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Abstract— This paper considers a social opinion model with
noisy information when one agent obtains the opinion of
another. Stochastic approximation with bounded confidence is
introduced to update the opinions. The asymptotic behavior of
the stochastic algorithm is intimately related to a deterministic
vector field. We show that the presence of noise can cause a
defragmentation of the state space. This in turn can generate
more orderly collective behavior, which is very different from
noiseless models which have the well known fragmentation
property during the evolution of the individual opinions.

I. INTRODUCTION

The studies on social opinion formation have attracted
considerable interest of researchers in different areas in-
cluding social science, economics, statistical physics, and
systems and control [1], [4], [9], [10], [18], [16]. A com-
prehensive survey up to 2009 is available in [5]. Under the
Hegselmann-Krause modeling [10], [16], agents simultane-
ously update their opinions by using opinions of others which
are within a confidence interval. A slightly different rule was
proposed in [9] where at each step a pair of agents is ran-
domly selected to perform update with bounded confidence.
A well known phenomenon in these bounded confidence
based models is the so-called fragmentation effect. When
the agents have random initial states, very often the agents
form different clusters where members in the same cluster
converge to the same limit and agents of different clusters
will remain dissent. This implies after some time, agents in
different clusters cease to have effective opinion exchange.
Some lower bound estimates of the inter-cluster distances in
the steady state are developed in [4]. The work [19] used
shrinking confidence intervals and analyzed the formation
and detection of communities.

In the past research, some attention has been given to
noisy opinion dynamics. The early work [11] applied additive
noise to the learning rule [11]. The role of noise for more
realistic modeling is also discussed in [5, pp. 610-611]. By
introducing free will, an agent has positive probabilities to
have a jump in its opinion according to a certain distribution
or perform an opinion learning rule using information from
others [3], [20].

This paper introduces a new stochastic noisy modeling
of social opinion dynamics. The natural motivation is to
consider the introduction of inaccuracies when the com-
munication of opinions takes place. Several scenarios may
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contribute to noisy information. The first is due to indirect
communication. When agent i obtains the opinion of agent
j by a third party such as another agent, a TV news report,
or a newspaper article, etc., some inaccuracy or distortion
may occur when the opinion of agent j is conveyed. The
second scenario involves consciously introducing ambiguity
by the agent who is providing opinion. For example, when a
sensitive issue is discussed, a person may do so just to avoid
controversy or to leave some room for future clarification.
Another scenario is related to biased modification. An agent
may say something different from his (or her) genuine
thought to some extent, and has the tendency of showing a
milder position. For example, when asked to publicly speak
on a sensitive issue, a candidate of an electoral campaign
having an opinion of strong support (or objection) may
choose to express a softer version of his opinion.

Our modeling framework is significantly different from
[3], [11], [20] since our focus is on unreliability of the
opinion communication among the agents. Owning to this
unreliability, each agent needs to adaptively adjust its opinion
update rule for the purpose of cautious learning. This distinc-
tive feature makes our approach different from the existing
research [3], [11], [20] where the algorithms have a certain
time homogeneity. Our algorithm will incorporate bounded
confidence into stochastic approximation. It turns out that the
algorithm has inherent nonlinearity. Our main contribution is
the determination of the structure of the equilibrium set of
the associated nonlinear vector field. For the application of
stochastic approximation to consensus problems, the reader
is referred to [2], [12], [13], [14], [15], [17], [21].

The paper is organized as follows. Section II describes the
social opinion model with noisy information acquisition and
bounded confidence, which leads to a framework of nonlinear
stochastic approximation. The main results are presented in
Section III in terms of the equilibrium set of the vector field
governing the stochastic approximation algorithm. Section
IV sketches the proof of Theorem 4. Simulations are illus-
trated in Section V. Section VI concludes the paper. The
analysis of the equilibrium set of Section IV relies on some
key results of graph decomposition which are provided in
Appendix A and are interesting in their own right.

