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Abstract— Very large networks linking dynamical agents are
now ubiquitous and the need to analyse, design and control
them is evident. The emergence of the graphon theory of large
networks and their infinite limits has enabled the formulation
of a theory of the centralized control of dynamical systems dis-
tributed on asymptotically infinite networks [Gao and Caines,
CDC 2017, 2018]. Moreover, the study of the decentralized
control of such systems was initiated in [Caines and Huang,
CDC 2018] where Graphon Mean Field Games (GMFG) and
the GMFG equations were formulated for the analysis of non-
cooperative dynamic games on unbounded networks. In that
work, existence and uniqueness results were established for
the GMFG equations, while the current work continues that
analysis by developing an ε-Nash theory for GMFG systems by
relating the infinite population equilibria on infinite networks
to finite population equilibria on finite networks.

I. INTRODUCTION

A strategy to confront the problem of huge system com-
plexity is to pass to an appropriately formulated infinite
limit. This approach has a distinguished history since it is
the conceptual principle underlying the celebrated Boltzmann
Equation of statistical mechanics and that of the fundamental
Navier-Stokes equation of fluid mechanics (see e.g. [1],
[2], [3], [4]). Similarly the Fokker-Plank-Kolmogorov (FPK)
equations for the macroscopic flow of probabilities [5], [6]
is used to describe a vast range of phenomena which at
the fine micro or mezzo level are modelled via the random
interactions of discrete entities.
The work in this paper is formulated within two recent

theories developed with an analogous motive to that alluded
to above, namely Mean Field Game theory for the analysis of
equilibria in very large populations of non-cooperative agents
(see [7], [8], [9], [10], [11], [12], [13]), and the graphon
theory of the infinite limits of graphs and networks (see [14],
[15], [16], [17], [18]).
There have been mathematically rigorous studies of MFG

systems with state values in finite graphs (see e.g. [19]), and
of MFG systems where the agent subsystems are defined
at the nodes (vertices) of finite random Erdös-Rényi graphs
[20]. In that work the issue of system behaviour subject to the
unbounded growth of the network is not analysed. However,
graphon theory gives a rigorous formulation of the notion
of limits for infinite sequences of networks of increasing
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size, and the first application of graphon theory in dynamics
appears to be the work in [21], [22] and [23].
The first applications of graphon theory in systems and

control theory are those in [24], [25], [26], [27], which treat
the centralized and distributed control of arbitrarily large
networks of dynamical control systems for which a direct
solution would be completely intractable. Approximate con-
trol is achieved by solving control problems on the infinite
limit graphon and then applying control laws derived from
those solutions on the finite network of interest. The analogy
with the strategies for finding feedback laws resulting in ε-
Nash equilibria in the MFG framework is obvious. In this
connection we note that initial work on static game theoretic
equilibria for infinite populations on graphons was reported
in [28].
It may be seen that a natural framework for the formulation

of game theoretic problems involving agents distributed over
large networks is given by Mean Field Game theory defined
on graphons. The resulting basic idea and the associated
fundamental equations for what we term graphon Mean Field
Game (GMFG) systems and the GMFG equations are the
subject of the current paper and its predecessor [29]. The
GMFG equations are of great generality since they permit the
study, in the limit, of both dense and sparse, infinite networks
of non-cooperative dynamical agents. Moreover the classical
MFG equations are retrieved when the communication over
the infinite network (modelled as a graphon) involves uni-
form weightings of a direct influence of all agents on the
network on every other agent on the network. (We observe
that an early analysis of linear quadratic models can be found
in [30] on the topic of non-uniform weightings in mean field
games, but there is no topology on the set of systems or any
use of graphon theory.)
The previous paper [29] established the existence and

uniqueness of solutions to the GMFG equations under
suitable conditions. In the current paper that analysis is
continued with the development of an ε-Nash theory for
GMFG systems by relating the infinite population equilibria
on infinite networks to finite population equilibria on finite
networks.

II. THE CONCEPT OF A GRAPHON

The basic idea of the theory of graphons is that the edge
structure of each finite cardinality network is represented by a
step function density on the unit square in R2 and a so-called
cut-metric is introduced. The set of finite graphs endowed
with the cut metric then gives rise to a metric space, and the
completion of this space is the space of graphons. Graphons
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are represented by bounded symmetric Lebesgue measurable
functions W : [0,1]2 → [0,1] which can be interpreted as
weighted graphs on the vertex set [0,1]. Despite the fact that
finite set valued functions W satisfy this definition (and so
in particular W functions defined on finite graphs) we shall
reserve the use of the term graphon to the infinite valued
case.
To be specific, unless otherwise stated, the term “graphon”

here is used to refer to measurable functions W1 : [0,1]2 →
[−1,1] and Gsp

1 denotes the space of graphons. Let Gsp

denote the space of all symmetric measurable functions
W : [0,1]2 → R.

