters increase to in-
finity, there exists , depending on the sample , such that

is a sequence of stochastic ma-
trices converging to the 0–1 stochastic matrix . In this case,

is called a sequence of degen-
erating stochastic matrices.

III. NECESSARY AND SUFFICIENT CONDITION FOR CONSENSUS

We use a general algorithm to reveal a fundamental relation-
ship between mean square consensus and ergodicity of back-
ward matrix products. Consider the system

(16)

where denotes the states of agents, is
the noise vector, and the initial condition is . Here
and are two sequences of random matrices of

compatible dimensions. For each fixed , is a stochastic
matrix for all . The model (16) includes (15) as a special
case when the coefficient matrices of in (15) are nonnegative
for all .

A. Ergodicity of Backward Products

Let be a sequence of deterministic nonnega-
tive matrices, where each is a stochastic matrix. Define the
so-called backward product

for

The product is still a stochastic matrix. Let denote
its th element.
Definition 2: [40] We say weak ergodicity holds for back-

ward products of the sequence of stochastic matrices
if

for any given and , i.e., the difference between any
two rows of converges to zero as . If in addition to
weak ergodicity, converges as , for any ,
we say strong ergodicity holds.
By [40, p. 154, Th. 4.17], weak and strong ergodicity are

equivalent for backward products of any sequences of stochastic
matrices. Hence, in the following we only speak of ergodicity
of backward products.
It is worth mentioning that weak and strong ergodicity

may also be defined for forward products of the form
for , and , and that

weak ergodicity differs from strong ergodicity. For an example
showing divergence of the forward products of weakly ergodic
stochastic matrices, see [9, p. 240].

B. Necessary and Sufficient Condition for Consensus

For the theorem below, we run algorithm (16) with any initial
time-state pair . Denote ,

for , and .
Theorem 3: Assume
i) is a sequence of random vectors of zero mean,
independent of ;

ii) ;
iii) there exists a sequence of nonnegative numbers

such that

Then (16) ensures mean square consensus for any initial time-
state pair with if and only if
has ergodic backward products w.p.1.
Remark: If the random vectors are independent

with and , iii) holds with and
for all .

The proof of Theorem 3 is given in Appendix A. In the con-
text of stochastic approximation for consensus seeking, condi-
tion ii) in Theorem 3 is easy to satisfy since a decreasing step
size may be used to attenuate the measurement noise. Thus, to
a very large extent, the analysis of the asymptotic behavior of
consensus algorithms of the form (16) reduces to checking the
ergodicity condition along sample paths.

IV. COMPATIBLE NONNEGATIVE MATRICES

This section develops some basic tools for analyzing se-
quences of degenerating stochastic matrices. We first introduce
a class of stochastic matrix sequences motivated by
the stochastic approximation based consensus algorithm with
delay, and then show that their ergodicity analysis is equivalent
to that of a sequence of degenerating stochastic matrices.
Our main idea of studying the backward products is to run a
noiseless switching linear dynamical system governed by these
matrices. By setting different initial conditions, the sequence
of state vectors, as the output of the linear system, will reflect
information on the backward products. The analysis of the
state vectors is simpler than directly handling the backward
products. To avoid introducing too many variables, the vectors
and appearing in Section II will be reused in different

systems and this should cause no risk of confusion.

A. Compatible Matrices

Let be deterministic nonnegative
matrices, where . Each is a stochastic matrix of
the form

...
. . .

...

