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Abstract— We consider optimal control of a diffusion process
where the state is either observed exactly or completely lost at
the controller, as described by a binary Markov chain. The
random observation loss, coupled with the nonlinear dynamics,
makes the conventional optimal control techniques difficult to
apply. We introduce an abstract state space from the point of
view of a hybrid system and next apply dynamic programming.
For this purpose, we apply tools of differentiation of functions
defined on a space of probability measures, which has no linear
structure. Our approach is explicitly illustrated by a linear
quadratic (LQ) control problem.

Index Terms— Controlled diffusion, observation loss, hybrid
system, dynamic programming, Wasserstein metric

I. INTRODUCTION

Consider the controlled diffusion process

dXt = f (t,Xt ,ut)dt +σ(t,Xt ,ut)dwt , t ≥ 0, (1)

where Xt ∈ R
n is the state, ut ∈ R

n1 the control, and wt

an R
n2 -valued standard Brownian motion. The initial state

is X0 = x0. The state Xt is sent to the controller via an
unreliable observation link, the operational condition of
which is described by a continuous-time two state Markov
chain {θt , t ≥ 0} with state space Θ = {0,1} and stationary
transition probabilities. The two processes wt and θt are
independent. Denote

Yt = Xt1{θt=1}.

The observation at the controller consists of (θt ,Yt) at time
t. We interpret θt = 0 as observation link failure so that the
state information is lost at the controller. Suppose for ∆t > 0,

P(θ∆t = 1|θ0 = 0) = q0∆t +o(∆t),

P(θ∆t = 0|θ0 = 1) = q1∆t +o(∆t),

where q0 > 0 is the recovery rate, and q1 > 0 the failure rate.
The cost function to be minimized is

J(0,x0,u(·)) = E
∫ T

0
e−ρtL(t,Xt ,ut)dt. (2)

For simplicity, the terminal cost is taken as 0. The general
case can be treated without further difficulty.

Let ψ stand for f or σ . We make the following standing
assumptions:

A1) u ∈U which is a nonempty closed subset of Rn1 .
A2) ψ(t,x,u) is a continuous function on [0,T ]×R

n ×U ,
and is Lipschitz continuous in x uniformly with respect to
(t,u). In addition, |ψ| ≤C(1+ |x|+ |u|).

This work was supported by NSERC.
The author is with the School of Mathematics and Statistics, Carleton

University, Ottawa, ON K1S 5B6, Canada (mhuang@math.carleton.ca).

A3) L is nonnegative and continuous in (t,x,u) and
L(t,x,u)≤C(1+ |x|2 + |u|2), and for some c0 > 0,

L(t,x,u)≥ c0|u|
2 −C0, ∀ (t,x,u) ∈ [0,T ]×R

n ×U. (3)

If U is a compact set, (3) is automatically true.
Admissible control: Denote F o

t = σ(θs,Ys,s ≤ t), which
is the σ -algebra generated by the observations up to time
t. The admissible control set U0,T consists of all process ut

which is adapted to F o
t such that E

∫ T
0 |ut |

2dt < ∞ and such
that (1) has a unique strong solution.

A. Related Literature and Our Contributions

We mention that, in the literature of networked systems,
lossy observations or measurements have been considered in
optimal filtering [13], [23], optimal control [12], [14], [17],
[24], or stabilization [22], [25].

Our nonlinear model does not lead to a standard optimal
control problem due to incomplete information of the state
Xt . It is also different from control problems with partial
observations [4], [10]. The application of conventional ap-
proaches, such as dynamic programming and the calculus
of variations, is difficult. The key challenge is that during
observation link failure, one faces an open loop control
situation with random entry and exit times for that period.

To overcome the above difficulty we introduce an abstract
state space on which a new control problem with complete
state information is solved. This is done by specifying
the distribution of the diffusion when it is not observed.
Dynamic programming is applied when the domain of the
value function alternates in two spaces. This is facilitated by
differentiating functions defined on the space of probability
measures, which does not have a linear structure. Related
analysis has been developed in the analysis of abstract dy-
namical systems [2], [3]. This method has also been used in
the recent literature of mean field control [5], [8], [11], [15].
Our model together with its analysis involves both discrete
and continuous components in the states, and a switch in
the observation pattern. This can be regarded as a particular
form of stochastic hybrid systems [16]. The use of dynamic
programming can be found in deterministic hybrid systems
[7], [20] and stochastic hybrid systems [6]. Quadratic optimal
control of linear hybrid systems with independent sojourn
times in the modes is considered in [21]. LQ optimal control
with a fixed number of Poisson observations is solved in [1].