II. THE NETWORK MODEL AND OPINION DYNAMICS

We introduce some standard preliminary on graph mod-
eling of the network topology. A directed graph (digraph)
G = (N ,E ) consists of a set of nodes N = {1, . . . ,n} and
a set of directed edges E . A directed edge (simply called
an edge) is denoted by an ordered pair (i, j) ∈ N ×N ,
where i ̸= j. A directed path (from node i1 to node il) in



G consists of a sequence of nodes i1, . . . , il , l ≥ 2, such that
(ik, ik+1) ∈ E . The digraph G is strongly connected if from
any node to any other node, there exists a directed path. A
directed tree is a digraph where each node i, except the root,
has exactly one parent node j so that ( j, i) ∈ G. The digraph
G is said to contain a spanning tree if there exists a directed
tree Gtr =(N ,Etr) such that Etr ⊂ E . For two disjoint subsets
S1 and S2 of N , if there exist i1 ∈ S1 and i2 ∈ S2 such that
(i1, i2) ∈ E , we say S2 is reachable from S1 by one hop. We
call i1 and i2 the exit and entry nodes, respectively. A node
without incoming edges is called a source. A node without
out-going edges is called a sink.

A. Opinion Update with Bounded Confidence

The social opinion network is modeled by G, where each
agent is identified as a node in G. The two names agent and
node will be used interchangeably. The digraph G determines
the communication of information among the agents. If
( j, i) ∈ E , agent i receives information from agent j which
is called a neighbor of agent i. The neighbor set of agent i
is denoted by Ni = { j|( j, i) ∈ E }.

The opinion of agent i at time t is represented by a real
number xi

t , and is also called its state. Each agent knows its
own state exactly. The opinion exchange between two agents
is noisy and modeled by

yi j
t = x j

t +wi j
t , j ∈ Ni, (1)

which is received by agent i from agent j.
For agent i, let ri > 0 be a fixed number to be called its

confidence threshold. For its opinion update, agent i needs
to deal with two cases.

Case 1): |yi j
t −xi

t | ≤ ri. We say yi j
t is within the confidence

range of agent i, and so it is accepted. In this case, agent j
is called a valid neighbor of agent i.

Case 2): |yi j
t − xi

t |> ri. Then yi j
t is not trustworthy and so

ignored by agent i.
Define the valid neighbor set of agent i by

Nit = { j| j ∈ Ni, |yi j
t − xi

t | ≤ ri},

which depends on xi
t and noisy opinions yi j

t , j ∈Ni, and the
threshold parameter ri.

The opinions evolve according to the following heuristic
rules. Each agent takes information based on the valid
neighbor set. Next, it performs cautious learning since the
obtained information is noise corrupted. We propose the state
update rule

xi
t+1 =

(
1−at ∑

j∈Nit

bi j

)
xi

t +at ∑
j∈Nit

bi jy
i j
t , (2)

where at is the step size at time t, and bi j is a positive number
to indicate the relative importance of information from agent
j. The step size will decrease to zero. If an agent does not
have any neighbor, its opinion remains a constant and it is
called a stubborn agent [1].

The learning rule differs from most existing algorithms [4],
[10], [16], [19] on social opinion dynamics by the cautious

learning behavior of the agents which is reflected by the
decreasing step size. This algorithm shares some similarity
to consensus algorithms with measurement noise [12], [13],
[14], which have linear dynamics. The early works [7], [6]
used decreasing step sizes in noiseless consensus problems
to model hardening positions.

We introduce the following assumptions.
(A1) at > 0 for all t, ∑∞

t=0 at = ∞, ∑∞
t=0 a2

t < ∞. �
(A2) For each (i, j) ∈ E , the noises {wi j,wi j

t , t ≥ 0} are
i.i.d., and have a probability density function (p.d.f.) fwi j(z),
which has support equal to R, i.e., fwi j(z)> 0 for any z. �

For later notational convenience, we introduce wi j as a fic-
titious random variable. We use (A1) only in the simulations.

B. A Perspective of Nonlinear Stochastic Approximation

The main objective of this paper is to study the dynamic
properties of the opinion update algorithm and examine the
impact of the noise. We write (2) in the equivalent form

xi
t+1 = xi

t +at ∑
j∈Nit

bi j(x
j
t +wi j

t − xi
t).