Fig. 1. E-R Graph Sequence Converging to Limit [18]

The cut norm of a graphon then has the expression:

‖W‖� = sup
M,T⊂[0,1]

|

∫

M×T
W (x,y)dxdy| (1)

with the supremum taking over all measurable subsets M and
T of [0,1]. Denote the set of measure preserving bijections
[0,1]→ [0,1] by S[0,1]. The cut metric between two graphons
V and W is then given by d�(W,V ) = infφ∈S[0,1] ‖W φ −V‖�,
where W φ (x,y) :=W (φ(x),φ(y)).
The space (Gsp

1 ,d�) is compact and this still holds if Gsp
1

is replaced by any bounded subset of Gsp closed in the d�
distance [18]. Sets in Gsp

1 compact with respect to the L2

metric are compact with respect to the cut metric. It follows
that if a graphon sequence is Cauchy in the L2 metric then
it is also a Cauchy sequence in the cut metric and the limits
are identical in Gsp

1 .
In this paper, we start the modeling of the game of a

finite population based on a finite graph. Specifically, the
population resides on a weighted finite graph Gk with a set
of nodes Vk = {1, . . . ,Mk} and weights gk

i j ∈ [0,1] for (i, j)∈
Vk ×Vk. It is allowed to have i = j in gk

i j. We call gk
i :=

(gk
i1, · · · ,g

k
iMk

) a section of gk at i. Each node l is occupied by
a set of players which is called a cluster of the population. So
the number of clusters is Mk. Each cluster can be represented
as the set of indices of the constituent agents. We list the
clusters asC1, . . . ,CMk . Without loss of generality, we assume
the lth cluster occupies node l. Let C(i) denote the cluster
that agent i belongs to. So i ∈ C(i). Our further analysis in
the paper is based on the convergence of gk to a graphon
limit g. To indicate its arguments, we may write g(α,β )
or alternatively gα ,β . We define the section of g at α by
gα : β 7→ gα ,β , β ∈ [0,1].
Since clusters Ci1 and Ci2 reside on nodes i1 and i2 of Gk,

respectively, we define gk
Ci1Ci2

= gk
i1,i2
. Similarly, we define

the section gk
Ci
= gk

i .
We partition [0,1] into Mk subintervals of equal length.

Here Ik
l = [(l−1)/Mk, l/Mk] for 1≤ l ≤ Mk. When it is clear

from the context, we omit the superscript k and write Il . To
relate the clusters of agents to the vertex set [0,1], we let the
cluster Cl correspond to Il .

III. GRAPHON MFG SYSTEMS AND THE MFG
EQUATIONS

A. The Standard MFG Model and Its Graphon Generaliza-
tion

In the diffusion based models of large population games
the state evolution of a collection of N agents Ai,1≤ i≤N <
∞, is specified by a set of N controlled stochastic differential
equations (SDEs). A simplified form of the general case is
given by the following set of controlled SDEs which for each
agent Ai includes state coupling with all other agents:

dxi(t) =
1
N

N

∑
j=1

f (xi(t),ui(t),x j(t))dt +σdwi(t), (2)

where xi ∈ R
n is the state, ui ∈ R

m the control input, and
wi ∈R

r a standard Wiener process, and where {wi,1≤ i≤N}
are independent processes. For simplicity, all collections of
system initial conditions are taken to be independent and
have finite second moment. The cost is given by

JN
i (ui,u−i) := E

∫ T

0
(1/N)

N

∑
j=1

L(xi(t),ui(t),x j(t))dt, (3)

where 1≤ i ≤ N and L(·) is the pairwise cost rate function,
and u−i denotes the controls of all agents other than Ai.
The dynamics of a generic agent Ai in the infinite popu-

lation limit of this system is then described by the controlled
McKean-Vlasov (MV) equation

dxi = f [xi,ui,µt ]dt +σdwi, 0≤ t ≤ T, (4)

where µt(·) denotes the distribution of the state of Ai in the
population at t ∈ [0,T ], f [x,u,µt ] :=

∫
Rn f (x,u,y)µt(dy) and

where the initial condition measure µ0 is specified. Setting
L[x,u,µt ] =

∫
Rn L(x,u,y)µt(dy), the corresponding infinite

population cost for Ai takes the form

Ji(ui,µ) := E
∫ T

0
L[xi(t),ui(t),µt ]dt. (5)

Now we consider a finite population distributed over the
finite graph Gk. Let xGk =

⊕Mk
l=1{xi|i ∈Cl} denote the states

of all agents in the total set of clusters of the population.
This gives a total of N = ∑Mk

l=1 |Cl | individual states.
For Ai, the coupling term in the dynamics takes the form

fGk(xi,ui,g
k
C(i)) =

1
Mk

Mk

∑
l=1

gk
C(i)Cl

1
|Cl |

∑
j∈Cl

f (xi,ui,x j).

