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Abstract This paper considers mean field games in a multi-agent Markovdecision
process (MDP) framework. Each player has a continuum state and binary action,
and benefits from the improvement of the condition of the overall population. Based
on an infinite horizon discounted individual cost, we show existence of a stationary
equilibrium, and prove its uniqueness under a positive externality condition. We
further analyze comparative statics of the stationary equilibrium by quantitatively
determining the impact of the effort cost.

1 Introduction

Mean field game theory provides a powerful methodology for reducing complexity
in the analysis and design of strategies in large populationdynamic games [25, 30,
37]. Following ideas in statistical physics, it takes a continuum approach to specify
the aggregate impact of many individually insignificant players and solves a special
stochastic optimal control problem from the point of view ofa representative player.
By this methodology, one may construct a set of decentralized strategies for the
original large but finite population model and show itsε-Nash equilibrium property
[25, 26, 30]. A related solution notion in Markov decision models is the oblivious
equilibrium [55]. The readers are referred to [12, 16, 17, 18, 19] for an overview on
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mean field game theory and further references. For mean field type optimal control,
see [12, 56], but the analysis in these models only involves asingle decision maker.

Dynamic games within an MDP setting originated from the workof Shapley and
are called stochastic games [21, 50]. Their mean field game extension has been stud-
ied in the literature; see e.g. [3, 13, 46, 55]. Continuous time mean field games with
finite state space can be found in [22, 35]. Our previous work [27, 28] studied a
class of mean field games in a multi-agent Markov decision process (MDP) frame-
work. The players in [27] have continuum state spaces and binary action spaces,
and have coupling through their costs. The state of each player is used to model its
risk (or unfitness) level, which has random increase if no active control is taken.
Naturally, the one-stage cost of a player is an increasing function of its own state
apart from coupling with others. The motivation of this modeling framework comes
from applications including network security investment games and flue vaccination
games [34, 38, 40]; when the one-stage cost is an increasing function of the pop-
ulation average state, it reflects positive externalities.Markov decision processes
with binary action spaces also arise in control of queues andmachine replacement
problems [4, 10]. Binary choice models have formed a subjectof significant inter-
est [8, 15, 48, 49, 54]. Our game model has connection with anonymous sequential
games [33], which combine stochastic game modeling with a continuum of players.
In anonymous sequential games one determines the equilibrium as a joint state-
action distribution of the population and leaves the individual strategies unspecified
[33, Sec. 4], although there is an interpretation of randomized actions for players
sharing a given state.

For both anonymous games and MDP based mean field games, stationary solu-
tions with discount have been studied in the literature [3, 33]. These works give more
focus on fixed point analysis to prove the existence of a stationary distribution. This
approach does not address ergodic behavior of individuals or the population while
assuming the population starts from the steady-state distribution at the initial time.
Thus, there is a need to examine whether the individuals collectively have the ability
to move into that distribution at all when they have a generalinitial distribution. Our
ergodic analysis based approach will provide justificationof the stationary solution
regarding the population’s ability to settle down around the limiting distribution.

The previous work [27, 28] studied the finite horizon mean field game by show-
ing existence of a solution with threshold policies, and under an infinite horizon
discounted cost further proved there is at most one stationary equilibrium for which
existence was not established. A similar continuous time modeling is introduced in
[57], which addresses Poisson state jumps and impulse control. It should be noted
that except for linear-quadratic models [9, 26, 31, 39, 43],mean field games rarely
have closed-form solutions and often rely on heavy numerical computations. Within
this context, the consideration of structured solutions, such as threshold policies, is
of particular interest from the point of view of efficient computation and simple
implementation. Under such a policy, the individual statesevolve as regenerative
processes [6, 51].

By exploiting stochastic monotonicity, this paper adopts more general state tran-
sition assumptions than in [27, 28] and continues the analysis on the stationary equa-
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tion system. The first contribution of the present paper is the proof of the existence
of a stationary equilibrium. Our analysis depends on checking the continuous de-
pendence of the limiting state distribution on the threshold parameter in the best
response. The existence and uniqueness analysis in this paper has appeared in a
preliminary form in the conference paper [29].

A key parameter in our game model is the effort cost. Intuitively, this parameter
is a disincentive indicator of an individual for taking active efforts, and in turn will
further impact the mean field forming the ambient environment of that agent. This
suggests that we can study a family of mean field games parametrized by the effort
costs and compare their solution behaviors. We address thisin the setup of com-
parative statics, which have a long history in the economic literature [24, 42, 47]
and operations research [53] and provide the primary means to analyze the effect of
model parameter variations. For dynamic models, such as economic growth mod-
els, the analysis follows similar ideas and is sometimes called comparative dynamics
[5, 11, 45, 47] by comparing two dynamic equilibria. In control and optimization,
such studies are usually called sensitivity analysis [14, 20, 32]. For comparative
statics in large static games and mean field games, see [1, 2].Our analysis is accom-
plished by performing perturbation analysis around the equilibrium of the mean
field game.

The paper is organized as follows. Section 2 introduces the mean field stochastic
game. The best response is analyzed in Section 3. Section 4 proves existence and
uniqueness of stationary equilibria. Comparative staticsare analyzed in Section 5.
Section 6 concludes the paper.

2 The Markov Decision Process Model

2.1 Dynamics and Costs

The system consists ofN players denoted byAi, 1 ≤ i ≤ N. At time t ∈ Z+ =
{0,1,2, . . .}, the state ofAi is denoted byxi

t , and its action byai
t . For simplicity, we

consider a population of homogeneous (or symmetric) players. Each player has state
spaceS = [0,1] and action spaceA = {a0,a1}. A value ofS may be interpreted as
a risk or unfitness level. A player can either take inaction (as a0) or make an active
effort (asa1). For an intervalI , let B(I) denote the Borelσ -algebra ofI .

The state of each player evolves as a controlled Markov process, which is affected
only by its own action. Fort ≥ 0 andx∈ S, the state has a transition kernel specified
by

P(xi
t+1 ∈ B|xi

t = x,ai
t = a0) = Q0(B|x), (1)

P(xi
t+1 = 0|xi

t = x,ai
t = a1) = 1, (2)
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whereQ0(·|x) is a stochastic kernel defined forB∈ B(S) andQ0([x,1]|x) = 1. By
the structure ofQ0, the state of the player deteriorates if no active control istaken.
The vector process(x1

t , . . .x
N
t ) constitutes a controlled Markov process in higher

dimension with its transition kernel defining a product measure on(B(S))N for
given(x1

t , · · · ,x
N
t ,a

1
t , . . . ,a

N
t ).

Define the population average statex(N)
t = 1

N ∑N
i=1xi

t . The one stage cost ofAi is

c(xi
t ,x

(N)
t ,ai

t) = R(xi
t ,x

(N)
t )+ γ1{ai

t=a1}
,

whereγ > 0 andγ1{ai
t=a1}

is the effort cost. The functionR≥ 0 is defined onS×S

and models the risk-related cost. Letν i denote the strategy ofAi . We introduce the
infinite horizon discounted cost

Ji(x
1
0, . . . ,x

N
0 ,ν

1, . . . ,νN) = E
∞

∑
t=0

β tc(xi
t ,x

(N)
t ,ai

t), 1≤ i ≤ N. (3)

The standard methodology of mean field games may be applied byapproximating

{x(N)
t , t ≥ 0} by a deterministic sequence{zt , t ≥ 0} which depends on the initial

condition of the system. One may solve the limiting optimal control problem of
Ai and derive a dynamic programming equation for its value function denoted by
vi(t,x,(zk)

∞
k=0), whose dependence ont is due to the time-varying sequence{zt , t ≥

0}. Subsequently one derives another equation for the mean field {zt , t ≥ 0} by
averaging the individual states across the population. This approach, however, has
the drawback of heavy computational load.