Denote Y i
t = ∑ j∈Nit bi j(x

j
t +wi j

t −xi
t), which is the correcting

term in the adjustment of xi
t . Denote the vector of the n

individual states
xt = (x1

t , . . . ,x
n
t )

T .

For wi j, denote the truncated moment:

Mi j(z,ri) =
∫ ri

−ri

u fwi j(u− z)du.

To obtain information on the tendency of the state adjust-
ment, we define the drift function of agent i as

Fi(x1, . . .xn) = E
[
Y i

t

∣∣∣xt = x
]

= ∑
j∈Ni

bi j

∫ ri

−ri

u fwi j(u− (x j − xi))du

= ∑
j∈Ni

bi jMi j(x j − xi,ri).

Example 1: If wi j has the normal distribution N(0,σ2),
σ > 0, we have

Mi j(x j − xi,ri) =
1√

2πσ

∫ ri

−ri

uexp
{
− [u− (x j − xi)]2

2σ2

}
du.

�
Define

W i
t+1 = Y i

t −E
[
Y i

t |xt
]
, Wt = (W 1

t , . . . ,W
n

t )
T ,

F = (F1, . . . ,Fn)
T ,

where F determines a vector field in Rn. We have the relation

xi
t+1 = xi

t +atFi(xt)+atW i
t+1, (3)

which has the vector form

xt+1 = xt +atF(xt)+atWt+1,

where Wt+1 acts as an additive noise vector with zero
mean. The study of the original opinion update algorithm



(2) reduces to the investigation of the nonlinear stochastic
approximation algorithm. The properties of the function F
will play a central role. If the vector field behaves sufficiently
well, the algorithm is expected to converge to a point which
is an equilibrium of F (i.e., F equals zero at that point). The
focus of this paper is the analysis of the function F .

By elementary estimates it can be shown that Mi j(z,ri)
is a continuous function of z on (−∞,∞). We introduce the
following assumption for the noise.

(A3) For each (i, j) ∈ E , (i) Mi j(z,ri) > 0 for z > 0; (ii)
Mi j(z,ri)< 0 for z < 0; (iii) Mi j(0,ri) = 0. �

The purpose of introducing (A3) is to enable the opinion
adjustment rule to learn in the “right” direction. We give a
sufficient condition to ensure (A3).

Proposition 1: Suppose (a) the p.d.f. fwi j(z) is strictly
increases on (−∞,0), and strictly decreases on (0,∞) (b)
fwi j(z) is an even function on some interval (−r0,r0), r0 > 0.
Then (A3) is satisfied for all ri ∈ (0,r0].

Proof: Let ri ∈ (0,r0] be fixed. If z ∈ [ri,∞), clearly

Mi j(z,ri) =
∫ ri−z

−ri−z
(u+ z) fwi j(u)du

=
∫ −z

−ri−z
(u+ z) fwi j(u)du+

∫ ri−z

−z
(u+ z) fwi j(u)du

>
∫ −z

−ri−z
(u+ z) fwi j(−z)du+

∫ ri−z

−z
(u+ z) fwi j(−z)du = 0.

Now, fix any z ∈ (0,ri). We have

Mi j(z,ri) =
∫ 0

−ri

u fwi j(u− z)du+
∫ ri

0
u fwi j(u− z)du (4)

=
∫ ri

0
u[ fwi j(u− z)− fwi j(−u− z)]du. (5)

If u ∈ (0,z), fwi j(u− z)− fwi j(−u− z)> 0. If u ∈ (z,ri),

fwi j(u− z) = fwi j(−u+ z)> fwi j(−u− z). (6)

Therefore Mi j(z,ri) > 0 for all z ∈ (0,ri). This verifies (i).
Condition (ii) is verified similarly. Finally, (iii) follows since
fwi j is even on (−r0,r0). �

Remark 1: (A3) holds for the normal distribution
N(0,σ2), σ > 0, and a symmetric exponential distribution. �

III. MAIN RESULTS

Proposition 2: {Wt , t ≥ 0} is a sequence of martingale
differences with respect to the increasing sequence of σ -
algebras Ft = σ(x0, . . . ,xt). �

Definition 3: A point x ∈ Rn is called an equilibrium of
F if F(x) = 0. The equilibrium set S(F) of F consists of all
its equilibrium points. �

We have the following result on the equilibrium set. Its
proof is given in Section IV.