The paper is organized as follows. Section II defines the
value function in an extended state space and introduces
preliminaries on differentiation of functions defined on a
space of probability measures. The Hamilton-Jacobi-Bellman
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(HJB) equations are presented in Section III, and their
derivation is given in Section IV. An LQ example is solved
in Section V for illustration. Section VI concludes the paper.

B. Notation

Throughout the paper, the time variable t (or s) often
appears as a subscript (example: Xt , ut , Pt , gt) in a function
or a process and should not be confused as a derivative.
A partial derivative in t is always denoted by ∂t . For the
space variable x (or y etc.) in a function φ , the derivative or
partial derivative may be denoted by φx, φxx, ∂xφ , etc. We
use δx to denote the dirac measure at x. Let P2(R

n) be the
set of Borel probability measures on R

n with finite second
moments, and C2

B(R
n;R) the set of functions φ ∈C2(Rn;R)

with bounded φxx. For a function φ and probability measure
µ , we denote the integral

∫
Rn φ(x)µ(dx) as 〈µ ,φ〉 or 〈φ〉µ .

For two probability measures µ1 and µ2, 〈µ1 − µ2,φ〉 =
〈µ1,φ〉−〈µ2,φ〉. We use C (or C1, etc) to denote a generic
constant. If φ ∈C2

B(R
n;R), it can be checked that |φx(x)| ≤

C(1+ |x|) and |φ(x)| ≤C(1+ |x|2).

II. THE EXTENDED STATE SPACE MODEL

We introduce an abstract state X∗
t = (θt ,Zt). The extended

state space for X∗
t is defined as

X= X
1 ∪X

0,

where X
1 = {1}×R

n and X
0 = {0}×P2(R

n). The discrete
component (0 or 1) comes from the Markov chain θt and is
called the mode. The component Zt provides information on
the diffusion process by being equal to Xt when it is observed
or to its distribution otherwise. This enables us to convert the
original optimal control problem (1)-(2) into a new one with
complete state information so that dynamic programming is
applicable in the new state space.

For illustration, suppose θt = 1. Denote the stopping times
β0 = inf{s > t|θs = 0} and β1 = inf{s > β0|θs = 1}. By the
property of the Markov chain, β0 − t is an exponentially
distributed random variable with mean 1/q1. The hybrid
system state is X∗

s = (θs,Xs) = (1,Xs) ∈ X
1 for s ∈ [t,β0],

on which the observation link is active, and X∗
s = (θs,µs) =

(0,µs) ∈ X
0 for s ∈ [β0,β1], where µs is the distribution of

Xs conditional on (β0,Xβ0
). Along a sample path, one can

determine µβ0
= δXβ0

depending on the underlying sample
ω ∈ Ω. In a long period, the trajectory of X∗

t evolves back
and forth between X

0 and X
1.

A. The Value Function

We follow the method of dynamic programming [26] by
defining a family of optimal control problems with different
initial conditions although this is now done with switching
observation patterns as described below.

Case i) Consider the initial pair (t,x) and

dX t,x
s = f (s,X t,x

s ,us)ds+σ(s,X t,x
s ,us)dws, s ≥ t, (4)

where θt = 1 and X t,x
t = x.

Case ii) Consider the initial pair (t,µ) and

dX t,µ
s = f (s,X t,µ

s ,us)ds+σ(s,X t,µ
s ,us)dws, s ≥ t, (5)

where θt = 0 and the initial state is a random variable X t,µ
t

which is independent of {ws,s ≥ t} and has distribution
µ ∈P2(R

2). We give explanation on introducing the process
in Case ii). With θt = 0, it is used to generate a physical
process whose state value X t,µ

s is not observed at least
on a small interval after t. Its distribution µs, however,
can be determined with the initial condition µt = µ . Thus,
µs is regarded as an abstract state evolving in an infinite
dimensional space. We take us = u and may describe µs by
the following differential equation in a weak form: for any
ϕ ∈C2