2.2 Stationary Equilibrium

We are interested in a steady-state form of the solution of the mean field game
starting with{zt , t ≥ 0}. Such steady state equations provide information on the long
time behavior of the solution and are of interest in their ownright. They may also
be used for approximation purposes to compute strategies efficiently. We introduce
the system

v(x) = min
[

β
∫ 1

0
v(y)Q0(dy|x)+R(x,z), βv(0)+R(x,z)+ γ

]

, (4)

z=
∫ 1

0
xµ(dx), (5)

whereµ is a probability measure onS. We say(v,z,µ ,ai(·)) is astationary equilib-
rium to (4)-(5) if i) the feedback policyai(·), as a mapping fromS to {a0,a1}, is the
best response with respect toz in (4), ii) given an initial distribution ofxi

0, {xi
t , t ≥ 0}

under the policyai has its distribution converging (under a total variation norm or
only weakly) to the stationary distribution (or called limiting distribution)µ .
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We may interpretv as the value function of an MDP with cost̄Ji(xi
0,z,ν

i) =
E∑∞

t=0 β tc(xi
t ,z,a

i
t). An alternative way to interpret (4)-(5) is that the initialstate of

Ai has been sampled according to the “right” distributionµ , and thatz is obtained
by averaging an infinite number of such initial values by the law of large numbers
[52]. A similar solution notion is adopted in [2, 3] but ergodicity is not part of their
solution specification.

Let the probability measureµk be the distribution ofR-valued random vari-
able Zk, k = 1,2. We sayµ2 stochastically dominatesµ1, and denoteµ1 ≤st µ2,
if µ2((y,∞)) ≥ µ1((y,∞)) (or equivalently,P(Z2 > y) ≥ P(Z1 > y)) for all y. It is
well known [44] thatµ1 ≤st µ2 if and only if

∫

ψ(y)µ1(dy)≤
∫

ψ(y)µ2(dy) (6)

for all increasing functionψ (not necessarily strictly increasing) for which the two
integrals are finite. A stochastic kernelQ(B|x), 0≤ x≤ 1, B∈ B(S), is said to be
strictly stochastically increasing ifϕ(x) :=

∫

S ψ(y)Q(dy|x) is strictly increasing in
x∈ S for any strictly increasing functionψ : [0,1]→R for which the integral is nec-
essarily finite.Q(·|x) is said to be weakly continuous ifϕ is continuous whenever
ψ is continuous.

Let {Yt , t ≥ 0} be a Markov process with state space[0,1], transition kernel
Q0(·|x) and initial stateY0 = 0. So each of its trajectories is monotonically in-
creasing. Defineτθ

Q0
= inf{t|Yt ≥ θ} for θ ∈ (0,1). It is clear thatτθ1

Q0
≤ τθ2

Q0
for

0< θ1 < θ2 < 1.
The following assumptions are introduced.

(A1) {xi
0, i ≥ 1} are i.i.d. random variables taking values inS.

(A2) R(x,z) is a continuous function onS×S. For each fixedz, R(·,z) is strictly
increasing.

(A3) i) Q0(·|x) satisfiesQ0([x,1]|x) = 1 for anyx, and is strictly stochastically in-
creasing; ii)Q0(dy|x) is weakly continuous and has a positive probability density
q(y|x) for each fixedx< 1; iii) for any small 0< δ < 1, infxQ0([1−δ ,1]|x)> 0.

(A4) R(x, ·) is increasing for each fixedx.
(A5) limθ↑1Eτθ

Q0
= ∞.

(A3)-iii) will be used to ensure the uniform ergodicity of the controlled Markov
process. In fact, under (A3) we can showEτθ

Q0
< ∞. The following condition is a

special case of (A3).

(A3′) There exists a random variable such thatQ0(·|x) is equal to the law of
x+(x−1)ξ for some random variableξ with probability densityfξ (x)> 0, a.e.
x∈ S.

When (A3′) holds, we can verify (A5) by analyzing the stopping timeτξ =
inf{t|∏t

s=1 ξs ≤ 1− θ}, where{ξs,s≥ 1} is a sequence of i.i.d. random variables
with probability densityfξ . For existence analysis of the mean field game, (A5) will
be used to ensure continuity of the mean field when the threshold θ approaches 1.
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Proposition 1 The two conditions are equivalent:
i) µ1 ≤st µ2, andµ1 6= µ2;
ii)
∫

R
φ(y)µ1(dy)<

∫

R
φ(y)µ2(dy) for all strictly increasing functionφ for which

both integrals are finite.

Proof. Assume i) holds. By [44, Theorem 1.2.16], we have

φ(Z1)≤st φ(Z2), (7)

and soEφ(Z1) ≤ Eφ(Z2). Sinceµ1 6= µ2, there existsy0 such thatP(Z1 > y0) 6=
P(Z2 > y0). Taker such thatφ(y0) = r. Then

P(φ(Z1)> r) 6= P(φ(Z2)> r). (8)

If Eφ(Z1) = Eφ(Z2) were true, by (7) and [44, Theorem 1.2.9],φ(Z1) andφ(Z2)
would have the same distribution, which contradicts (8). WeconcludeEφ(Z1) <
Eφ(Z2), which is equivalent to ii).

Next we show ii) implies i). Letψ be any increasing function satisfying (6)
with two finite integrals. When ii) holds, we takeφε = ψ + εy

1+|y| , ε > 0. Then
∫

φε µ1(dy) <
∫

φε µ2(dy) holds for allε > 0. Lettingε → 0, then (6) follows and
µ1 ≤st µ2. It is clearµ1 6= µ2. ⊓⊔

3 Best Response

For this section we assume (A1)-(A3). We take any fixedz∈ [0,1] and consider (4)
as a separate equation, which is rewritten below:

v(x) = min
{

β
∫ 1

0
v(y)Q0(dy|x)+R(x,z), βv(0)+R(x,z)+ γ

}

. (9)

Herez is not required to satisfy (5). In relation to the mean field game, the resulting
optimal policy will be called the best response with respectto z. DenoteG(x) =
∫ 1

0 v(y)Q0(dy|x).

Lemma 1. i) Equation(9) has a unique solution v∈C([0,1],R).
ii) v is strictly increasing.
iii) The optimal policy is determined as follows:

a) If βG(1)< βv(0)+ γ, ai(x)≡ a0.
b) If βG(1) = βv(0)+ γ, ai(1) = a1 and ai(x) = a0 for x< 1.
c) If βG(0)≥ βv(0)+ γ, ai(x)≡ a1.
d) If βG(0)< βv(0)+ γ < ρG(1), there exists a unique x∗ ∈ (0,1) and ai is a

threshold policy with parameter x∗, i.e., ai(x) = a1 if x ≥ x∗ and ai(x) = a0 if x< x∗.

Proof. Define the dynamic programming operator
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(L g)(x) = min
{

β
∫ 1

0
g(y)Q0(dy|x)+R(x,z), βg(0)+R(x,z)+ γ

}

, (10)

which is fromC([0,1],R) to itself. The proving method in [27], [28, Lemma 6],
which assumed (A3′), can be extended to the present equation (9) in a straightfor-
ward manner.

In particular, for the proof of ii) and iii), we obtain progressively stronger prop-
erties ofv andG. First, denotingg0 = 0 andgk+1 = L gk for k ≥ 0, we use a suc-
cessive approximation procedure to show thatv is increasing, which implies thatG
is continuous and increasing by weak continuity and monotonicity of Q0. SinceR
is strictly increasing inx, by the right hand side of (9), we show thatv is strictly
increasing, which implies the same property forG by strict monotonicity ofQ0. ⊓⊔

For the optimal policy specified in part iii) of Lemma 1, we canformally denote
the threshold parameters for the corresponding cases: a)θ = 1+, b) θ = 1, c) θ =
0, and d)θ = x∗. Such a policy will be called aθ -threshold policy. We give the
condition forθ = 0 in the best response.