Theorem 4: If G contains a spanning tree without a leader,
then the equilibrium set S(F) = span{1n}. �

If G contains a spanning tree with a leader iL, then iL is
a stubborn agent. Let its state be fixed as xiL

0 .
Corollary 5: If G contains a spanning tree with a leader

xiL
0 , then the equilibrium set is the singleton S(F) = {xiL

0 1n}.
Proof: We may adapt the proof of Theorem 4 to prove

the corollary. �

IV. PROOF OF THEOREM 4
We need to make some technical preparation. The next

lemma is obvious and we omit the proof.
Lemma 6: We have span{1n} ⊂ S(F). �
Lemma 7: If G is strongly connected, S(F) = span{1n}.

Proof: See Appendix B. �
For the set of nodes N in G, we decompose it into

strongly connected components (SCCs) C0, . . . ,CK , K ≥ 0.
There may exist an edge pointing from one SCC to another.

Since G contains a spanning tree, there exists a node i0
which can reach any other node by a directed path. Without
loss of generality, assume i0 ∈ C0. Let Gmg = (Nmg,Emg)
denote the meta-graph [8]. It has the set of nodes {v0, . . . ,vK}
corresponding to the SCCs C0, . . . ,CK in G.

If K = 0, G is strongly connected.
If K ≥ 1, we apply Theorem 14 to list the nodes

{v0, . . . ,vK} of the meta-graph in the form

{v0}, {v1,1, . . . ,v1,K1}, · · · , {vl,1, · · · ,vl,Kl}, (7)

where l is the greatest maximal depth in the meta-graph (see
Appendix A for its definition). We have 1+K1 + . . .+Kl =
1+K. Corresponding to (7), we list all associated SCCs of
G into the array:

C0,

C1,1, . . . ,C1,K1 ,

· · ·
Cl,1, . . . ,Cl,Kl .

For instance Ck, j corresponds to vk, j. Summarizing the above,
we have the following proposition by Theorem 14.

Proposition 8: Suppose G is leaderless and K ≥ 1. Then
(i) C0 contains at least 2 nodes. None of these nodes have

a neighbor outside C0.
(ii) For i∈Ck, j, k ≥ 1, each of its neighbors is from Ck, j or

sets in the upper levels of the array. For each j, there exists
i ∈Ck, j, which has at least one neighbor in ∪1≤m≤Kk−1Ck−1,m
(the union is interpreted as C0 if k = 1). �
A. Proof of Theorem 4.

Proof: By Lemma 6, it suffices to show S(F) ⊂
span{1n}. For the decomposition into SCCs, if K = 0, G
is strongly connected and the theorem reduces to Lemma 7.

Now suppose K ≥ 1, and x ∈ S(F).
Step 1. For G without a leader, C0 contains at least 2 nodes.

Denote them by i1, . . . , ik1 . None of them have a neighbor out-
side C0, so that (F i1(x1, . . . ,xn), . . . ,F ik1 (x1, . . . ,xn)) involves
only the variables (xi1 , . . . ,xik1 ). For instance,

F i1(x1, . . . ,xn) = ∑
j∈Ni1

bi1 j

∫ ri1

−ri1

u fwi1 , j(z− (x j − xi1))du,

where Ni1 ⊂ C0. Since C0 is strongly connected, this case
reduces to the scenario of Lemma 7 after replacing G by the
digraph (C0,E |C0), where E |C0 denotes the set of edges of
G which have the initial and terminal nodes in C0. Hence,
we conclude

xi1 = . . .= xik1 = ξ ,



where ξ denotes the common value of the k1 coordinates.
Step 2. Now we list all elements in C1,1 ∪ . . .∪C1,K1 as

ik1+1, ik1+2, . . . , ik2 , where k2 ≥ k1 +1. Denote

x̄ = max{xik1+1 , . . . ,xik2}, x = min{xik1+1 , . . . ,xik2}.