(17)
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where each matrix is and the identity matrix is
. Let be the th element of . We con-

sider a class of stochastic matrix sequences motivated by the
consensus algorithm (15). When is large, each is nearly
a 0–1 matrix. However, these nearly zero elements still have
an important effect on the asymptotic property of the backward
products. Our idea is to introduce the notion of compatible ma-
trices by associating with a digraph where the latter iden-
tifies some relatively strong transitions described by . To fa-
cilitate further analysis, this compatibility notion is also defined
for matrices.
Definition 4: Let be a sequence of nonnegative

numbers with and be a
sequence of digraphs of nodes.
a) The sequence of stochastic matrices

of the form (17) is said to be -compatible with
if there exist constants , such

that for all

(18)

(19)

b) The sequence of stochastic matrices is
said to be -compatible with if there exist
, such that

(20)

(21)

where is the th element of .
Remark: We may further define -compatibility with any

positive initial time in an obviousmanner. If , part a) of
Definition 4 reduces to part b). If is -compatible
with , this property still holds if is replaced by
for some .
Example: Take , and

. Let be defined by
and for . Let

It is easy to verify that is -compatible with
, where we take and for conditions

(18), (19). For instance, when , node 2 is a neighbor of
node 1. In relation to (19), we check the first row of , and
the maximum of its second and fourth elements is

.
Example: Let be given in Section II and

be specified by (5), (6), where is fixed.

Then is -compat-
ible with if satisfies (A1) and

is a nonnegative matrix for .
Given in (17), define

(22)

which is a stochastic matrix. The following property is obvious
and the proof is omitted.
Proposition 5: Let be defined by (22). If

is -compatible with , then so is
.

The backward products of are closely related to
the weighted averaging algorithm

(23)

To distinguish from the notation in (15), for (23) we denote

(24)

where and , , are dimensional. Further
denote the -dimensional linear system

(25)

With the aid of the linear systems (23) and (25), wemay prove
the following equivalence theorem.
Theorem 6: Assume that is -compatible with

and . Let be defined
by (22). Then has ergodic backward products if
and only if has ergodic backward products.

Proof: See Appendix B.
The important implication of Theorem 6 is that the ergod-

icity property of the delay based sequence may
be studied via a lower dimensional sequence without involving
delay.

B. Linear Systems Governed by Compatible Nonnegative
Matrices

With Theorem 6 in mind, below we focus on analyzing
stochastic matrices. For a sequence of stochastic matrices

, consider the linear system

(26)

which may be interpreted as a consensus algorithm over a di-
graph of nodes. The edges of are uniquely deter-
mined by the nonzero off-diagonal elements in . We intro-
duce the assumption.

(H1) i) is -compatible with a sequence of
digraphs , where satisfies (A1); ii)
each is strongly connected.

Remark: may be different from .

C. State Reordering and Mutual Attraction of Trajectories

We run (26) with any fixed initial pair , where
. If is considered directly for convergence analysis,
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the problem is quite difficult since the components of
undergo very complex evolution. We define a new vector by
reordering the entries in . Suppose

where is a permutation of and in general
changes with time. We interpret as the state of node ,

. Define

(27)

After reordering of the states, the evolution of has more or-
derly behavior than that of .
In later analysis, we need to identify a component of as a

component of and further check its recursive equation. We
use the following rule to avoid indeterminacy when the same
value repeats within . If there are exactly compo-
nents within taking the same value cor-
responding to nodes with indices , the th
component in is interpreted as the state of the node with
the smallest index ; similarly, the th component in
is associated with the second smallest node index , and so on.
Define the scalar sequences

(28)

We call the level- trajectory. In analyzing
, the basic idea is to show that there is a mutual

attraction of the trajectories of different levels, which eventu-
ally merge to the same limit. Due to the degenerating stochastic
matrices, our method differs from directly comparing the gap
between the greatest and least states in a consensus algorithm
with time varying weight matrices [6].
Since each is a stochastic matrix, (resp.,

) is bounded and non-increasing (resp., non-de-
creasing) (see, e.g., [6]), and so has a limit. We summarize this
fact in the following proposition.
Proposition 7: Let be defined by (26), (27). Then both

and converge to finite limits.
The asymptotic behavior of the other sequences ,

where , is less obvious. The following the-
orem proves one of the key results of this paper. It is instru-
mental for establishing ergodicity of backward products of de-
generating stochastic matrices. Its proof is quite involved. The
basic idea is to use induction. First, the level-1 trajectory con-
verges to a finite limit. Next, we show that each level-
trajectory converges to the same limit as the level- trajectory.
Theorem 8: Let be defined by (26), (27) with any

initial condition , , and assume (H1). Then there
exists such that .