Lemma 2. For γ > 0 and v solving(9),

βG(0)≥ βv(0)+ γ (11)

holds if and only if

γ ≤ β
∫ 1

0
R(y,z)Q0(dy|0)−βR(0,z). (12)

Proof. We show necessity first. Suppose (11) holds. Note thatG(x) is strictly in-
creasing on[0,1]. Equation (9) reduces to

v(x) = βv(0)+R(x,z)+ γ, (13)

βG(x)≥ βv(0)+ γ, ∀x. (14)

From (13), we uniquely solve

v(0) =
1

1−β
[R(0,z)+ γ], v(x) =

β
1−β

[R(0,z)+ γ]+R(x,z)+ γ, (15)

which combined with (14) implies (12).
We continue to show sufficiency. Ifγ > 0 satisfies (12), we use (15) to construct

v and verify (13) and (14). Sov is the unique solution of (9) satisfying (11).⊓⊔
The next lemma gives the condition forθ = 1+ in the best response.

Lemma 3. For γ > 0 and v solving(9), we have

βG(1)< βv(0)+ γ (16)

if and only if
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γ > β [Vβ (1)−Vβ(0)], (17)

where Vβ (x) ∈C([0,1],R) is the unique solution of

Vβ (x) = β
∫ 1

0
Vβ (y)Q0(dy|x)+R(x,z). (18)

Proof. By Banach’s fixed point theorem, we can show that (18) has a unique so-

lution. Next, by a successive approximation{V(k)
β ,k ≥ 0} with V(0)

β = 0 in the
fixed point equation, we can further show thatVβ is strictly increasing. Moreover,
∫ 1

0 Vβ (y)Q0(dy|x) is increasing inx by monotonicity ofQ0.
We show necessity. SinceG is strictly increasing, (16) implies that the right hand

side of (9) now reduces to the first term within the parentheses and thatv=Vβ . So
(17) follows.

To show sufficiency, suppose (17) holds. We have

β
∫ 1

0
Vβ (y)Q0(dy|x)≤ βVβ (1)< βVβ (0)+ γ, ∀x.

Therefore,v :=Vβ gives the unique solution of (9) andβG(1)< βv(0)+ γ. ⊓⊔

Example 1.Let R(x,z) = x(c+z), wherec> 0. TakeQ0(·|x) as uniform distribution
on [x,1]. Then (18) reduces to

Vβ (x) =
β

1− x

∫ 1

x
Vβ (y)dy+R(x,z).

Defineφ(x) =
∫ 1

x Vβ (y)dy, x ∈ [0,1]. Thenφ ′(x) = − β
1−xφ(x)−R(x,z) holds and

we solve

φ(x) = (1− x)β
∫ 1

x

R(s,z)

(1− s)β ds,

where the right hand side converges to 0 asx→ 1−. We further obtain

Vβ (x) = β (1− x)β−1
∫ 1

x

R(s,z)

(1− s)β ds+R(x,z)

for x ∈ [0,1), and the right hand side has the limitR(1,z)
1−β asx → 1−. This gives a

well definedVβ ∈C([0,1],R). Therefore,Vβ (0) =
β (c+z)

(1−β )(2−β ) . Then (17) reduces to

γ > 2β (c+z)
2−β .
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4 Existence of Stationary Equilibria

Assume (A1)-(A5) for this section. Define the classP0 of probability measures
on S as follows:ν ∈ P0 if there exist a constantcν ≥ 0 and a Borel measurable
functiong(x)≥ 0 defined on[0,1] such that

ν(B) =
∫

B
g(x)dx+ cν1B(0),

whereB∈ B(S) and 1B is the indicator function ofB. When restricted to(0,1], ν is
absolutely continuous with respect to the Lebesgue measureµLeb.

LetX be a random variable with distributionν ∈P0. Setxi
t =X. DefineY0 = xi

t+1
by applyingai

t ≡ a0. Further defineY1 = xi
t+1 by applying ther-threshold policyai

t
with r ∈ (0,1).

Lemma 4. The distributionνi of Yi is in P0 for i = 0,1.

Proof. Let q(y|x) denote the density function ofQ0(·|x) for x ∈ [0,1), where
q(y|x) = 0 for y< x. Denote

g0(y) =
∫

0≤x<y
q(y|x)ν(dx), y∈ (0,1),

and
g1(y) =

∫

0≤x<y∧r
q(y|x)ν(dx), y∈ (0,1).

Then it can be checked that

P(Y0 ∈ B) =
∫

B
g0(y)dy, P(Y1 ∈ B) =

∫

B
g1(y)dy+P(X ≥ r)1B(0).

This completes the lemma.⊓⊔

In order to show that (4)-(5) has a solution, we define a mapping Γ : S → S by
the following rule. Forz∈ [0,1], we solve (4) to obtain a well defined threshold
θ (z) ∈ [0,1]∪ {1+}, which in turn determines a limiting distributionµθ(z) of the
closed-loop state processxi

t by Lemma A.1. Define

Γ (z) =
∫ 1

0
xµθ(z)(dx).

If Γ has a fixed point, we obtain a solution to (4)-(5).
We analyze the case where the best response gives a strictly positive threshold.

Assume

γ > β max
z∈[0,1]

∫ 1

0
[R(y,z)−R(0,z)]Q0(dy|0). (19)
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Note that under a zero threshold policy, the behavior of the state process is sensitive
to a positive perturbation of the threshold. The above condition ensures that the zero
threshold will not occur, and this will ensure continuity ofΓ to facilitate the fixed
point analysis.

Lemma 5. Assume(19). ThenΓ (z) is continuous on[0,1].

Proof. Let z0 ∈ [0,1] be fixed, giving a corresponding threshold parameterθ0 when
(9) is solved usingz0. We check continuity atz0 and consider 3 cases.

Case i)θ0 ∈ (0,1). Let π0 be the stationary distribution with theθ0-threshold
policy. Consider any fixedε > 0. There existsε1 such that for allθ ∈ (θ0− ε1,θ0+

ε1) ⊂ (0,1), |
∫ 1

0 xπ(dx)−
∫ 1

0 xπ0(dx)| < ε, whereπ is the stationary distribution
associated withθ . This follows since limθ→θ0 ‖π −π0‖TV = 0 by Lemma A.3. Now
by the continuous dependence of the solution of the dynamic programming equation
onz, we can select a sufficiently smallδ > 0 such that for all|z−z0|< δ , zgenerates
a threshold parameterθ ∈ (θ0− ε1,θ0+ ε1), which implies|Γ (z)−Γ (z0)| ≤ ε.

Case ii)z0 givesθ0 = 1. ThenΓ (z0) = 1. Fix anyε > 0. Then we can show there
existsε1 such that for allθ ∈ (1− ε1,1), the associated stationary distributionπθ
gives|Γ (z0)−

∫ 1
0 xπθ (dx)|< ε, where we use (A5) and the right hand side of (C.1)

to estimate a lower bound for
∫ 1

0 xπθ (dx). Now, there existsδ > 0 such that anyz
satisfying|z− z0| < δ gives a thresholdθ either in(1− ε1,1) or equal to 1 or 1+;
for each case, we have|Γ (z0)−

∫ 1
0 xπθ (dx)|< ε.

Case iii)z0 givesθ0 = 1+. Then there existsδ > 0 such that anyz satisfying
|z− z0|< δ gives a threshold parameterθ = 1+. ThenΓ (z) = Γ (z0) = 1. ⊓⊔

Theorem 1. Assume(19). There exists a stationary equilibrium to(4)-(5).

Proof. SinceΓ is a continuous function from[0,1] to [0,1] by Lemma 5, the theo-
rem follows from Brouwer’s fixed point theorem.⊓⊔

Let xi,θ
t andπθ denote the state process and its stationary distribution, respec-

tively, under aθ -threshold policy. Denotez(θ ) =
∫ 1

0 xπθ (dx). We have the first
comparison theorem on monotonicity.

Lemma 6. z(θ1)≤ z(θ2) for 0< θ1 < θ2 < 1.