We show x̄ = x = ξ by contradiction. Assume x̄ > ξ and
x̄ = xis for some s satisfying k1 +1 ≤ s ≤ k2. So

0 = F is(x1, . . . ,xn) = ∑
j∈Nis

bis j

∫ ris

−ris

u fwis j(u− (x j − xis))du.

By Proposition 8-(ii), x j ≤ x̄. By Lemma 15,

x j = x̄, j ∈ Nis . (8)

Let C(i) be the SCC of G containing node i. If C(is) is not
a singleton, we show that xi′s = xis if i′s ∈C(is). Note node is
has at least one neighbor is,1 in C(is). By (8), that neighbor
should have xis,1 = x̄. Combining is and is,1 together, we find
another node, if there is such one remaining in C(is), such
that its state is also x̄. By induction, we conclude that all
nodes in C(is) have the same value x̄.

We may select node i′s ∈ C(is) such that there exists an
edge pointing to node i′s from C0 by Proposition 8-(ii).
Without introducing additional notation, we assume node
is already has this property. Suppose ik ∈ C0 and there is
an edge from ik to is. By using (8), we see that xik = x̄,
which contradicts with ξ < x̄. Thus, we conclude that x̄ ≤ ξ .
Similarly, we may show

x ≥ ξ .

Combining the two inequalities yields x̄ = x = ξ .
Step 3. By induction, we conclude

x1 = . . .= xn.

This completes the proof. �
V. SIMULATION EXAMPLES

The simulation examples are based on a complete graph
of 40 agents with ri ≡ 0.25.

The initial states xi
0, 1 ≤ i ≤ 40, are generated as i.i.d.

random variables uniformly distributed on [0,1]. Fig. 1 (top)
illustrates the Hegselmann-Krause model without noise. The
opinions converge into 3 clusters. Fig. 1 (bottom) shows
the convergence of the stochastic approximation algorithm
where at = 0.5(t+1)−0.55 and wi j has the normal distribution
N(0,0.22).

In the next example of stochastic approximation, the 40
agents are divided into two groups to have poor initial inter-
cluster connectivity. Cluster A with (x1, . . . ,x20) and B with
(x21, . . . ,x40) have their initial opinions distributed in a small
neighborhood of 0.6 and 1.5, respectively. The confidence
threshold 0.25 is much smaller than the approximate sepa-
ration distance 1.5−0.6 = 0.9 between the two clusters. We
see the convergence in Fig. 2 is extremely slow. However,
this is expectable. For example, when |x1

t − x26
t | = 0.9, the

probability for the 26th agent to become a valid neighbor of
the first agent is at the order of 10−7. Nevertheless, we still
observe convergence.
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Fig. 1. Top: the Hegselmann-Krause model; bottom: stochastic approxi-
mation with bounded confidence.

VI. CONCLUDING REMARKS

This paper addresses noisy information exchange in social
opinion systems. We exploit the noise enhanced connectivity
between the agents and adopt a framework of nonlinear
stochastic approximation for the opinion evolution. The
vector field underlying the algorithm is shown to have an
equilibrium set where each point is an agreement state. This
feature differs from other works where the state space can
fragment into several parts due to bounded confidence in the
opinion update. For future work, it is of interest to study the
sample path convergence of the opinion updating rule.

APPENDIX A: GRAPH DECOMPOSITION

Suppose G=(N ,E ) is a digraph. Let N be partitioned as
the disjoint union of S1, . . . ,SK where each set Sk is a strongly
connected component (SCC). The meta-graph of G is defined
as a digraph Gmg = (Nmg,Emg), where Nmg = {1, . . . ,K}
and (i, j) ∈ Emg if and only if S j is reachable from Si by
one hop. Therefore, the meta-graph is obtained by collapsing
each SCC into a single node.

Proposition 9: If G contains a spanning tree, then Gmg
has the following properties:

(i) it is a directed acyclic graph;
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Fig. 2. The initial opinions of the two clusters are around 0.6 and 1.5,
respectively.

(ii) it has exactly one source and at least one sink;
(iii) it contains a spanning tree.