The specification of fGk relies on the sectional information
gk

C(i),• of Ai. Concerning this coupling structure we observe
that from the point of Ai, all individuals residing in clusterCl

are symmetric and their average generates an overall impact
of that cluster. Subsequently, all spatially distributed clusters
form a weighed average according to gk defined on the finite
graph Gk. Denote

f̃Gk(xi,ui,g
k
C(i)) = f0(xi,ui)+ fGk(xi,ui,g

k
C(i)).
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The state process of Ai is given by the stochastic differential
equation

dxi(t) = f̃Gk(xi,ui,g
k
C(i))dt +σdwi, (6)

where the initial state is xi(0).
Without justification at this point, we introduce the fol-

lowing expression for the limit as the number of nodes of
the graph Gk and each subpopulation located at each of its
nodes tend to infinity:

f [xα ,uα ,µG;gα ] :=
∫ 1

0

∫

Rn
f (xα ,uα ,z)g(α,β )µβ (dz)dβ ,

which gives the complete local graphon dynamics via

f̃ [xα ,uα ,µG;gα ] := f0(xα ,uα)+ f [xα ,uα ,µG;gα ]. (7)

Due to the integration with respect to β , the dependence of
f̃ on g is through the section gα .
Finally, parallel to the standard MFG case, the stochastic

differential equation

[MV-SDE](α) dxα = f̃ [xα ,uα ,µG;gα ]dt +σdwt ,

0≤ t ≤ T, α ∈ [0,1],
(8)

corresponds in the graphon case to the standard controlled
MV equation (4).
Analogously, in the Graphon Mean Field case, we define

the coupled cost for Ai in the cluster C(i) to be

LGk(xi,ui,g
k
C(i)) =

1
Mk

Mk

∑
l=1

gk
C(i)Cl

1
|Cl |

∑
j∈Cl

L(xi,ui,x j).

Define L̃Gk(xi,ui,gk
C(i)) = L0(xi,ui) + LGk(xi,ui,gk

C(i)). The
cost of the agent is given in the form

Ji = E
∫ T

0
L̃Gk(xi,ui,g

k
C(i))dt. (9)

Denote

L[xα ,uα ,µG;gα ] =
∫ 1

0

∫

Rn
L(xα ,uα ,z)g(α,β )µβ (dz)dβ

and

L̃[xα ,uα ,µG;gα ] = L0(xα ,uα)+L[xα ,uα ,µG;gα ].

In the infinite population graphon case, the individual agent
α has the cost function given by

Jα(uα ,µG) = E
∫ T

0
L̃[xα(t),uα(t),µG;gα ]dt. (10)

B. The Graphon MFG Model and Its Equations

In this section the standard MFG equations (see e.g. [31],
[13]) will be generalized so that they subsume the standard
(implicitly uniform totally connected) dense network case
and cover the fully general graphon limit network case.
Specifically, agent Ai in a population of N agents will
be located at the lth node in an Mk node network and
in the infinite population graphon limit that node will be
taken to map to α ∈ [0,1]. It is important to note here that
although the network is assumed dense it is not assumed
to be uniformly totally connected; indeed, the connection

structure of the infinite network is represented precisely by
its graphon G = {g(α,β ),0≤ α,β ≤ 1}.
The generalized Graphon MFG scheme below on [0,T ]

is given by the linked equations for (i) the value function
Vα for a generic agent’s stochastic control problem when all
other agents’ control laws are fixed and generating the given
local mean field µα and the graphon local mean field µβ ,
(ii) the FPK for the MV-SDE for the local mean field of the
generic agent, and (iii) the specification of the best response
feedback law.
The key feature of the generalized graphon MFG construc-

tion beyond the standard MFG scheme is that at any agent in
a dense network the averaged dynamics (2) and cost function
(3) decompose into averages of neighbouring subpopulations
distributed on the network edges incident upon that agent’s
node plus a standard local differential dynamics. In the limit,
the summed subpopulation averages are given by an integral
over the local mean field measures of the neighbouring
agents. For notational simplicity, we present the graphon
MFG framework with scalar individual states and controls,
i.e., n=m= r = 1. Its extension to the vector case is evident.
Specifically, (suppressing the time index on the measures for
simplicity of notation) we have the Graphon Mean Field
Game (GMFG) equations:

[HJB](α) −
∂Vα(t,x)

∂ t
= inf

u∈U

{
f̃ [x,u,µG;gα ]

∂Vα(t,x)
∂x

+ L̃[x,u,µG;gα ]

}
+

σ2

2
∂ 2Vα(t,x)

∂x2
, (11)

Vα(T,x) = 0, (t,x) ∈ [0,T ]×R, α ∈ [0,1],

[FPK](α)
∂ pα(t,x)

∂ t
=−

∂{ f̃ [x,u0,µG;gα ]pα(t,x)}
∂x

+
σ2

2
∂ 2pα(t,x)

∂x2
, (12)

[BR](α) u0(xα ,µG;gα) =: ϕ(t,xα |µG;gα)

Here the densities pα(t,x) of the measures µα ≡ µα(t) are
assumed to exist, and where, to complete the specification
of the GMFG equations, we define the following terms: the
graphon local mean field µα and the corresponding set or
ensemble of all the local mean fields µG = {µβ ,0≤ β ≤ 1},
the local dynamics f0(xα ,uα), the network local dynamics
f (xα ,uα ,xβ ), and the graphon averaged local dynamics
f [xα ,uα ,µG;gα ] of the α indexed system and the graphon
section function gα = {g(α,β );0≤ β ≤ 1}.
In a similar manner, L̃ is defined based on two functions

L0(xα ,uα), L(xα ,uα ,xβ ) and gα . Note that in (11) and (12),
µG depends on time t and may be written as µG(t).
This completes the GMFG specification.
We notice that we retrieve the simplest standard MFG

framework, where the agents’ dynamics and costs are uni-
form, and where the network is totally connected with
uniform link weights, by setting {g(α,β ) = 1,0≤α,β ≤ 1}.
Then at each node (by uniformity) the local MKV state
distributions may be taken to be equal to that at a nominal
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node α , in other words µβ (dxβ ) = µα(dxβ ) for all β . In
that case, at the instant t, by (7), f̃ [x,u,µG(t);gα ] takes the
standard MKV dynamics form f [x,u,µα(t)], and the local
and graphon local measures are equal: µα(t) =: µ(t), for all
α. Evidently this system wide mean field state distribution is
given by the standard form of equation (12) (see [31], [13]).
It is to be noted that the GMFG best response control of

each agent generalizes the fundamental property of a solution
to the MFG equations in the standard case where for a
generic agent the feedback control (BR) generates a Nash
equilibrium with the best response strategy depending only
on the agent’s state, xα , and the standard mean field, namely
the generic agent’s state distribution µ(t).
Finally we note that the standard case of controlled dif-

fusion processes is simply obtained by setting {g(α,β ) =
0;0 ≤ α,β ≤ 1}, which totally disconnects the network
and results simply in f̃ [x,u,µG(t);gα ] = f0(x,u), and
L̃[x,u,µG(t);gα ] = L0(x,u).
In order to analyze the solvability of the GMFG equa-

tions, we need to restrict µG(·) to a certain class. We say
{µG(t),0≤ t ≤ T} is from the admissible set M[0,T ] if
M1) for each fixed t,

∫
B µβ (t,dy) is a Lebesgue measurable

function of β , where B is a Lebesgue measurable set;
M2) there exists η ∈ (0,1] such that for any bounded and

Lipschitz continuous function φ on R,

sup
β∈[0,1]

|

∫

R

φ(y)µβ (t1,dy)−
∫

R

φ(y)µβ (t2,dy)| ≤Ch|t1− t2|
η

where Ch may be selected to depend only on the Lipschitz
constant Lip(φ) for φ .

Remark 1: Condition M1) ensures the integration with
respect to dβ in (7) is well defined. By condition M2), the
drift term in the HJB equation has a certain time continuity,
which facilitates the existence analysis of the best response.
A collection of measures on some measurable space which

are indexed by the vertex set [0,1] is called a measure en-
semble. Thus, for each fixed t, µG(t) is a measure ensemble.