Proof. By the ergodicity of{xi,θl
t , t ≥ 0} in Lemma A.2, we have the representation

z(θl ) = limk→∞
1
k ∑k−1

t=0 xi,θl
t w.p.1. Lemma C.2 impliesz(θ1)≤ z(θ2). ⊓⊔

To establish uniqueness, we considerR(x,z) = R1(x)R2(z), whereR1 ≥ 0 and
R2 ≥ 0, and which satisfies (A1)-(A5). We further make the following assumption.

(A6) R2 > 0 is strictly increasing onS.

This assumption indicates positive externalities since anindividual benefits from
the decrease of the population average state. This condition has a crucial role in the
uniqueness analysis.

Given the product form ofR, now (9) takes the form:
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V(x) =min
[

β
∫ 1

0
V(y)Q0(dy|x)+R1(x)R2(z), βV(0)+R1(x)R2(z)+ γ

]

.

Consider 0≤ z2 < z1 ≤ 1 and

Vl (x) =min
[

β
∫ 1

0
Vl (y)Q0(dy|x)+R1(x)R2(zl ), βVl(0)+R1(x)R2(zl )+ γ

]

.

(20)

Denote the optimal policy as a threshold policy with parameter θl in [0,1] or equal
to 1+, where we follow the interpretation in Section 3 ifθl = 1+. We state the
second comparison theorem about the threshold parameters under different mean
field parameterszl .

Theorem 2. θ1 andθ2 in (20)are specified according to the following scenarios:
i) If θ1 = 0, then we have eitherθ2 ∈ [0,1] or θ2 = 1+.
ii) If θ1 ∈ (0,1), we have either a)θ2 ∈ (θ1,1), or b) θ2 = 1, or c) θ2 = 1+.
iii) If θ1 = 1, θ2 = 1+.
iv) If θ1 = 1+, θ2 = 1+.

Proof. SinceR2(z1)> R2(z2)> 0, we divide both sides of (20) byR2(zl ) and define
γl =

γ
R2(zl )

. Then 0< γ1 < γ2. The dynamic programming equation reduces to (D.2).
Subsequently, the optimal policy is determined according to Lemma D.4. ⊓⊔

Corollary 1. Assume (A6) in addition to the assumptions in Theorem 1. Thenthe
system(4)-(5) has a unique stationary equilibrium.

Proof. The proof is similar to [27, 28], which assumed (A3′). ⊓⊔.

5 Comparative Statics

This section assumes (A1)-(A6). Consider the two solution systems











v̄(x) = min
[

β
∫ 1

0
v̄(y)Q0(dy|x)+R1(x)R2(z̄), β v̄(0)+R1(x)R2(z̄)+ γ̄

]

,

z̄=
∫ 1

0
xµ̄(dx),

(21)

and










v(x) = min
[

β
∫ 1

0
v(y)Q0(dy|x)+R1(x)R2(z), βv(0)+R1(x)R2(z)+ γ

]

,

z=
∫ 1

0
xµ(dx).

(22)
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Supposeγ̄ satisfies (19). By Corollary 1, (21) has a unique solution denoted by
(v̄, z̄, µ̄ , θ̄ ), whereθ̄ is the threshold parameter. We further assumeθ̄ ∈ (0,1). Sup-
poseγ > γ̄. Then we can uniquely solve(v,z,µ ,θ ). The next theorem presents a
result on monotone comparative statics [53].

Theorem 3. If γ > γ̄, we have

θ > θ̄ , z> z̄, v> v̄.

Proof. We prove by contradiction. Assumeθ ≤ θ̄ . Then by Lemma 6,z≤ z̄, and
therefore, γ

R2(z)
> γ̄

R2(z̄)
. By the method of proving Theorem 2, we would establish

θ > θ̄ , which contradicts the assumptionθ ≤ θ̄ . We concludeθ > θ̄ . By Lemma 6
and Remark B.1, we havez> z̄. For (21), we use value iteration to approximate ¯v
by an increasing sequence of functions ¯vk with v̄0 = 0. Similarly,v is approximated
by vk with v0 = 0. By induction, we havevk ≥ v̄k for all k. This provesv≥ v̄.

Next, we haveβv(0)+R1(x)R2(z)+ γ > β v̄(0)+R1(x)R2(z̄)+ γ̄ on [0,1], and
β
∫ 1

0 v(y)Q0(dy|x)+R1(x)R2(z)> β
∫ 1

0 v̄(y)Q0(dy|x)+R1(x)R2(z̄) on (0,1]. By the
method in [27, Lemma 2], we havev > v̄ on (0,1]. Then

∫ 1
0 v(y)Q0(dy|0) >

∫ 1
0 v̄(y)Q0(dy|0). This further impliesv(0)> v̄(0). ⊓⊔

Remark 1.It is possible to haveθ = 1+ in Theorem 3.

By a continuity argument, we can further show limγ→γ̄ (|θ − θ̄ |+ |z− z̄|+
supx |v(x)− v̄(x)|) = 0. In the analysis below, we takeγ = γ̄ + ε for some small
ε > 0. For this section, we further introduce the following assumption.

(A7) For γ > γ̄, (v,z,θ ) has the representation

v(x) = v̄(x)+ εw(x)+o(ε), 0≤ x≤ 1, (23)

z= z̄+ εzγ +o(ε), (24)

θ = θ̄ + εθγ +o(ε), (25)

wherev,z,θ are solved depending on the parameterγ andw is a function defined
on [0,1]. The derivativeszγ andθγ at γ̄ exist, andR2(z) is differentiable on[0,1].
For 0≤ x< 1, the probability density functionq(y|x), y∈ [x,1], for Q0(dy|x) is

continuous on{(x,y)|0≤ x≤ y< 1}. Moreover,∂q(y|x)
∂x exists and is continuous

in (x,y).

We aim to provide a characterization ofw,zγ ,θγ .

Theorem 4. The function w satisfies

w(x) =







β
∫ 1

0
w(y)Q0(dy|x)+R1(x)R

′
2(z̄)zγ , 0≤ x≤ θ̄ ,

βw(0)+R1(x)R
′
2(z̄)zγ +1, θ̄ < x≤ 1.

(26)

Proof. We have
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v̄(x) = β
∫ 1

0
v̄(y)Q0(dy|x)+R1(x)R2(z̄), x∈ [0, θ̄ ]

and

v(x) = β
∫ 1

0
v(y)Q0(dy|x)+R1(x)R2(z), x∈ [0,θ ].

Note thatθ > θ̄ . For any fixedx∈ [0, θ̄ ], we have

v(x)− v̄(x) = β
∫ 1

0
(v(y)− v̄(y))Q0(dy|x)+R1(x)(R2(z)−R2(z̄)).

Then the equation ofw(x) for x ∈ [0, θ̄ ] is derived. We similarly treat the casex ∈
(θ̄ ,1]. ⊓⊔

Remark 2.In generalw has discontinuity atx = θ̄ , so thatβ
∫ 1

0 w(y)Q0(dy|θ̄ ) 6=
βw(0)+1. We give some interpretation. Let the value function be written asv(x,γ)
to explicitly indicateγ. Let the rectangle[0,1]× [γa,γb] be a region of interest in
which (x,γ) varies so that the value function defines a continuous surface. Then
(θ ,γ) starts at(θ̄ , γ̄) and traces out the curve of an increasing function along which
the expression of the value function has a switch, and the value function surface
may be visualized as two pieces glued together along the curve in a non-smooth
way. The value ofw amounts to finding on the surface the directional derivativein
the direction ofγ; and therefore, discontinuity may occur atx= θ̄ .

To better understand the solution of (26), we consider the general equation

W(x) =







β
∫ 1

0
W(y)Q0(dy|x)+R1(x)R

′
2(z0)c0, 0≤ x≤ θ0,

βW(0)+R1(x)R
′
2(z0)c0+1, θ0 < x≤ 1,

(27)

wherec0, z0 ∈ [0,1] andθ0 ∈ (0,1) are arbitrarily chosen and fixed. LetB([0,1],R)
be the Banach space of bounded Borel measurable functions with norm ‖g‖ =
supx |g(x)|. By a contraction mapping, we can show (27) has a unique solution
W ∈ B([0,1],R).