Proof: See Appendix C.
Remark: The proof of Theorem 8 only requires for

(10). The further restriction is needed for proving
mean square convergence in Section VI.

D. Leader Following

A leader following structure may be incorporated into (26),
and in this case (H1) is replaced by the following assumption.

(H1 ) i) is -compatible with a sequence
of digraphs , where satisfies (A1);
ii) ; iii) each contains a spanning tree,
and all these spanning trees share a common root which
has no neighbor in .

(H1 )-ii) ensures that the th element of is fixed as the
leader’ state .
Our strategy of proving convergence for the leader following

model is to start with a special class of initial conditions of
so that we may adapt the argument in proving Theorem 8 which
has been based on jointly strongly connected digraphs. To treat
general initial conditions, we apply a transformation of the ini-
tial condition so that the analysis is reduced to the previous case.
Corollary 9: Let be defined by (26) with any initial condi-

tion , . Assuming (H1 ), then .
Proof: By (H1 )-ii), it follows that for .

Take a sufficiently large such that by (20) after
is replaced by

(29)

Now let be generated with the initial pair and used
as the initial condition for

(30)

Proposition 7 still holds in the leader following case.
Step 1) Assume that for (30)

(31)

By (29) and induction it is straightforward to show
that for and all . Hence,

for and . Following (27), we
still reorder the components of in (30) from the
greatest to the least to obtain the vector , .
So for .
First, by Proposition 7, has a finite limit
. Next, by using the same induction argument as
in proving Theorem 8, we may show that all the
sequences , , must con-
verge to the same limit . In particular, when we
apply induction, the argument for deriving (C.15)
from (C.14) is still valid under (H1 )-iii) since there
exists at least one edge pointing to the set of nodes
associated with the first levels of trajec-
tories from the remaining nodes which contain the
leader since . On the other hand, since

, the limit must be . We con-
clude that , and subsequently

.
Step 2) Consider not satisfying the inequality in (31).

Let be a unit vector with the th element
equal to 1. Select such that the element at
the th position of is less than
any other element. Take as the initial
condition of

(32)
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By Step 1, . Take the
initial condition for

(33)

By Step 1, . By linearity of
(32), (33), , , where is
generated by (30). Hence, .

V. ERGODICITY OF DEGENERATING STOCHASTIC MATRICES

Our plan of proving ergodicity is as follows. For the simple
case where in (26) is compatible with a sequence
of strongly connected digraphs , the convergence
result in Theorem 8 is applicable. For the general case with joint
connectivity, our strategy is to reduce to the simple case. We
select a sequence of times to form a union
of digraphs and a backward sub-product on each subinterval

, where each union of digraphs is strongly connected.
This is a typical procedure to exploit joint connectivity; see,
e.g., [20] and [36]. Then the original backward product may be
written as the product of these sub-products, possibly together
with extra multiplicative terms at two ends. A key step is to
show that the sub-products have desired properties to generate
compatible stochastic matrices (see Lemmas D.1 and D.2).
Throughout Sections V-A and V-B, all matrices and digraphs

are deterministic.

A. Ergodicity of Backward Products

For the sequence , define the backward product

and . The following ergodicity theorem is an easy
consequence of Theorem 8.
Theorem 10: Assuming (H1), ergodicity holds for the back-

ward products of .
Proof: Let be the unit column vector with the

th element equal to 1. For any fixed , by Theorem 8
there exists depending on such that

. By Lemma B.1, the theorem follows.
To generalize Theorem 10, we consider ergodicity for sto-

chastic matrices associated with jointly strongly connected di-
graphs. For a sequence of digraphs , we
follow the rule in Section II to define the union of digraphs. For
two integers , define

(34)

Theorem 11: Assume i) is -compatible with
, where satisfies (A1); ii) the sequence

satisfies ; and iii)
is strongly connected for each . Then ergodicity

holds for the backward products of .
Proof: By Lemma D.2 and Theorem 10, the backward

products of are ergodic. For any , there
exists some such that . Denote

, which is a stochastic matrix of identical
rows. For any , there exists such that

for all . Now for all , we have

where is a stochastic matrix of iden-
tical rows. Since and

are stochastic matrices,
. Since is arbitrary,

.
Remark: Theorems 10 and 11 hold with for (10)

since the proofs of Theorem 8 and Lemma D.1 only need
.