C. Assumptions for the Existence Analysis

To make the paper more self-contained and easier to read,
we summarize the existence analysis developed in [29].
We introduce the following assumptions:
(H1) U is a compact set.
(H2) f (x,u,y) and L(x,u,y) ( f0(x,u) and L0(x,u), resp.)

are continuous and bounded functions on R×U ×R (R×U ,
resp.), and are Lipschitz continuous in (x,y) (in x, resp.)
uniformly with respect to u.
(H3) For f0, f and L0,L, their first and second derivatives

with respect to x are all uniformly continuous and bounded
in R×U ×R (or R×U).
(H4) f (x,u,y) ( f0(x,u), resp.) is Lipschitz continuous in

u, uniformly with respect to (x,y) (to x, resp.).
(H5) For any q∈R, α ∈ [0,1] and any probability measure

ensemble µG satisfying M1), the set

S(x,q) = argmin
u
{q( f̃ [x,u,µG;gα ])+ L̃[x,u,µG;gα ]} (13)

is a singleton, and the resulting u as a function of (x,q), is
Lipschitz continuous in (x,q), uniformly with respect to µG

and gα .
Although the GMFG equation system only involves

{µG(t),0 ≤ t ≤ T}, which may be viewed as a collection
of marginals at different vertices, it is necessary to develop
the existence analysis in the underlying probability spaces
(see related discussions in [7, p.240]).
We begin by introducing some analytic preliminaries. For

the space CT = C([0,T ],R), we specify a σ -algebra FT

induced by all cylindrical sets of the form {x(·)∈CT : x(ti)∈
Bi,1≤ i ≤ l for some l}, where Bi is a Borel set. Let MT de-
note the space of all probability measures on (CT ,FT ). The
canonical process X is defined by Xt(ω) =ωt for ω ∈CT . On
CT , we introduce the metric ρ(x,y) = supt |x(t)− y(t)| ∧ 1.
Then (CT ,ρ) is a complete metric space. Based on ρ , we
introduce the Wasserstein metric on MT . For m1,m2 ∈ MT ,
denote

DT (m1,m2) =

inf
m

∫

CT×CT

(sup
s≤T

|Xs(ω1)−Xs(ω2)|∧1)dm(ω1,ω2),

where m is called a coupling as a probability measure on
(CT ,FT )× (CT ,FT ) with the first and second marginals as
m1 and m2. Then (MT ,DT ) is a complete metric space [32].
We introduce the following product of probability measure

spaces ∏α∈[0,1](CT ,FT ,mα), where each individual space is
interpreted as the path space of the agent at vertex α with a
corresponding probability measure mα . Denote the product
of spaces of probability measures MT,G = ∏α∈[0,1] MT . An
element in MT,G is a measure ensemble. Given a measure
ensemble mG, the projection operator Projα picks up its
component associated with α ∈ [0,1].
For two measure ensembles mG := (mα)α∈[0,1]

and m̄G := (m̄α)α∈[0,1] in MT,G, define d(mG, m̄G) =
supα∈[0,1] DT (mα , m̄α). Then (MT,G,d) is a complete metric
space [29].
Given the probability measure mα , we determine the t-

marginal as follows: µα(t,B) = mα({x(·) ∈ CT : x(t) ∈ B})
for a Borel set B ⊂ R, which will simply be denoted by
µα(t). Consider mG ∈ MT,G and denote the time t marginal
on a measure ensemble by the following rule

µG(t) := (µα(t))α∈[0,1] =Marjt(mG). (14)

For a given t, this can be interpreted as a measure valued
function defined on the vertex set [0,1].
We introduce the sensitivity condition (see [29] for de-

tails):

sup
t,x,α

|φα(t,x|µG)− φ̄α(t,x|µ̄G)| ≤ c1DT (mG, m̄G). (15)

The set of control laws {φα(t,x|µG(·)),α ∈ [0,1]} (resp.,
{φ̄α(t,x|µ̄G(·)),α ∈ [0,1]}) is determined by use of µG (resp.,
µ̄G) in the optimal control problem (8) and (10) with the
graphon section gα . This is a generalization from the finite
class model in [7] where an illustration via a linear model
is presented.
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As in [7, Lemma 9], we can show at each iteration to
generate the individual process from the control law,

DT (m
new
α , m̄newα )≤ c2 sup

t,x
|φα(t,x|µG(·))− φ̄α(t,x|µ̄G(·))|

for some constant c2 not depending on α . Here mnewα is
the probability measure on the path space of the player
at α vertex when all players apply the set of strategies
{φα(t,x|µG(·)),α ∈ [0,1]}. Similarly, m̄newα corresponds to
{φ̄α(t,x|µ̄G(·)),α ∈ [0,1]}.