We continue to characterize the sensitivityθγ of the threshold. Recall the partial

derivative∂q(y|x)
∂x .

Lemma 7. We have

β
[

∫ 1

θ̄
v̄(y)

∂q(y|θ̄ )
∂x

dy− v̄(θ̄ )q(θ̄ |θ̄ )
]

θγ = 1+βw(0)−β
∫ 1

θ̄
w(y)Q0(dy|θ̄ ).

(28)

Proof. Write γ = γ̄ + ε. By the property of the threshold, we have

β
∫ 1

θ̄
v̄(y)Q0(dy|θ̄ ) = β v̄(0)+ γ̄, β

∫ 1

θ
v(y)Q0(dy|θ ) = βv(0)+ γ̄ + ε.
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Note thatθ > θ̄ . We check

∆ :=
∫ 1

θ
v(y)Q0(dy|θ )−

∫ 1

θ̄
v̄(y)Q0(dy|θ̄)

=

∫ 1

θ
v(y)Q0(dy|θ )−

∫ 1

θ
v̄(y)Q0(dy|θ̄)−

∫ θ

θ̄
v̄(y)Q0(dy|θ̄ )

=
∫ 1

θ
v(y)Q0(dy|θ )−

∫ 1

θ
v̄(y)Q0(dy|θ )

+
∫ 1

θ
v̄(y)Q0(dy|θ )−

∫ 1

θ
v̄(y)Q0(dy|θ̄ )−

∫ θ

θ̄
v̄(y)Q0(dy|θ̄ )

=ε
∫ 1

θ
w(y)q(y|θ )dy+(θ − θ̄)

∫ 1

θ
v̄(y)[∂q(y|θ )/∂x]dy− (θ − θ̄)v̄(θ̄ )q(θ̄ |θ̄ )

+o(ε + |θ − θ̄ |)

=ε
∫ 1

θ̄
w(y)q(y|θ̄ )dy+(θ − θ̄)

∫ 1

θ̄
v̄(y)[∂q(y|θ̄ )/∂x]dy− (θ − θ̄)v̄(θ̄ )q(θ̄ |θ̄ )

+o(ε + |θ − θ̄ |).

Note that
β ∆ = β [v(0)− v̄(0)]+ ε.

We derive

β
∫ 1

θ̄
w(y)Q0(dy|θ̄ )+β θγ

∫ 1

θ̄
v̄(y)

∂q(y|θ̄ )
∂x

dy−β v̄(θ̄ )q(θ̄ |θ̄)θγ = βw(0)+1.

This completes the proof.⊓⊔

Lemma 8. Given the threshold̄θ ∈ (0,1), the stationary distribution̄µ has a prob-
ability density function (p.d.f.) p(x) on (0,1], and µ̄({0}) = π0, where(p,π0) is
determined by

π0 =
∫ 1

θ̄
p(x)dx, (29)

p(x) =











∫ x

0
q(x|y)p(y)dy+π0q(x|0), 0≤ x< θ̄ ,

∫ θ̄

0
q(x|y)p(y)dy+π0q(x|0), θ̄ ≤ x≤ 1.

(30)

Proof. Let δ0 be the dirac measure atx= 0. For any Borel subsetB⊂ [0,1], we have
µ̄(B) =

∫ 1
0 [Q0(B|y)1(y<θ̄)+δ0(B)1(y≥θ̄)]µ̄(dy). Then it can be checked that(p,π0)

satisfying the above equations determines the stationary distribution. Now we show
there exists a unique solution. Letπ0 > 0 be a constant to be determined. Consider
the Volterra integral equation

p(x) =
∫ x

0
q(x|y)p(y)dy+π0q(x|0), 0≤ x≤ θ̄ , (31)
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and we obtain a unique solutionp in C([0, θ̄ ],R) (see e.g. [36, p.33]). In factp is a

nonnegative function with
∫ θ̄

0 p(x)dx> 0. Subsequently, we further determinep≥ 0
on [θ̄ ,1] by (30). The solutionp on [0,1] depends linearly onπ0 and so there exists
a uniqueπ0 such that

∫ 1
0 p(x)dx+ π0 = 1. After we uniquely solvep for (30), we

integrate both sides of this equation on[0,1] and obtain
∫ 1

0 p(x)dx=
∫ θ̄

0 p(x)dx+π0,
which implies that (29) is satisfied.⊓⊔

5.1 Special Case

Now we supposeQ0(dy|x) has uniform distribution on[x,1] for all fixed 0≤ x< 1,
andR(x,z) = R1(x)R2(z) = x(c+ z), whereR1(x) = x, R2(z) = c+ z andc> 0. In
this case, (A2)-(A6) are satisfied. For (21), we have

v̄(x) =







β
1− x

∫ 1

x
v̄(y)dy+R1(x)R2(z̄), 0≤ x≤ θ̄ ,

β v̄(0)+R1(x)R2(z̄)+ γ̄, θ̄ ≤ x≤ 1.
(32)

Denoteϕ(x) =
∫ 1

x v̄(y)dy. Then

ϕ̇(x) =−
β

1− x
ϕ −R1(x)R2(z̄), 0≤ x≤ θ̄ .

Taking the initial conditionϕ(0), we have

ϕ(x) = ϕ(0)(1− x)β − (1− x)β
∫ x

0

R1(τ)R2(z̄)

(1− τ)β dτ.

On [0, θ̄ ],

v̄(x) = (1− x)β−1v̄(0)−β (1− x)β−1
∫ x

0

R1(τ)R2(z̄)

(1− τ)β dτ +R1(x)R2(z̄)

= (1− x)β−1
[

v̄(0)−
β (c+ z̄)

(1−β )(2−β )

]

+(c+ z̄)
[ β
(1−β )(2−β )

+
2x

2−β

]

.

By the continuity of ¯v and its form on[θ̄ ,1], we have

v̄(θ̄ ) = β v̄(0)+ θ̄(z̄+ c)+ γ̄. (33)

Hence,

[(1− θ̄)β−1−β ]v̄(0) =
β (c+ z̄)[(1− θ̄)β−1−1]

(1−β )(2−β )
−

β (c+ z̄)θ̄
2−β

+ γ̄. (34)

On the other hand, since ¯v is increasing and̄θ is the threshold, we have
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v̄(θ̄ ) = β
∫ 1

θ̄
[β v̄(0)+ (c+ z)y+ γ̄]

1

1− θ̄
dy+(c+ z̄)θ̄

= β 2v̄(0)+β γ̄ +
β (c+ z̄)

2
+(

β
2
+1)(c+ z̄)θ̄ ,

which combined with (33) gives

β
2
(c+ z̄)(1+ θ̄) = (β v̄(0)+ γ̄)(1−β ). (35)

Given the special form ofQ0(dy|x), (26) becomes

w(x) =







β
1− x

∫ 1

x
w(y)dy+R1(x)R

′
2(z̄)zγ , 0≤ x≤ θ̄ ,

βw(0)+R1(x)R
′
2(z̄)zγ +1, θ̄ < x≤ 1.