B. Backward Products of

Theorem 12: Assume i) is -compatible with
, where satisfies (A1); ii) the sequence

satisfies ; and iii)
is strongly connected for each . Then ergodicity

holds for the backward products of .
Proof: By Proposition 5, is -compatible

with , and so has ergodic backward products by
Theorem 11. By Theorem 6, has ergodic backward
products.

C. Application to Random Networks

In (A2), we may select a null set (i.e., ) such
that is strongly connected and

for .
Corollary 13: Assume i) is given by (5), (6) and

(A1)–(A2) hold; ii) is an integer such that each
, , is a stochastic matrix. Then for each
, ergodicity holds for the backward products of

.
Proof: For synchronous step size update,
is -compatible with .

We further check the compatibility condition with asyn-
chronous step size update. Take . We have

. Consider any node and integer . Since
is strongly connected, there exists at least

one node as a neighbor of node in .
Suppose that is an edge in , where

. Then

(35)
where the second inequality follows from for

. Since is non-decreasing, by (35) there exist
coefficients such that
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for all . Subsequently,

(36)

Next, for , by (36) we may check that
is -compatible with . The corol-

lary follows from Theorem 12.

VI. MEAN SQUARE CONSENSUS

Let (15) be rewritten in the form

where . By (9), (12) and (14), is a function
of , and .
Theorem 14: Assuming (A1)–(A3), mean square con-

sensus holds for (9) with synchronous step size update, i.e.,
for some and for all .

Proof: We have and
is independent of . Take a

sufficiently large such that w.p.1 is a stochastic matrix
for . In addition,

The theorem follows from Theorem 3 and Corollary 13.
Theorem 15: Assume (A1)–(A3). In addition, i) there ex-

ists a deterministic integer such that w.p.1 is a nonneg-
ative matrix for all ; ii) , where

. Then algorithm (9) with asynchronous step
size update ensures mean square consensus.

Proof: For the asynchronous case, is a matrix function
of the adjacency matrices . It is easy to see
that is independent of . For
some constant , we have

For some constant , for since
. Subsequently,

The theorem follows from Theorem 3 and Corollary 13.
Remark: If w.p.1 for some constant , con-

ditions i) and ii) in Theorem 15 hold.
For leader following, if node is the leader, the th row of
has all zeros for each due to (9). The convergence for the

leader following case may be proved by an ergodicity approach
based on Corollary 13. The proof is omitted.

Corollary 16: In Theorems 14 and 15, if (A2) is re-
placed by (A2 ) while other assumptions still hold, then

for all .
Remark: Theorems 14–15 and Corollary 16 may be general-

ized to correlated noises by letting satisfy condition
iii) in Theorem 3.
Remark: If (3) is replaced by ,

Theorems 14–15 and Corollary 16 still hold.

VII. CONCLUDING REMARKS

We considered synchronous and asynchronous stochastic ap-
proximation for consensus seeking with delayed measurements
in dynamic noisy environments. This paper developed ergod-
icity results for degenerating stochastic matrices and proved
mean square consensus without quadratic Lyapunov functions.
In future work, it will be of interest to relax the bounded time in-
terval condition for joint connectivity so that the modeling may
deal with more general random networks, such as Markovian
switching networks [29], [17]. Convergence rate bounds and
probability one convergence of the consensus algorithm are also
interesting topics.