D. Existence Theorem

We state the main result on the existence and uniqueness
of solutions to the GMFG equation system. We introduce a
contraction condition:
(H6) c1c2 < 1.
Theorem 1: [29] Under (H1)-(H6), there exists a unique

solution to the GMFG equations, which (i) gives the feed-
back control best response (BR) strategy ϕ(t,xα |µG;gα)
depending only upon the agent’s state and the graphon local
mean fields (i.e. (xα ,µG;gα)), and (ii) generates a Nash
equilibrium.

Remark 2: By SDE estimates, one can obtain refined
bound information on c2. When the network coupling effect
is weak, a small value for c2 can be obtained.

Remark 3: For linear models, a verification of the contrac-
tion condition can be done under certain model parameters,
as in [7].

IV. THE PERFORMANCE ANALYSIS

In the MFG case it is shown [7], [13] that the joint
strategy {uo

i (t) = ϕi(t,xi(t)|µt),1≤ i ≤ N} yields an ε-Nash
equilibrium for all ε , i.e. for all ε > 0, there exists N(ε) such
that for all N ≥ N(ε)

JN
i (u

◦
i ,u

◦
−i)− ε ≤ inf

ui∈Ui
JN

i (ui,u
◦
−i)≤ JN

i (u
◦
i ,u

◦
−i). (16)

This form of approximate Nash equilibrium is in fact a
principal result of all the MFG work in the contributions
in the sequence [7], [13] to [33] and many other works in
the literature. That is to say the cost function of any agent in
a finite population can be reduced (i.e. improved) by at most
ε if it changes unilaterally from the infinite MFG population
feedback law while all other agents remain with the infinite
population based control strategies.
This basic ε-Nash equilibrium result in MFG theory and

its expected form in GMFG theory are not only theoretically
significant but are vital for the application of MFG derived
control laws since the solution of the MFG and GMFG equa-
tions is necessarily simpler than the effectively intractable
task of finding the solution to the game problems for the large
finite population systems. Indeed, this was one of the original
motives for the creation of MFG theory to tackle complexity.
Furthermore it is a basic feature of graphon systems control
theory [24].

A. The ε-Nash Equilibrium

For the graphon MFG analyzed in this paper there is a
double limit as stated by the following assumption.
(H7) We have Mk → ∞ and min1≤l≤Mk |Cl | → ∞ as k → ∞.
We introduce some further assumptions. (H8) below is a

continuity assumption on the graphon function g(α,β ).
(H8) For any bounded and measurable function h(β ), the

function
∫ 1
0 g(α,β )h(β )dβ is continuous in α ∈ [0,1].

(H9) The best response ϕ(t,x|µG;gα) as a bounded and
continuous function of (t,x) depends continuously on α ∈
[0,1] (by the norm of C([0,T ]×R;U)), where x stands for
the state of the α-agent.
(H10) All agents have i.i.d. initial states with distribution

µ0(dx) and E|xi(0)| ≤C0.
Remark 4: (H10) is a simplifying assumption to keep

further notation light. It may be generalized to α dependent
initial distributions.
(H11) We have

lim
k→∞

max
i

Mk

∑
j=1

∣∣∣
1

Mk
gk

Ci,C j
−

∫

β∈I j

gI∗i ,β dβ
∣∣∣= 0,

where I∗i is the midpoint of Ii ∈ {I1 · · · IMk} of length 1/Mk.
Remark 5: Assumption (H11) characterizes the approxi-

mation error between gk for the finite graph and the graphon
function g.
For the ε-Nash equilibrium analysis, we consider a se-

quence of games each defined on a finite graph Gk. Recall
that there is a total of N = ∑Mk

l=1 |Cl | players.
Suppose the cluster C(i) of agent Ai corresponds to

the subinterval I(i) ∈ {I1, · · · , IMk}. The agent Ai takes the
midpoint I∗(i) of the sub-interval I(i) and use the GMFG
equations to determine its control law

ûi = ϕ(t,xi|µG;gI∗(i)), 1≤ i ≤ N, (17)

which we simply write as ϕ = φ(t,xi,gI∗(i)). Denote the
resulting state process by x̂i, 1≤ i ≤ N. Recall that

fGk(x
N
i ,u

N
i ,g

k
C(i)) =

1
Mk

Mk

∑
l=1

gk
C(i)Cl

1
|Cl |

∑
j∈Cl

f (xN
i ,u

N
i ,x

N
j ),

where we add the superscript N to indicate the population
size. So the closed-loop state processes are given by

dx̂N
i = f0(x̂

N
i ,φ(t, x̂N

i ,gI∗(i)))dt

+ fGk(x̂
N
i ,φ(t, x̂N

i ,gI∗(i)),g
k
C(i))dt +σdwi, (18)

where 1≤ i ≤ N and x̂N
i (0) = xN

i (0). Note that gk
C(i) appears

in the second term as determined by the finite population
system dynamics. We state the following main result.