B(R
n;R),

d
ds

〈µs,ϕ〉= 〈µs, f T (s,x,u)ϕx +
1
2 Tr(ϕxx(x)(σσT )(s,x,u))〉,

(6)

where s ≥ t, µt = µ and the integration on the right hand
side is with respect to µs(dx). This equation can be derived
by applying Ito’s formula to ϕ(X t,µ

s ).
By restricting to the sub-interval [t,T ], on which the initial

condition X∗
t at t is given, we may similarly define the

admissible control set Ut,T . Define two value functions as
follows: For case i),

V 1(t,x)= inf
u∈Ut,T

E[
∫ T

t
e−ρ(s−t)L(s,X t,x

s ,us)ds|θt = 1,X t,x
t = x],

and for case ii),

V 0(t,µ)= inf
u∈Ut,T

E[
∫ T

t
e−ρ(s−t)L(s,X t,µ

s ,us)ds|θt = 0,µt = µ ],

where µ ∈ P2(R
n). We give some prior estimates.

Lemma 1: For some fixed constant C, we have

0 ≤V 1(t,x)≤C(1+ |x|2), 0 ≤V 0(t,µ)≤C(1+ 〈µ , |x|2〉).
Proof: Fix any u ∈U , and we take us ≡ u. We next use

J(u(·)) defined on [t,T ] as an upper bound. The inequalities
follow from standard SDE estimates and A3).

B. Preliminary on Wasserstein Metric Space

For µ ,ν ∈ P2(R
n), let Γ(µ ,ν) be the set of probability

measures on R
2n which have µ and ν as the first and

second marginals, respectively. The Wasserstein distance W2

is defined by

W 2
2 (µ ,ν) = inf

γ∈Γ(µ ,ν)

∫

R2n
|x− y|2γ(dx,dy).

(P2(R
n),W2) is a complete and separable metric space [3].

We follow a method similar to [8] to differentiate a
function defined on P2(R

n). This can be viewed as a local
linearization of the function. More general definitions can be
found in [3]. We say Φ : P2(R

n)→R is differentiable at µ
if there exists a Borel function φ : Rn →R such that for any
ν ∈ P2(R

n), we have i) 〈ν , |φ |〉< ∞ and, ii)

Φ(ν)−Φ(µ) =
∫

φ(y)(ν −µ)(dy)+o(W2(ν ,µ)).

We may write the derivative φ as (∂µ Φ)(µ ,y) to explicitly
indicate its dependence on µ . Any function φ satisfying
|φ(x)| ≤C(1+ |x|2) ensures condition i), but this growth rate
is not a necessary condition to guarantee i). Since for any
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constant C,
∫

C(µ − ν)(dx) = 0, ∂µ Φ is defined up to an
additive constant.

We say Φ is twice differentiable at µ if there exists a real
valued Borel function ψ(y1,y2) on R

2n such that we have
i) for all ν1,ν2 ∈P2(R

n),
∫∫

|ψ(y1,y2)|ν1(dy1)ν2(dy2)< ∞,
and ii) for all ν ∈ P2(R

n),

Φ(ν)−Φ(µ) =
∫

φ(y)(ν −µ)(dy)

+
1
2

∫∫
[ψ(y1,y2)(ν −µ)(dy1)](ν −µ)(dy2)

+o(W 2
2 (ν ,µ)). (7)

Since ψ depends on µ , we write ψ = (∂µµ Φ)(µ ,y1,y2).
Note that after the second differentiation, a new independent
variable y2 is introduced.

Example 1: Let F1(µ) = 〈µ ,xT Qx〉, where the matrix Q≥
0. Then ∂µ F1 = xT Qx.

Example 2: Let F2(µ) = 〈x〉T
µ Q〈x〉µ . Then we have

F2(ν)−F2(µ) =2〈x〉T
µ Q〈ν −µ ,x〉

+ 〈ν −µ ,x〉T Q〈ν −µ ,x〉.

Denote ξ = 〈ν −µ ,x〉. We can show |ξ | ≤W2(ν ,µ). It fol-
lows that F2(ν)−F2(µ) = 2〈x〉T

µ Q〈x,ν − µ〉+ o(W2(ν ,µ)).
We obtain ∂µ F2 = 2〈x〉T

µ Qx as a linear function of x for the
given µ . The second derivative is ∂µµ F2 = 2yT

2 Qy1.
We give another example of higher nonlinearity.
Example 3: Suppose F3(µ) = e〈µ ,|x|

2〉. We have

F3(ν)−F3(µ) = e〈ν ,|x|
2〉− e〈µ ,|x|

2〉 = e〈µ ,|x|
2〉

∞

∑
k=1

∆k

k!
.

where ∆ = 〈ν −µ , |x|2〉. We have the bound

|∆|= |〈ν , |y|2〉−〈µ , |x|2〉| ≤W 2
2 (µ ,ν)+2W2(µ ,ν)〈|x|2〉

1/2
µ .