(36)

The computation ofw now reduces to uniquely solvingw(0). By the expression of
w on [0, θ̄ ], we have

w(θ̄ ) = β
∫ 1

θ̄
w(y)Q0(dy|θ̄)+R1(θ̄ )R′

2(z̄)zγ

= β 2w(0)+β +R1(θ̄ )R′
2(z̄)zγ +

βR′
2(z̄)zγ

1− θ̄

∫ 1

θ̄
R1(y)dy

= β 2w(0)+β + θ̄zγ +βzγ
1+ θ̄

2
. (37)

Forx∈ [0, θ̄ ], we further write

w(x) =
β

1− x

∫ 1

x
w(y)dy+R1(x)R

′
2(z̄)zγ ,

and solve

w(x) = (1− x)β−1w(0)+ zγx−βzγ

[ (1− x)β−1

(1−β )(2−β )
−

1
1−β

+
1− x
2−β

]

,

which further gives

w(θ̄ ) = (1− θ̄)β−1w(0)+ zγ θ̄ −βzγ

[ (1− θ̄)β−1

(1−β )(2−β )
−

1
1−β

+
1− θ̄
2−β

]

. (38)

By (37)–(38), we have

[β−1(1− θ̄)β−1−β ]w(0) = 1+ zγ

(1+ θ̄
2

+
(1− θ̄)β−1

(1−β )(2−β )
+

1− θ̄
2−β

−
1

1−β

)

.

(39)

Now from (30) we have
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p(x) =















∫ x

0

1
1− y

p(y)dy+π0, 0≤ x< θ̄ ,
∫ θ̄

0

1
1− y

p(y)dy+π0, θ̄ ≤ x≤ 1,

which determines

p(x) =







π0

1− x
, 0≤ x< θ̄ ,

π0

1− θ̄
, θ̄ ≤ x≤ 1,

whereπ0 =
1

2−ln(1−θ̄) . We determine the mean field

z̄=
∫ θ̄

0
xp(x)dx+

∫ 1

θ̄
xp(x)dx= π0

(1− θ̄
2

− ln(1− θ̄)
)

. (40)

We further obtaindz
dγ at γ̄ as

zγ =
ln(1− θ̄)−3+ 4

1−θ̄
2[2− ln(1− θ̄)]2

θγ . (41)

We note that a perturbation analysis directly based on the general case (30) is more
complicated.

Now (28) reduces to

[ β
1− θ̄

∫ 1

θ̄

v̄(y)

1− θ̄
dy−

β v̄(θ̄ )
1− θ̄

]

θγ = 1+βw(0)−β
∫ 1

θ̄

w(y)

1− θ̄
dy.

By the expression of ¯v in (32) andw in (36) atθ = θ̄ , we obtain

(1−β )v̄(θ̄ )− θ̄(c+ z̄)

1− θ̄
θγ = 1+βw(0)−w(θ̄)+ θ̄zγ .

Recalling (33) and (37), we have

(1−β )[β v̄(0)+ γ̄]−β θ̄(z̄+ c)

1− θ̄
θγ −β (1−β )w(0)+

1+ θ̄
2

βzγ = 1−β . (42)

By combining (34), (35) and (40), we have

v̄(0) = [(1− θ̄)β−1−β ]−1
[β (c+ z̄)[(1− θ̄)β−1−1]

(1−β )(2−β )
−

β (c+ z̄)θ̄
2−β

+ γ̄
]

, (43)

θ̄ =
2(1−β )(β v̄(0)+ γ̄)

β (c+ z̄)
−1, (44)

z̄=
1

2− ln(1− θ̄)
(1− θ̄

2
− ln(1− θ̄)

)

. (45)
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Fig. 1 Value functionv and perturbation functionw

Next, combining (39), (41) and (42), we obtain

(1−β )[β v̄(0)+ γ̄]−β θ̄(z̄+ c)

1− θ̄
θγ −β (1−β )w(0)+

1+ θ̄
2

βzγ = 1−β , (46)

[β−1(1− θ̄)β−1−β ]w(0) = 1+ zγ

(1+ θ̄
2

+
(1− θ̄)β−1

(1−β )(2−β )
+

1− θ̄
2−β

−
1

1−β

)

,

(47)

zγ =
ln(1− θ̄)−3+ 4

1−θ̄
2[2− ln(1− θ̄)]2

θγ . (48)

After (v̄(0), z̄, θ̄ ) has been determined from (43)-(45), the above gives a linearequa-
tion system with unknownsw(0), θγ andzγ .

Example 2.We takeR1(x) = x andR2(z) = 0.5+ z, γ̄ = 0.5. We numerically solve
(43)-(45) to obtain ¯v(0) = 3.497854, θ̄ = 0.485162, z̄= 0.345854, and (46)-(48)
to obtainw(0) = 4.563055, θγ = 1.162861, zγ = 0.336380. The curves ofv(x) and
w(x) are displayed in Fig. 1, wherew has a discontinuity atx = θ̄ as discussed
in Remark 2. The positive value ofθγ implies the threshold increases withγ, as
asserted in Theorem 3.

6 Conclusion

This paper considers mean field games in a framework of binaryMarkov decision
processes (MDP) and establishes existence and uniqueness of stationary equilib-
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ria. The resulting policy has a threshold structure. We further analyze comparative
statics to address the impact of parameter variations in themodel.

For future research, there are some potentially interesting extensions. One may
consider a heterogenous population and study the emergenceof free-riders who
care more about their own effort costs and have less incentive to contribute to the
common benefit of the population. Another modelling of a quite different nature
involves negative externalities where other players’ improvement brings more pres-
sure on the player in question. For instance, this arises in competitions for market
share. The modelling and analysis of the agent behavior willbe of interest.

Appendix A: Preliminaries on Ergodicity

Assume (A3). The next two lemmas determine the limiting distribution of the state
process under threshold policies.

Lemma A.1. i) If θ = 0, then the distribution of xit remains to be the dirac measure
δ0 for all t ≥ 1, for any xi0.

ii) If θ = 1 or θ = 1+, the distribution of xit converges to the dirac measureδ1

weakly.

Proof. Part i) is obvious and part ii) follows from (A3).⊓⊔

Let xi,θ
t denote the state process generated by theθ -threshold policy withθ ∈

(0,1), and letPt
θ (x, ·) be the distribution ofxi,θ

t givenxi,θ
0 = x.

Lemma A.2. For θ ∈ (0,1), {xi,θ
t , t ≥ 0} is uniformly ergodic with stationary prob-

ability distributionπθ , i.e.,

sup
x∈S

‖Pt
θ (x, ·)−πθ‖TV ≤ Krt , (A.1)

for some constants K> 0 and r∈ (0,1), where‖ ·‖TV is the total variation norm of
signed measures.

Proof. The proof is similar to that of the ergodicity theorem in [27], which assumed
(A3′). We use (A3)-iii) to estimater. ⊓⊔

We takeCs = {0} as a small set andθ ∈ (0,1). Theθ -threshold policy gives

P(xi,θ
2 = 0|xi,θ

0 = 0)≥
∫ 1

θ
q(y|0)dy=: ε0. (A.2)

So for any Borel setB, P(xi,θ
2 ∈B|xi,θ

0 = 0)≥ ε0δ0(B), whereδ0 is the dirac measure.
Forθ ′ in a small neighborhoodofθ , we can ensure that theθ ′-threshold policy gives

P(xi,θ ′

2 ∈ B|xi,θ ′

0 = 0)≥
ε0

2
δ0(B). (A.3)



20 Minyi Huang and Yan Ma

Lemma A.3. Supposeθ ,θ ′ ∈ (0,1) for two threshold policies. Let the correspond-
ing stationary distributions of the state process byπ andπ ′. Then

lim
θ ′→θ

‖π ′−π‖TV = 0.

Proof. Fix θ ∈ (0,1). By (A.3) and [41], there exist a neighborhoodI0 = (θ −
κ0,θ +κ0)⊂ (0,1) and two constantsC, r ∈ (0,1) such that for allθ ′ ∈ I0,

‖Pt
θ (x, ·)−π‖TV ≤Crt , ‖Pt

θ ′(x, ·)−π ′‖TV ≤Crt , ∀x∈ [0,1].

Subsequently,

‖π ′−π‖TV ≤ ‖Pt
θ ′(0, ·)−Pt

θ(0, ·)‖TV +2Crt .

For any givenε > 0, fix a largek0 such that 2Crk0 ≤ ε/2. We show for allθ ′ suffi-
ciently close toθ ,

‖Pk0
θ ′ (0, ·)−Pk0

θ (0, ·)‖TV ≤ ε/2.