Proof: By [8, pp. 100-101], Gmg is a directed acyclic
graph with at least one source and at least one sink. Assume
Gmg has two different sources s1 and s2. Let S1 and S2 be
the corresponding SCCs in G and so neither of them have
incoming edges. Since G contains a spanning tree, there
exists a node iR such it can reach any other node by a directed
path. We consider two cases: (i) If iR ∈ S1, it cannot reach S2
since there are no edges entering S2. (ii) If iR /∈ S1, it cannot
reach S1. The two cases lead to a contradiction. So there is
exactly one source.

Suppose the SCC Sk0 contains iR and corresponds to node
k0 in Gmg. Since iR is connected to any other node of G by
a directed path, k0 is connected to any other node of Gmg by
a directed path. Hence Gmg contains a spanning tree. In fact
in this case k0 is the unique source. �

The length of a directed path is the number of edges (al-
lowed to repeat if cycles appear) lying between the initial and
terminal nodes. Below it is always assumed that G contains
a spanning tree. We introduce the following definition.

Definition 10: For each node i ̸= iS in Gmg, the maximal
depth Md(i,Gmg) is the maximal length of all directed paths
from the source iS to i. �

We make the convention Md(iS,Gmg) = 0.
Proposition 11: For any node i ̸= iS in Gmg, 1 ≤

Md(i,Gmg)≤ |Nmg|−1.
Proof: Since the digraph Gmg contains a spanning tree

and is acyclic, there exists a directed path from iS to i and
the total number of such directed paths is finite. Moreover,
any directed path from iS to i has at most |Nmg|− 1 edges
since otherwise it would contain a cycle. �

Proposition 12: Denoting d1 = max j Md( j,Gmg), each
node with its maximal depth equal to d1 is a sink.

Proof: Suppose Md(i,Gmg) = d1 and i is not a sink.
We construct a directed path from iS to i and extend it
until a next node i′. This is feasible since i is not a sink.
Then Md(i′,Gmg) ≥ Md(i,Gmg) + 1 = d1 + 1, which is a

contradiction. �
Remark 2: Gmg may have sinks whose maximal depth is

less than d1. �
Below we describe a procedure to obtain a subgraph from

Gmg. To avoid triviality, we assume that Gmg contains at
least 2 nodes. We remove all nodes of Gmg which have
their maximal depth equal to d1 = max j Md( j,Gmg). By
Proposition 12, these nodes only have incoming edges. We
also remove all these incoming edges. Let the resulting
subgraph be denoted by G1

mg.
Proposition 13: Let d2 = max j Md( j,G1

mg). We have the
assertions.

(i) If i is in G1
mg, then Md(i,G1

mg) = Md(i,Gmg);
(ii) d2 = d1 −1;
(iii) G1

mg is still a digraph having the three properties in
Proposition 9.

Proof: (i) It is clear that for a node i in G1
mg, none of

its incoming edges are removed in the procedure when G1
mg

is constructed. The set of directed paths from iS to i is the
same no matter it is regarded as a node in G1

mg or Gmg.
(ii) First, we have d2 ≤ d1 − 1. Assume Md(i0,Gmg) =

d1. Then there exists an edge (i1, i0) of Gmg and there is a
directed path of length d1 from iS to i0 via i1. Then i1 is a
node of G1

mg since it must remain after the above removal
procedure. It is clear that Md(i1,G1

mg) = d1 − 1. Therefore,
d2 = d1 −1.

(iii) First, G1
mg is a directed acyclic graph with iS being

a source. Suppose i ̸= iS is in G1
mg. Since i is also in Gmg,

there is a directed path piS,i from iS to i. Note that piS,i does
not have any node which was removed in constructing G1

mg.
Therefore, piS,i is within G1

mg. So G1
mg contains a spanning

tree. By the proof of Proposition 9, we see G1
mg satisfies

Proposition 9(ii). �
By using Propositions 9 and 13 and applying the removal

procedure repeatedly, we establish the following decomposi-
tion theorem.