So ∂µ F3 = e〈µ ,|x|
2〉|x|2 and ∂µµ F3 = e〈µ ,|x|

2〉|x|2|y|2.

III. DYNAMIC PROGRAMMING

Define the matrix function Λ(t,x,u) = σ(t,x,u)σT (t,x,u),
which is from [0,T ]×R

n ×U to R
n×n.

Lemma 2: Suppose us ≡ u ∈U for s ∈ [t, t1] for some t1 >
t, and let µs be the distribution of X t,µ

s in (5) for s ∈ [t, t1].
If φ ∈C2

B(R
n;R), we have

lim
ε↓0

1
ε
〈µt+ε −µ ,φ〉

=〈µ , f T (t,y,u)φy +
1
2 Tr(φyyΛ(t,u,y))〉, (8)

where the right hand takes integration with respect to µ(dy).
Proof: We have 〈µt+ε −µ ,φ〉= E[φ(X t,µ

t+ε)−φ(X t,µ
t )].

By Ito’s formula for (5), we obtain the limit in (8).
Lemma 3: For (5), suppose µt = δz, and us = u on [t, t+ε ]

for some fixed ε > 0 in (5). Then 〈µt+ε , |x|2〉 ≤C(1+ |z|2),
where C does not depend on ε .

Proof: We have 〈µt+ε , |x|2〉=E|X t,µ
t+ε |

2, where X t,µ
t = z.

The lemma follows from the second moment estimate for the
SDE with the deterministic initial condition.

The following hypothesis H1) is the optimality principle.

H1) U is compact. The dynamic programming principle
holds for the value function. Specifically, for any 0 ≤ ε ≤
T − t, we have the relation

V 1(t,x) =min
u(·)

E[
∫ t+ε

t
e−ρ(s−t)L(s,X t,x

s ,us)ds

+ e−ρεV θt+ε (t + ε ,Zt+ε)|θt = 1,X t,x
t = x], (9)

V 0(t,µ) =min
u(·)

E[
∫ t+ε

t
e−ρ(s−t)L(s,X t,µ

s ,us)ds

+ e−ρεV θt+ε (t + ε ,Zt+ε)|θt = 0,µt = µ ], (10)

where µ ∈ P2(R
n).

We further introduce some regularity assumptions on the
value functions regarding differentiability.

H2) ∂tV 1, ∂xV 1, ∂xxV 1 are continuous functions on [0,T ]×
R

n, and ∂xxV 1 is bounded.
H3) ∂tV 0 is a continuous function of (t,µ). ∂µV 0 has

continuous up to second order partial derivatives in y, and
∂yy∂µV 0 is bounded.

Remark 1: H3) implies |∂y(∂µV 0)(t,µ ,y)| ≤C(1+ |y|).
H4) ∂µµV 0 exists for all µ ∈ P2(R

n). For ψ(y1,y2) =
(∂µµV 0)(t,µ ,y1,y2), the partial derivatives ψy1 , ψy2 , ψy1y2 ,
ψy1y1 , ψy2y2 exist and are continuous in (y1,y2). Moreover,
|ψy1y1 |+ |ψy2y2 |+ |ψy1y2 | ≤C.

Remark 2: H4) implies |ψy1 |+ |ψy2 | ≤ C(1+ |y1|+ |y2|)
and |ψ| ≤C(1+ |y1|

2 + |y2|
2).

Lemma 4: Let µs, s ∈ [t, t +ε ], be determined by (5) with
us = u. Then we have W2(µt+ε ,µ) = O(ε1/2).