Given two probability measuresµt , µ ′
t , define the probability measuresµt+1 and

µ ′
t+1,

µt+1(B) =
∫

S
Pθ (y,B)µt (dy), µ ′

t+1(B) =
∫

S
Pθ ′(y,B)µ ′

t (dy),

for Borel setB⊂ [0,1]. Then

|µt+1(B)− µ ′
t+1(B)| ≤ |

∫

S
Pθ (y,B)µt(dy)−

∫

S
Pθ ′(y,B)µt(dy)|

+ |

∫

S
Pθ ′(y,B)µt(dy)−

∫

S
Pθ ′(y,B)µ ′

t (dy)|

=: D1+D2.

We have

D2 =
∣

∣

∣

∫

S
Pθ ′(y,B)µt (dy)−

∫

S
Pθ ′(y,B)µ ′

t (dy)
∣

∣

∣
≤ 2‖µt − µ ′

t‖TV.

Denoteθ = min{θ ,θ ′} andθ = max{θ ,θ ′}. Then

D1 =
∣

∣

∣
−
∫

[θ ,θ)
Q0(B|y)µt(dy)+1B(0)µt([θ ,θ ))

∣

∣

∣
≤ µt([θ ,θ )).

Settingµ0 = µ ′
0 = δ0, thenµt = Pt

θ (0, ·), µ ′
t = Pt

θ ′(0, ·). Hence,

|Pt+1
θ ′ (0,B)−Pt+1

θ (0,B)| ≤ 2‖Pt
θ ′(0, ·)−Pt

θ(0, ·)‖TV +Pt
θ (0, [θ ,θ )), (A.4)

which implies

‖Pt+1
θ ′ (0, ·)−Pt+1

θ (0, ·)‖TV ≤ 4‖Pt
θ ′(0, ·)−Pt

θ (0, ·)‖TV +2Pt
θ(0, [θ ,θ

′)). (A.5)
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For µ0 = µ ′
0 = δ0, we haveP1

θ (0, ·) = P1
θ ′(0, ·). It is clear from (A.5) and Lemma 4

that for eacht ≥ 1,

lim
θ ′→θ

‖Pt
θ ′(0, ·)−Pt

θ (0, ·)‖TV = 0, lim
θ ′→θ

Pt
θ (0, [θ ,θ )) = 0.

Therefore, for the fixedk0, there existsδ > 0 such that for allθ ′ satisfying|θ ′−θ |<
δ , ‖Pk0

θ ′ (0, ·)−Pk0
θ (0, ·)‖TV < ε

2 and‖π ′−π‖TV ≤ ε. The lemma follows. ⊓⊔

Appendix B: Cycle Average of A Regenerative Process

Let 0< r < r ′ < 1. Consider a Markov process{Yt , t ≥ 0} with state space[0,1]
and transition kernelQY(·|y) which satisfiesQY([y,1]|y) = 1 for anyy∈ [0,1] and is
stochastically increasing. SupposeY0 ≡ y0 < r. Define the stopping times

τ = inf{t|Yt ≥ r}, τ ′ = inf{t|Yt ≥ r ′}.

Lemma B.1. If Eτ < ∞, then E∑τ
t=0Yt < ∞ and

E∑τ
t=0Yt

1+Eτ
=

EY0+EY1+∑∞
k=1E(Yk+11{Yk<r})

2+∑∞
k=1P(Yk < r)

. (B.1)

Proof. Since 0≤Yt ≤ 1 w.p. 1,E∑τ
t=0Yt ≤ 1+Eτ. It is clear that{τ ≥ k}= {Yk−1 <

r} for k≥ 1. We have

Eτ =
∞

∑
k=1

P(τ ≥ k) = 1+
∞

∑
k=1

P(Yk < r), (B.2)

and

E
τ

∑
t=0

Yt = E
∞

∑
k=1

(

k

∑
t=0

Yt

)

1{τ=k}

= EY0+EY1+
∞

∑
k=2

E(Yk1{τ≥k})

= EY0+EY1+
∞

∑
k=1

E(Yk+11{Yk<r}).

The lemma follows. ⊓⊔

Lemma B.2. Assume Eτ ′ < ∞. We have

E∑τ
t=0Yt

1+Eτ
≤

E∑τ ′
t=0Yt

1+Eτ ′
. (B.3)

Proof. Eτ < ∞ sinceτ ≤ τ ′ w.p.1. Fork≥ 1, denote
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pk = P(Yk < r), ηk = P(r ≤Yk < r ′),

mk = E(Yk+11{Yk<r}), ∆k = E(Yk+11{r≤Yk<r ′}).

By Lemma B.1,

E∑τ
t=0Yt

1+Eτ
=

EY0+EY1+∑∞
k=1mk

2+∑∞
k=1 pk

,

E∑τ ′
t=0Yt

1+Eτ ′
=

EY0+EY1+∑∞
k=1(mk+∆k)

2+∑∞
k=1(pk+ηk)

.

So (B.3) is equivalent to

(EY0+EY1+
∞

∑
k=1

mk)(
∞

∑
k=1

ηk)≤ (
∞

∑
k=1

∆k)(2+
∞

∑
k=1

pk). (B.4)

By the stochastic monotonicity ofQY, we have

E[Yk+11{Yk<r}|Yk] = 1{Yk<r}

∫ 1

0
yQY(dy|Yk)

≤ 1{Yk<r}

∫ 1

0
yQY(dy|r) =: cr1{Yk<r}.

Note that

cr =

∫

y≥r
yQY(dy|r)≥ r. (B.5)

Moreover,

E[Yk+11{r≤Yk<r ′}|Yk] = 1{r≤Yk<r ′}

∫ 1

0
yQY(dy|Yk)

≥ cr1{r≤Yk<r ′}.

It follows that

mk = E[Yk+11{Yk<r}]≤ cr pk, ∆k = E[Yk+11{r≤Yk<r ′}]≥ cr ηk. (B.6)

SinceY0 = y0 < r,

E[Y1|Y0] =

∫ 1

0
yQY(dy|Y0)≤ cr .

Hence,E(Y0+Y1)≤ r + cr . By (B.6) and (B.5),
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(EY0+EY1+
∞

∑
k=1

mk)(
∞

∑
k=1

ηk)− (
∞

∑
k=1

∆k)(2+
∞

∑
k=1

pk)

≤(r + cr + cr

∞

∑
k=1

pk)(
∞

∑
k=1

ηk)− cr(
∞

∑
k=1

ηk)(2+
∞

∑
k=1

pk)

=(r − cr)
∞

∑
k=1

ηk ≤ 0,

which establishes (B.4).⊓⊔

Remark B.1.If for eachy∈ [0,1), QY(dx|y) has probability density functionqY(x|y)>
0 for x∈ (y,1), thencr > r andηk > 0 for all k ≥ 1. In this case, a strict inequality
holds for (B.3). ⊓⊔

Appendix C

We assume (A3). Let{xi,θ
t , t ≥ 0} be the Markov chain generated by aθ -threshold

policy with 0< θ < 1, wherexi,θ
0 is given. By Lemma A.2,{xi,θ

t , t ≥ 0} is ergodic.
We next define an auxiliary Markov chain{Yt , t ≥ 0} with Y0 = 0 and the same
transition kernel asxi,θ

t . DenoteSt = ∑t
i=0Yi for t ≥ 0. Defineτ = inf{t|Yt ≥ θ}.