Theorem 2: (ε-Nash equilibrium) Assume (H1)-(H11).
When the strategies (17) determined by the GMFG equations
are applied to a finite graph model Gk, the ε-Nash equilib-
rium property holds where ε → 0 as k → ∞, and where the
deviant player i uses centralized Lipschitz feedback strategies
ϕ(t,xi,x−i).

Proof: We first explain the basic idea of showing the ε-
Nash equilibrium property. Suppose all other players, except
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agent Ai, have employed the control strategies based on the
GMFG equation system. When Ai attempts to use a different
strategy, the performance can be measured according to a
limiting stochastic control problem where both the dynamics
and the cost are subject to a small perturbation caused by the
mean field approximation for the effect of all other players.
The proof is long and we only give a sketch due to space
limit. We split the proof into several steps.

Step 1. N independent processes for approximating
x̂N
1 , · · · , x̂

N
N . For the approximation of the system of N coupled

agents in (18), we introduce the following system

dyN
i = f0(y

N
i ,φ(t,yN

i ,gI∗(i)))dt+

1
Mk

Mk

∑
l=1

gk
C(i)Cl

1
|Cl |

∑
j∈Cl

∫

R

f (yN
i ,φ(t,yN

i ,gI∗(i)),z)myN
j
(dz)dt

+σdwi

= f0(y
N
i ,φ(t,yN

i ,gI∗(i)))dt

+
1

Mk

Mk

∑
l=1

gk
C(i)Cl

∫
f (yN

i ,φ(t,yN
i ,gI∗(i)),z)m

N
l (dz)dt

+σdwi, (19)

where 1 ≤ i ≤ N and yN
i (0) = xN

i (0). The second equality
holds since all processes in cluster Cl have the same distribu-
tion denoted by mN

l (dz) at time t. Each Brownian motion wi

is the same as in (18). It is clear that the processes yN
1 , · · · ,y

N
N

are independent. If two distinct indices i, j are in Cl , then
xN

i (0) and xN
j (0) are i.i.d. So yN

i (t) and yN
j (t) are i.i.d.

Lemma 3: The SDE system (19) has a unique solution
(yN
1 , · · · ,y

N
N).

Proof. The proof is similar to [7].
Denote ε1,N = supi,t E|x̂N

i (t)− yN
i (t)|.

Lemma 4: We have ε1,N → 0 as N → ∞
Step 2. N processes generated by the GMFG system. Now

we define the process

dy∞
i = f̃ [y∞

i ,φ(t,y∞
i ,gI∗(i)),µG;gI∗(i) ]dt +σdwi, (20)

where 1≤ i ≤ N and y∞
i (0) = xN

i (0). Here wi is the same as
in (18). This system is analogous to (8) and the control law
is selected by (17). Note that if j ∈C(i), y∞

i and y∞
j are two

processes of the same distribution.
Denote ε2,N = supi,t E|yN

i − y∞
i |.

Lemma 5: We have ε2,N → 0 as N → ∞.
Lemma 6: We have limN→∞ supt,i E|x̂N

i − y∞
i |= 0.

Proof. The lemma follows from Lemmas 4 and 5.
Step 3. One agent applying a different strategy. Suppose

xN
i is determined from uN

i not as the GMFG best response.
All other agents A j, j 6= i, have strategies determined by
(17). We introduce the new system:

dxN
i = f0(x

N
i ,u

N
i )dt + fGk(x

N
i ,u

N
i ,g

k
C(i))dt +σdwi, (21)

and for j 6= i,

dxN
j = f0(x

N
j ,φ(t,xN

j ,gI∗( j)))dt

+ fGk(x
N
j ,φ(t,xN

j ,gI∗( j)),g
k
C( j))dt +σdw j. (22)

We note that xN
j is affected by xN

i due to the coupling term
fGk . For this reason, xN

j differs from x̂N
j although the control

law of A j is the same. The key observation is that no matter
what ui is chosen, its perturbation to other agents is small.
Denote ε3,N = supui,t, j 6=i E|xN

j (t)− y∞
j (t)|.