APPENDIX A
PROOF OF THEOREM 3

Lemma A.1: Denote for
and . Then

Proof: For all and , is a stochastic
matrix ensuring . We
have

For each pair ,

(A.1)

Hence, by (A.1)



HUANG: STOCHASTIC APPROXIMATION FOR CONSENSUS: A NEW APPROACH VIA ERGODIC BACKWARD PRODUCTS 3003

The lemma follows.
Proof of Theorem 3: Sufficiency—For fixed

By Lemma A.1, we may show that .
Let for and .

For any given , by Lemma A.1 we may select
such that

(A.2)

Taking a fixed , we have

Since converges w.p.1 to a stochastic matrix of
identical rows, there exists a random variable such that

(A.3)

So by (A.2), (A.3)

and therefore, there exists such that for all and

(A.4)

Following the argument in [7, Th. 9], we proceed to show mean
square consensus. For any , we have

and

Since is arbitrary, is a Cauchy sequence in the
norm and has a limit . Furthermore,

by arbitrariness
of in (A.4). So and mean square consensus
follows.
Necessity—Given any and , we select

such that (A.2) holds. Let be a unit column vector

with the th element equal to 1. Take the initial pair for
(16) with . We have

By mean square consensus there exists a random variable
such that

(A.5)

We have

This combined with (A.5) implies that there exists such
that for and each , ,

. Since is the th column of ,
it follows that

Here we will not directly analyze the asymptotic property of
since changes with . In fact also

changes with and . For the fixed , we have

Hence,

(A.6)

where . Since is arbitrary, (A.6) implies that
is a Cauchy sequence in the norm and con-

verges in mean square to a random matrix . Clearly, for each
, is a stochastic matrix. Since
in (A.6) is a matrix of identical rows, the mean square error
between any two rows of is at most for all
, which implies that has identical rows since is

arbitrary.
We proceed to show that the mean square convergence of

implies convergence w.p.1. Since
, there exists a sequence of integers

such that converges to for all ,
where is a null set.
For any and , there exists depending on
such that for all
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For any , since is a stochastic matrix and
has identical rows

Hence, for each and ,
, which implies that converges to w.p.1. This

completes the proof of necessity.

APPENDIX B
PROOF OF THEOREM 6

Let denote the canonical basis of .
Lemma B.1: Let be a sequence of sto-

chastic matrices. Then it has ergodic backward products if and
only if

(B.1)

achieves consensus (i.e., for some )
for any given initial pair where ,

.
Proof: Necessity is obvious. We show sufficiency. For any
, we run the linear system (B.1) by taking the initial pairs
, , respectively. Then by consensus

for some constants depending on . So
has ergodic backward products.
Lemma B.2: Let be stochastic matrices

with ergodic backward products, and

where and . Then
for some .

Proof: Denote for , and
. For

(B.2)

Since for , there exists a fixed such
that .
Given any , we may find a sufficiently large such that

(B.3)

Denote and .
For a sufficiently large , by ergodicity we have

for all . Hence,

for all . Since is
arbitrary

(B.4)

Next, for , we have

By (B.3), (B.4), is a Cauchy sequence
in . By using (B.4) again, there exists such that

.
Lemma B.3: Consider (23) with the initial pair . As-

sume that is -compatible with such
that (18), (19) hold for . If , we have

where .
Proof: for some constant . For

and any , we have
and . Here may take different values.
Hence,

(B.5)

Similarly,

Hence, for any ,
.

Proof of Theorem 6: Sufficiency—Suppose that
has ergodic backward products. Consider (23) with the initial

pair . For

Denote . Then by Lemma B.3,
for . So

. By Lemma B.2,
for some . Hence, . By
Lemma B.1, has ergodic backward products.
Necessity—Suppose that has ergodic backward

products. By Proposition 5, satisfies the -com-
patibility condition with some constants . Consider

with the initial pair . Since (20) holds
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for , for and some .
Define , for .

Fix any initial condition . By using
the method in proving Lemma B.3, we may show that

Then

Letting , we may write

where . We
have . Since has er-
godic backward products, by Lemma B.2 there exists

such that , which implies
. Since is arbitrary, Lemma B.1

implies that has ergodic backward products.

APPENDIX C
PROOF OF THEOREM 8

Lemma C.1: Let , , and . Then
.