Proof: We have W 2
2 (µt+ε ,µ)≤ E|X t,µ

t+ε −X t,µ
t |2 =O(ε),

and the lemma follows.
Lemma 5: Denote ν = µt+ε − µ . Suppose that H4) and

the assumption in Lemma 4 hold. Then we have
∣∣∣
∫
(∂µµV 0)(t,µ ,y1,y2)ν(dy1)ν(dy2)

∣∣∣= o(ε). (11)

Proof: See appendix.
Theorem 6: Under H1)-H4), we have the dynamic pro-

gramming equations

ρV 1(t,x) =∂tV
1(t,x)+q1[V

0(t,δx)−V 1(t,x)]

+min
u∈U

[ f T (t,x,u)V 1
x (t,x)+L(t,x,u)

+ 1
2 Tr(V 1

xx(t,x)Λ(t,x,u))], (12)

ρV 0(t,µ) =∂tV
0(t,µ)+q0[〈µ ,V 1(t, ·)〉−V 0(t,µ)]

+min
u∈U

[
〈µ ,L(t, ·,u)〉

+
∫

f T (t,y,u)∂y(∂µV 0)(t,µ ,y)µ(dy)

+
∫

1
2 Tr[(∂yy(∂µV 0)(t,µ ,y))Λ(t,y,u)]µ(dy)

]
, (13)

where µ ∈ P2(R
n), V 1(T,x) = 0 and V 0(T,µ) = 0.

We call (12)-(13) the HJB equations, where (12) will
reduce to a standard HJB equation with unknown V 1 if q1 is
taken as 0. The proof of Theorem 6 is given in Section IV.
The proof needs certain regularity in terms of ∂µµV 0 (see
H4)) although this term does not appear in (13).

Remark 3: We assume compact control space U in H1).
This will simplify the derivation of the HJB equations. If U
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is unbounded, the SDE estimates on short time intervals as
developed in Section IV will be more difficult. This bounded
control set does not cover the LQ case.

On the other hand, the two HJB equations are still well
defined in the LQ case for which we expect them to be
applicable. This case will be solved explicitly in Section V.

IV. DERIVATION OF THE HJB EQUATIONS

A. The Analysis of (12)

Given θt = 1 and X t,x
t = x, we have the following estimate

V 0(t +ε ,µt+ε) =V 0(t,δx)+o(1). By the dynamic program-
ming principle and local Taylor expansion of the function
V 1, we can establish (12). See standard techniques in [26].

B. The Analysis of (13)

Part 1. Denote the right hand side of (13) by Hµ . Our
method is to first show

ρV 0(t,µ)≤ Hµ . (14)

Fix t ∈ [0,T ). Take us ≡ u ∈ U for s ∈ [t, t + ε ], where
ε > 0 is sufficiently small. Given θt = 0, define τ1 = inf{s >
t|θs = 1}, τ2 = inf{s > τ1|θs = 0}. By H1), we have

V 0(t,µ)≤ E
∫ t+ε

t
e−ρ(s−t)L(s,X t,µ

s ,us)ds (15)

+ e−ρε EV θt+ε (t + ε ,Zt+ε)

= εEL(t,X t,µ
t ,u)+o(ε)+ e−ρε(K0 +K1),

where the expectation is calculated given the initial condition
θt = 0, Xt having distribution µ , and we denote

K0 = E[V θt+ε (t + ε ,Zt+ε)1(τ1>t+ε)],

K1 = E[V θt+ε (t + ε ,Zt+ε)1(τ1≤t+ε)].

It follows that

EL(t,X t,µ
t ,u) = 〈µ ,L(t, ·,u)〉,

K0 = E[V 0(t + ε ,µt+ε)1(τ1>t+ε)] =V 0(t + ε ,µt+ε)e
−q0ε .

Since ∂µµV 0 exists, we obtain

V 0(t + ε ,µt+ε) =V 0(t,µ)+V 0(t + ε ,µt+ε)−V 0(t,µt+ε)

+V 0(t,µt+ε)−V 0(t,µ)
=V 0(t,µ)+(∂tV

0(t,µ)+o(1))ε
+ 〈µt+ε −µ ,(∂µV 0)(t,µ , ·)〉

+ 1
2

∫
(∂µµV 0)(t,µ ,y1,y2)ν(dy1)ν(dy2)

+o(W 2
2 (µt+ε ,µ)), (16)

where ν = µt+ε −µ and µt = µ . By (16), Lemmas 4 and 5,

K0 =V 0(t,µ)+∂tV
0(t,µ)ε

+ 〈µt+ε −µ ,(∂µV 0)(t,µ ,y)〉−q0V 0(t,µ)ε +o(ε).