Theorem 14: For the digraph Gmg, its set of nodes can be
decomposed as a disjoint union of the following subsets:

S0 = {iS},
S1 = {i1, . . . , ik1},
S2 = {ik1+1, . . . , ik2},
· · ·
Sl−1 = {ikl−2+1, . . . , ikl−1},
Sl = {ikl−1+1, . . . , ikl},

(9)

where we have |Nmg|= ∑l
i=0 |Si| and

(i) all nodes in a subset Si have the same maximal depth
equal to i;

(ii) there exists no edge between any two nodes in the
same subset Si;

(iii) if (i1, i2) is an edge of Gmg, then there exists 0 ≤ k1 <
k2 ≤ l such that i1 ∈ Sk1 and i2 ∈ Sk2 ;

(iv) if i ∈ Sk, 1 ≤ k ≤ l, there exists a node i′ ∈ Sk−1 such
that (i′, i) is an edge of Gmg.

Proof: (i) When G1
mg is constructed, let the set of nodes

deleted from Gmg be denoted by Sl . Similarly, by Proposition



13-(iii), we may repeat this removal procedure by deleting
the set Sl−1 of nodes in G1

mg which have their maximal depth
equal to d2. This constructs the digraph G2

mg. Repeating this
for a finite number of steps, we obtain the sets Sl ,Sl−1 . . . ,S0,
and the digraphs G1

mg, . . . ,G
l
mg. Each of Gmg,G1

mg, . . . ,G
l−1
mg

has the three properties in Proposition 9. It is obvious that
all nodes in the same set Si share the same maximal depth,
and along the sequence Sl ,Sl−1, . . . ,S1, the maximal depth
decreases by one from one set to the next. Now we only
need to show that Md(i1,Gl

mg) = 1. It is clear that all nodes
in S1 appear as sinks in Gl−1

mg . Since S1 contains a spanning
tree, from iS to each node and in particular to i1, there exists
an edge. So Md(i1,Gl

mg) = 1.
(ii) For k = l, l−1, . . . ,2, each node in Sk is always deleted,

together with its incoming edges, as a sink of the current
digraph Gl−k

mg (some sinks may not qualify for deletion),
where we denote G0

mg = Gmg. For the previous steps there
is no chance to remove an edge between two nodes in Sk.
Hence (ii) follows.

(iii) By the above removal procedure, all edges are eventu-
ally deleted. Whenever an edge is being deleted, it points to
a node with a strictly greater maximal depth than its initial
node.

(iv) Consider i ∈ Sk. When i is removed from within Gl−k
mg ,

it appears as a sink. Its neighbor set within Gl−k
mg contains at

least one node i′ with maximal depth equal to k−1. Hence
i′ ∈ Sk−1. �

Remark 3: (iii) implies there is no back edge pointing to
a set Sk which was listed earlier. (iv) means there is always
a node from the immediate upper level in (9) connecting to
the given node; it is possible to have edges originating from
other upper levels. �

APPENDIX B

Lemma 15: Suppose λ j > 0 and for some α ,

β j ≥ α (resp., β j ≤ α), j = 1, . . . ,k. (10)

Then
k

∑
j=1

λ j

∫ r

−r
u fwi j(u− (β j −α))du ≥ 0 (resp., ≤ 0),

where the equality holds only if (10) becomes k equalities. �
Proof of Lemma 7. Let (x1, . . . ,xn) be an equilibrium

point. Then F i(x1, . . . ,xn) = 0 for i = 1, . . . ,n. Suppose

xi1 ≤ xi2 ≤ . . .≤ xin ,

where (i1, . . . , in) is a permutation of (1, . . . ,n). We have
F i1(x1, . . . ,xn) = 0 and so

0 = ∑
j∈Ni1

bi1 j

∫ ri1

−ri1

u fwi1 j(u− (x j − xi1))du,

which implies for each j ∈ Ni1 , x j = xi1 by Lemma 15. Fix
il ∈Ni1 , l ≥ 2. Therefore we have a sequence of equal values

xi1 = xi2 = . . .= xil . (11)

By the strong connectivity, there exists ik ∈ {i1, i2, . . . , il}
which has a neighbor in N \{i1, i2, . . . , il} whenever
{i1, i2, . . . , il} ̸= N . By the previous step, we obtain a
sequence

xi1 = xi2 = . . .= xil = xil+1 = . . .

which is longer than (11) by at least one. Repeating this
procedure, we conclude

xi1 = xi2 = . . .= xin .

Recalling Lemma 6, the lemma follows. �
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