Lemma 7: We have limN→∞ ε3,N = 0.
Proof. We first show E supui,t, j 6=i |x

N
j − x̂N

j | = 0 by basic
SDE estimates and next use Lemma 6.

Step 4. Consider control laws as in Step 3. Denote

δ f = sup
z∈R,u∈U

| fGk(z,u,g
k
C(i))− f [z,u,µG;gI∗(i)]|,

where fGk is random depending on (x
N
1 , · · · ,x

N
N) in (21)-(22).

By using the results in Step 3 and properties of f , we obtain
an upper bound of Eδ f , which tends to zero as N → ∞. A
similar error bound is obtained for

δl = sup
z∈R,u∈U

|LGk(z,u,g
k
C(i))−L[z,u,µG;gI∗(i)]|.

Step 5. Finally, to establish the ε-Nash equilibrium, the
cost of agent Ai within the N agents can be written using
the mean field limit dynamics and cost, both involving µG,
up to a small error term that can be bounded uniformly with
respect to ui as in Step 4, while agent Ai chooses its control
ui. It can further have little improvement due to the best
response property of ϕ(t,xi|µG,gI∗(i)).

V. THE LQ CASE

This section considers a special class of linear-quadratic-
Gaussian (LQG) GMFG models. Consider the graph Gk with
vertices Vk = {1, · · · ,Mk} and graph adjacency matrix gk =
[gk

jl ]. For agent Ai in subpopulation cluster Cq situated in
node q, let the graph averaged mean value of the system
state at node q be denoted by zi, where

zi =
1

|Mk|
∑

l∈Vk

gk
ql
1
|Cl |

∑
j∈Cl

x j, xi, zi ∈ R
n.

The dynamics of Ai are given by the linear system

dxi = (Axi +Dzi +Bui)dt +Σdwi, 1≤ i ≤ N,

where ui ∈ R
m is the control input, wi ∈ R

r is a standard
Wiener process, and A,B,D,Σ are conformally dimensioned
matrices.
The individual agent’s cost function takes the form

Ji(ui,νi) = E
∫ T

0

[
(xi −νi)

T Q(xi −νi)+uT
i Rui

]
dt

+E
[
(xi(T )−νi(T ))

T QT (xi(T )−νi(T ))
]
, 1≤ i ≤ N,

where Q, QT ≥ 0, R > 0, and νi = γ(zi +η) is the process
tracked by Ai. Here η ∈ R

n and γ ∈ R.
In the above LQG-GMFG system, the agents are coupled

via their dynamics and cost functions over a finite bidirec-
tional graph of clusters. Furthermore, the tracked process νi

is stochastic since it depends on other agents’ states.

291



In the infinite population and graphon limit case, the mean
field coupling at α-agent (i.e., an agent situated at the α-
vertex in [0,1]) is given by

zα =
∫

[0,1]
[g(α,β )

∫

Rn
xµβ (dx)]dβ , α,β ∈ [0,1].

The individual agent’s dynamics are given by

dxα = (Axα +Dzα +Buα)dt +Σdwα , α ∈ [0,1].

The individual agent’s cost function is

Jα(uα ,να) = E
∫ T

0

[
(xα −να)

T Q(xα −να)+uT
α Ruα

]
dt

+E
[
(xα(T )−να(T ))

T QT (xα(T )−να(T ))
]
,

where να = γ(zα +η).
Denote the Riccati equation

− Π̇t = AT Πt +ΠtA−ΠtBR−1BT Πt +Q,

− ṡα(t) =
(
A−BR−1BT Πt

)T
sα(t)+ΠtDzα(t)−Qνα(t),

where ΠT = QT and sα(T ) = −QT να(T ). The optimal
tracking control (as the best response) for an α-agent is given
by

uα(t) =−R−1BT [Πtxα(t)+ sα(t)].

Here the graphon local mean field and tracked process from
cost coupling are

zα =
∫

[0,1]
g(α,β )x̄β dβ , να = γ(zα +η), α ∈ [0,1],

where x̄β =
∫
Rn xµβ (dx). The mean state process of xα is

˙̄xα = (A−BR−1BT Πt)x̄α +Dzα −BR−1BT sα , α ∈ [0,1].

As an example for illustration, we assume the graphon
local mean field at α-agent arises from an underlying uniform
attachment graphon, and consequently

zα =
∫

[0,1]

[
(1−max(α,β ))

∫

Rn
xµβ (dx)

]
dβ ,

where α,β ∈ [0,1].

VI. CONCLUSION

For future work, it is of great interest to develop compu-
tational techniques for GMFG problems.
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