By Lemma 2,

〈µt+ε −µ ,(∂µV 0)(t,µ ,y)〉

=
[∫

f T (t,y,u)∂y(∂µV 0)(t,µ ,y)µ(dy)

+
∫

1
2 Tr[(∂yy(∂µV 0)(t,µ ,y))Λ(t,y,u)]µ(dy)

]
ε +o(ε).

For the remaining part, we estimate K1. We have

K1 = E[V θt+ε (t + ε ,Zt+ε)1(τ1≤t+ε ,τ2>t+ε)]+K3

= E[V 1(t + ε ,X t,µ
t+ε)1(τ1≤t+ε ,τ2>t+ε)]+K3,

where K3 = E[V θt+ε (t + ε ,Zt+ε)1(τ1≤t+ε ,τ2≤t+ε)]. Since X t,µ
t+ε

is determined by a constant input u, it is independent of the
event {τ1 ≤ t + ε ,τ2 > t + ε}. So we obtain

E[V 1(t + ε ,X t,µ
t+ε)1(τ1≤t+ε ,τ2>t+ε)]

= EV 1(t + ε ,X t,µ
t+ε)q0ε +o(ε)

= EV 1(t,X t,µ
t )q0ε +o(ε) = q0ε〈µ ,V 1(t, ·)〉+o(ε). (17)

To estimate K3, we need some care since it is the product of
two terms which are not independent. Next we have

|V θt+ε (t + ε ,Zt+ε)1(θt+ε=1)|= |V 1(t + ε ,X t,µ
t+ε)1(θt+ε=1)|

≤|V 1(t + ε ,X t,µ
t+ε)| ≤C(1+ |X t,µ

t+ε |
2) (18)

by Lemma 1. We further have

|V θt+ε (t + ε ,Zt+ε)1(θt+ε=0)|= |V 0(t + ε ,µt+ε)1(θt+ε=0)|,

where µt+ε is random. By Lemma 1, we have

|V 0(t + ε ,µt+ε)| ≤C(1+ 〈µt+ε(ω), |x|2〉)

≤C(1+ sup
t≤s≤t+ε

|X t,µ
s |2), (19)

where we have used the fact that µt+ε is determined from
the distribution of X t,µ

t+ε with a random initial condition of the
form δX t,µ

τ(ω)
(ω)

, where τ is the last time when the diffusion

is observed. Note that

E sup
t≤s≤t+ε

|X t,µ
s |2 ≤C, E1(τ1≤t+ε ,τ2≤t+ε) = O(ε2).

It follows that

K3 ≤ CE[(1+ sup
t≤s≤t+ε

|X t,µ
s |2)1(τ1≤t+ε ,τ2≤t+ε)] = O(ε2),

where the process {X t,µ
s , t ≤ s ≤ t +ε} is independent of the

indicator random variable.
Since u is arbitrary, we obtain (14).
Part 2. We show the other direction of the inequality, i.e.,

ρV 0(t,µ)≥ Hµ . (20)

Fix any small δ > 0. For any ε > 0, we can find a control
on [t, t + ε ] such that

V 0(t,µ)+δε ≥E
∫ t+ε

t
e−ρ(s−t)L(s,X t,µ

s ,us)ds

+ e−ρε EV θt+ε (t + ε ,Zt+ε).

We have

E
∫ t+ε

t
e−ρ(s−t)L(s,X t,µ

s ,us)ds = E
∫ t+ε

t
〈µt ,L(s, ·,us)〉ds

+o(ε).

Denote k0 = E[V θt+ε (t + ε ,Zt+ε)1(τ1>t+ε)], k1 =

E[V θt+ε (t + ε ,Zt+ε)1(τ1≤t+ε)]. Next, we have

EV θt+ε (t + ε ,Zt+ε) =k0 + k1

=EV 0(t + ε ,µt+ε)1(τ1>t+ε)+ k1.
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We can further show (20). The remaining estimates are
similar to those in Part 1, and we omit the detail.

V. LINEAR QUADRATIC CASE

We consider the linear case of the SDE (1) in the form

dXt = (AXt +But)dt +Ddwt , t ∈ [0,T ]. (21)

The cost integrand is (Xt − φt)
T Q(Xt − φt) + uT

t Rut , where
φt is a continuous function on [0,T ] and Q ≥ 0, R > 0. For
simplicity, we consider constant matrices A, B, D, Q and R.