Proof: If , we have

If , the estimate is similar and the detail is omitted.
Proof of Theorem 8: We say that condition (C1) is satisfied

infinitely often (i.o.) by elements in a sequence if
given any , there exists such that satisfies
(C1). It suffices to show . We consider the
initial pair . The proof with a general initial pair
is similar. We prove by induction for the components of .
Step 1) By Proposition 7, for some finite

.
Step 2) Assume that for ,

(C.1)

for all . Next we show that (C.1) holds for
, which is given in several sub-steps.

Step 2.1 (Contradiction argument) Suppose that
(C.1) is not true for , which implies
that there exists such that

(C.2)

Since
by the ordering of the elements in , (C.2) im-
plies that

(C.3)

Step 2.2 (Estimate of the lowest tra-
jectories) By compatibility, suppose that (20),
(21) hold with , . For
any , by the induction assump-
tion (C.1), there exists such that for
all

(C.4)

By (C.3), there exists such
that for
since . Consider the
vector and use our convention of associating
a component with a node. Suppose

(C.5)

for distinct elements in
, which implicitly depend

on . Denote and its
complement . Note that

.
Denote . For and

, it follows from (20) with the substitution
of that

(C.6)

where depends only on and
. Since is arbitrary, (C.6) implies

that

(C.7)

Subsequently, we choose a large such that

(C.8)

By Lemma C.1, we take

(C.9)

to ensure (C.8). We use to denote the
greatest integer bounded from above by .
Without loss of generality, assume that given
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, a sufficiently large has been selected
such that

(C.10)

The iteration of (C.7) yields

(C.11)

By (C.4) and (C.11), the states of nodes
remain to be the first greatest states

for although the position of
these states may change with time when listed
in . Now by , it follows from (C.4)
and (C.11) that for any and any

(C.12)

where and is defined by
(C.9).
Step 2.3 (Estimate of the highest trajectories)
For node

(C.13)

where . It follows from (C.12)
that

where depends only on . We
have

Denote . Hence, by (C.13),

(C.14)
Since is strongly connected, there exists a
pair such that is an
edge of and for by
compatibility, where is determined by

.
Subsequently, it follows that

(C.15)

where . Since and depend
only on , we may further assume
that a sufficient small has been selected such
that

Iterating (C.15), we have

Step 2.4 (A contradiction) Since and
(C.10) holds, for given by (C.9), it follows
that

Denote . Then
since .
(a) If

For , , there
exists a constant depending only on
and such that for all

. Now and

So for , we obtain

(C.16)
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On the other hand, by (C.12) we have

(C.17)

If we take

then (C.16), (C.17) lead to a contradiction.
Hence, (C.1) holds for .
(b) If , a similar argument may be used
to show (C.1) for and the detail is
omitted.

Step 3) Finally, we conclude that (C.1) holds for all .
This completes the proof.

APPENDIX D

Lemma D.1: Assume condition i) in Theorem 11 holds. Let
be a fixed integer and denote

for and . Then there exist constants and
, all independent of , such that for all ,

satisfies

(D.1)

(D.2)

where is the th element of .
Proof: If , the lemma is obvious. Below we consider
and , where is selected such that (20), (21) hold

for with constants , .
For , we have

where each . Each factor of
is be-

tween 0 and 1. Since , there is at least one factor of
the form with and , so
that it is bounded from above by by condition i). In
addition, the number of terms in the summation has a finite
upper bound depending only on . Hence (D.1) follows.

We proceed to prove (D.2). Assume that .
So there exists such that . Con-
sequently, by the compatibility condition .
We have

(D.3)

If (resp., ), takes the position of the
most right (resp., left) term in (D.3).

By (20), there exist and such that
for and

. We obtain

Since for the fixed , by (A1) we may select
such that (D.2) holds.
Lemma D.2: Assume conditions i)–ii) in Theorem 11 holds.

Then is -compatible with , where
and .

Proof: There exists a fixed constant such that

So the lemma follows from Lemma D.1.
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