Under the lossy observation conditions, the separate prin-
ciple holds for this LQ model and the optimal control law can
be determined using either the state or its linear prediction
when state loss occurs. This can be done by applying or
adapting the methods in [24] for i.i.i. packet losses or in [17]
for Markovian packet losses. We will not give the solution
by this approach. Instead, this model serves to illustrate the
general solution in Section III so as to give insights into the
abstract dynamic programming. Our method further gives the
optimal cost in a closed-form.

The HJB equation (12) is simplified into the form

ρV 1(t,x) =∂tV
1(t,x)+q1[V

0(t,δx)−V 1(t,x)]

+ xT ATV 1
x +(x−φt)

T Q(x−φt)+
1
2 Tr(V 1

xxDDT )

− 1
4V 1T

x BT R−1BTV 1
x , (22)

where the optimal control is u = − 1
2 R−1BTV 1

x . The second
HJB equation (13) reduces to

ρV 0(t,µ) = ∂tV
0(t,µ)+q0[〈µ ,V 1(t, ·)〉−V 0(t,µ)]

+ 〈µ ,(y−φt)
T Q(y−φt)+ yT AT ∂y∂µV 0(t,µ ,y)〉

+ 1
2 〈µ ,Tr(∂yy∂µV 0(t,µ ,y)DDT )〉

− 1
4 〈µ ,∂y∂µV 0(t,µ ,y)〉T BR−1BT 〈µ ,∂y∂µV 0(t,µ ,y)〉, (23)

where the optimal control is

u =− 1
2 R−1BT 〈µ ,∂y∂µV 0(t,µ ,y)〉.

We introduce two ODE systems:




(ρ +q1)P = Ṗ+AT P+PA−PBR−1BT P+Q+q1(K +G),

(ρ +q1)S = Ṡ+AT S−PBR−1BT S+q1N −Qφt ,

(ρ +q1)r = ṙ+q1g−ST BR−1BT S+φ T
t Qφt +Tr(PDDT ),

(24)

where PT = 0, ST = 0 and rT = 0; and




ρK = K̇ +q0(P−K)+AT K +KA+Q,

ρG = Ġ−q0G+AT G+GA− (K +G)BR−1BT (K +G),

ρN = Ṅ +q0(S−N)+AT N − (K +G)BR−1BT N −Qφt ,

ρg = ġ+q0(r−g)−NT BR−1BT N +φ T
t Qφt +Tr(KDDT ),

(25)

where KT = GT = 0, NT = 0 and gT = 0.
Lemma 7: There exists a unique solution to (24)-(25).

Proof: Denoting K̂ = K + G, we obtain two coupled
Riccati equations

ρP = Ṗ+AT P+PA−PBR−1BT P+Q+q1(K̂ −P),

ρK̂ = ˙̂K +AT K̂ + K̂A− K̂BR−1BT K̂ +Q+q0(P− K̂),

where PT = K̂T = 0. This system has a unique solution P(t)≥
0, K̂(t)≥ 0, t ∈ [0,T ] ([9], [27]). Then we uniquely solve K
from a linear ODE when P is given. This further gives G.
Next, we uniquely solve (S,N), and finally (r,g).

By use of the ODE of P− K̂, we can further show P = K̂
on [0,T ]. Therefore, P is simply solved from

ρP = Ṗ+AT P+PA−PBR−1BT P+Q, P(T ) = 0.

Theorem 8: The pair of functions

V 1(t,x) =xT Ptx+2xT St + rt , (26)

V 0(t,µ) =〈µ ,xT Ktx〉+ 〈x〉T
µ Gt〈x〉µ +2〈x〉T

µ Nt +gt , (27)

is a solution to (22)-(23).
Proof: By (26)-(27), we obtain

V 0(t,δx) = xT (Kt +Gt)x+2xT Nt +gt ,

∂tV
1 = xT Ṗtx+2xT Ṡt + ṙt ,

V 1
x = 2Ptx+2St , V 1

xx = 2Pt .

Next, we have

(∂µV 0)(t,µ ,y) = yT Kty+2yT Nt +2〈x〉T
µ Gty,

∂y(∂µV 0)(t,µ ,y) = 2Kty+2Nt +2Gt〈x〉µ ,

∂yy(∂µV 0)(t,µ ,y) = 2Kt .

By (24)-(25), we verify that V 0 and V 1 satisfy (22)-(23).
Remark 4: Assumptions H2-H4) hold in this LQ model.

VI. CONCLUDING REMARKS

This paper considers optimal control of a diffusion process
with Markovian lossy state observations at the controller. We
apply dynamic programming in a hybrid state space, where
the continuous state evolves between the Euclidean space and
an infinite dimensional space of probability measures. This
relies on differentiation of functions defined on Wasserstein
metric space without a linear structure. Our approach is
illustrated by an LQ model with closed-form solutions.

For future work, it is of interest to develop existence
results with unbounded control space and to generalize this
modeling framework to other non-diffusion system models.
The uniqueness analysis of the solution by restricting to
a certain space is another interesting issue. The dynamic
programming principle may be further studied by use of
nonlinear semi-groups [18], [19]. A further generalization is
to consider the case where the normal observation duration
vanishes toward zero. This will give a model with observa-
tions arriving as a Poisson process [1].

APPENDIX: PROOF OF LEMMA 5.

We prove by a probabilistic approach. Denote the SDE

dX̃ t,µ
s = f (s, X̃ t,µ

s ,u)ds+σ(s, X̃ t,µ
s ,u)dw̃s, (28)

where t ≤ s ≤ T . The initial condition X̃ t,µ
t is independent of

{w̃s,s ≥ t} and has the distribution µ . In addition, (X̃ t,µ
t , w̃s)

and (X t,µ
t ,ws) are independent. We may introduce a product

probability space on which both X̃ t,µ
s and X t,µ

s are defined.
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We still use E to denote expectation on the product prob-
ability space. In the remaining proof we simply write X t,µ

s

and X̃ t,µ
s as Xs and X̃s, respectively.

Denote φ(y1,y2) := (∂µµV 0)(t,µ ,y1,y2). Then
∫

φ(y1,y2)ν(dy1)ν(dy2) = E[φ(Xt+ε , X̃t+ε)−φ(Xt , X̃t+ε)

−φ(Xt+ε , X̃t)+φ(Xt , X̃t)] =: Cν . (29)

By applying Ito’s formula, we have

Eφ(Xt+ε , X̃t+ε) = Eφ(Xt , X̃t)+
∫ t+ε

t
Eh1(s)ds, (30)

where

h1(s) =φ T
y1
(Xs, X̃s) f (s,Xs,u)+φ T

y2
(Xs, X̃s) f (s, X̃s,u)

+ 1
2 Tr[φy1y1(Xs, X̃s)(σσT )(s,Xs,u)]

+ 1
2 Tr[φy2y2(Xs, X̃s)(σσT )(s, X̃s,u)].

Similarly, we have

Eφ(Xt , X̃t+ε) = Eφ(Xt , X̃t)+
∫ t+ε

t
Eh2(s)ds, (31)

Eφ(Xt+ε , X̃t) = Eφ(Xt , X̃t)+
∫ t+ε

t
Eh3(s)ds, (32)

where the expressions of h2 and h3 are easily determined but
omitted here. Subsequently, we have

Cν = E
∫ t+ε

t
[ξ1(s)+ξ2(s)+Trξ3(s)+Trξ4(s)]ds,

where

ξ1(s) = [φ T
y1
(Xs, X̃s)−φ T

y1
(Xs, X̃t)] f (s,Xs,u),

ξ2(s) = [φ T
y2
(Xs, X̃s)−φ T

y2
(Xt , X̃s)] f (s, X̃s,u),

ξ3(s) = 1
2 [φy1y1(Xs, X̃s)−φy1y1(Xs, X̃t)](σσT )(s,Xs,u),

ξ4(s) = 1
2 [φy2y2(Xs, X̃s)−φy2y2(Xt , X̃s)](σσT )(s, X̃s,u).

Then by H4),

E
∫ t+ε

t
|ξ1(s)|ds ≤CE

∫ t+ε

t
|X̃s − X̃t |(1+ |Xs|)ds ≤Cε3/2.

Similarly, E
∫ t+ε

t |ξ2(s)|ds ≤ Cε3/2. Denote mtT =
supt≤r≤T |Xr|. Then Em2

tT <∞. Note that |ξk(s)| ≤C(1+m2
tT )

for k = 3,4. By dominated convergence, we can show
that Eξk(s) is a continuous function on [t,T ] and
lims↓t Eζk(s) = 0. It follows that

lim
ε↓0

1
ε

∫ t+ε

t
Tr[Eξ3(s)+Eξ4(s)]ds = 0. (33)

We obtain |Cν |= o(ε). The lemma follows.
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