Lemma C.1. We have

lim
k→∞

1
k

k−1

∑
t=0

Yt =
ESτ

1+Eτ
w.p.1. (C.1)

Proof. By (A3), we can showEτ < ∞. Since{Yt , t ≥ 0} has the same transition
probability kernel as{xi,θ

t , t ≥ 0}, it is ergodic, and therefore the left hand side of
(C.1) has a constant limit w.p.1. DefineT0 = 0 andTn as the time for{Yt , t ≥ 0} to
return to state 0 for thenth time. SoT1 = τ+1. DefineBn = ∑Tn−1

t=Tn−1
Yt for n≥ 1. We

observe that{Yt , t ≥ 0} is a regenerative process (see e.g. [6, 51] and [7, Theorem
4]) with regeneration times{Tn,n ≥ 1} and that{Bn,n≥ 1} is a sequence of i.i.d.
random variables. Note thatB1 = Sτ is the sum ofτ +1 terms. By the strong law of
large numbers for regenerative processes [6, pp. 177], the lemma follows. ⊓⊔

Suppose 0< θ < θ ′ < 1. Then there exist two constantsCθ ,Cθ ′ such that

lim
k→∞

1
k

k−1

∑
t=0

xi,θ
t =Cθ , lim

k→∞

1
k

k−1

∑
t=0

xi,θ ′

t =Cθ ′ , w.p.1.

Lemma C.2. We have Cθ ≤Cθ ′ .

Proof. Due to the ergodicity of the Markov chain,Cθ (resp.,Cθ ′ ) does not depend

on xi,θ
0 (resp.,xi,θ ′

0 ). Therefore, limk→∞
1
k ∑k−1

t=0 Yt = Cθ w.p.1. The lemma follows
from Lemmas C.1 and B.2.⊓⊔
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Appendix D: An Auxiliary MDP

Assume (A3). This appendix introduces an auxiliary controlproblem to show the
effect of the effort cost on the threshold parameter of the optimal policy. The state
and control processes{(xi

t ,a
i
t), t ≥ 0} are specified by (1)-(2). The cost has the form

Jr
i = E

∞

∑
t=0

ρ t(R1(x
i
t)+ r1{ai

t=a1}

)

, (D.1)

whereR1 is continuous and strictly increasing on[0,1] andρ ∈ (0,1), r ∈ (0,∞).
Let r take two different values 0< γ1 < γ2 and write the corresponding dynamic
programming equation

vl (x) = min

{

ρ
∫ 1

0
vl (y)Q0(dy|x)+R1(x), ρvl(0)+R1(x)+ γl

}

, l = 1,2, x∈ S.

(D.2)

By the method in proving Lemma 1, it can be shown that there exists a unique
solutionvl ∈ C([0,1],R) and that the optimal policyai,l (x) is a threshold policy. If
ρ
∫ 1

0 vl (y)Q0(dy|1)< ρvl (0)+γl , ai,l (x)≡ a0, and we follow the notation in Section
3 to denote the thresholdθl = 1+. Otherwise,ai,l (x) is a θl -threshold policy with
θl ∈ [0,1], i.e.,ai,l (x) = a1 if x≥ θl , andai,l (x) = a0 if x< θl .

Lemma D.1. If θ1 ∈ (0,1), θ2 6= θ1.

Proof. We prove by contradiction. Suppose for someθ ∈ (0,1),

θ1 = θ2 = θ . (D.3)

Under (D.3), the resulting optimal policy leads to the representation (see e.g. [23,
pp. 22])

vl (x) = E
∞

∑
t=0

ρ t
[

R1(x
i
t)+ γl1{ai

t=a1}

]

, l = 1,2,

where{xi
t , t ≥ 0} is generated by theθ -threshold policyai

t(x
i
t) andxi

0 = x. Denote
δ21 = γ2− γ1.

For fixedx ≥ θ andxi
0 = x, denote the resulting optimal state and control pro-

cesses by{(x̂i
t , â

i
t), t ≥ 0}. Thenâi

0 = a1 w.p.1., and

v2(x)− v1(x) = δ21+ δ21E
∞

∑
t=1

ρ t1{âi
t=a1}

, x≥ θ .

Next considerxi
0 = 0 and denote the optimal state and control processes by

{(x̌i
t , ǎ

i
t), t ≥ 0}. Then

v2(0)− v1(0) = δ21E
∞

∑
t=0

ρ t1{ǎi
t=a1}

=: ∆ .



Binary Mean Field Stochastic Games: Stationary Equilibriaand Comparative Statics 25

It is clear that ˆxi
1 = 0 w.p.1. By the optimality principle,{(x̂i

t , â
i
t), t ≥ 1} may be

interpreted as the optimal state and control processes of the MDP with initial state 0
att = 1. Hence the two processes{(x̂i

t , â
i
t), t ≥ 1} and{(x̌i

t , ǎ
i
t), t ≥ 0}, where ˇxi

0 = 0,
have the same finite dimensional distributions. In particular, âi

t+1 and ǎi
t have the

same distribution fort ≥ 0. Therefore,

E
∞

∑
t=1

ρ t−11{âi
t=a1}

= E
∞

∑
t=0

ρ t1{ǎi
t=a1}

.

It follows that

v2(x)− v1(x) = δ21+ρ∆ , ∀x≥ θ . (D.4)

Combining (D.2) and (D.3) gives

ρ
∫ 1

0
vl (y)Q0(dy|θ ) = ρvl (0)+ γl , l = 1,2,

which implies

ρ
∫ 1

0
[v2(x)− v1(x)]Q0(dx|θ ) = δ21+ρ∆ . (D.5)

By Q0([0,θ )|θ ) = 0 and (D.4), (D.5) further yieldsρ(δ21+ρ∆) = δ21+ρ∆ , which
is impossible since 0< ρ < 1 andδ21+ ρ∆ > 0. Therefore, (D.3) does not hold.
This completes the proof.⊓⊔

For the MDP with cost (D.1), we continue to analyze the dynamic programming
equation

vr(x) = min
[

ρ
∫ 1

0
vr(y)Q0(dy|x)+R1(x), ρvr(0)+R1(x)+ r

]

. (D.6)

For each fixedr ∈ (0,∞), we obtain the optimal policy as a threshold policy with
threshold parameterθ (r). By evaluating the cost (D.1) associated with the two poli-
ciesai

t(x
i
t)≡ a0 andai

t(x
i
t)≡ a1, respectively, we have the prior estimate

vr(x)≤ min

{

R1(1)
1−ρ

, R1(x)+
r +ρR1(0)

1−ρ

}

. (D.7)

On the other hand, let{xi
t , t ≥ 0} with xi

0 = x be generated by any fixed Markov
policy. Then

E
∞

∑
t=0

ρ t(R1(x
i
t)+ r1{ai

t=a1}
)≥ R1(x)+

∞

∑
t=1

ρ tR1(0),

which implies
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vr(x)≥ R1(x)+
ρR1(0)
1−ρ

. (D.8)

If r > ρR1(1)
1−ρ , it follows from (D.7) that

ρ
∫ 1

0
vr(y)Q0(dy|x)< ρvr(0)+ r, ∀x, (D.9)

i.e.,θ (r) = 1+.

Lemma D.2. There existsδ > 0 such that for all0< r < δ ,

ρ
∫ 1

0
vr(y)Q0(dy|x)> ρvr(0)+ r, ∀x, (D.10)

and soθ (r) = 0.

Proof. By (D.8),

ρ
∫ 1

0
vr(y)Q0(dy|x)≥ ρ

∫ 1

0
R1(y)Q0(dy|x)+

ρ2R1(0)
1−ρ

≥ ρ
∫ 1

0
R1(y)Q0(dy|0)+

ρ2R1(0)
1−ρ

,

and (D.7) gives

ρvr(0)+ r ≤
ρR1(0)
1−ρ

+
r

1−ρ
.

SinceR1(x) is strictly increasing,

CR1 :=
∫ 1

0
R1(y)Q0(dy|0)−R1(0)> 0.

And we have

ρ
∫ 1

0
vr(y)Q0(dy|x)− (ρvr(0)+ r)≥ ρCR1 −

r
1−ρ

.

It suffices to takeδ = ρ(1−ρ)CR1. ⊓⊔
Define the nonempty sets

Ra0 = {r > 0|(D.9) hods}, Ra1 = {r > 0|(D.10) holds}.

Remark D.1.We have(ρR1(1)
1−ρ ,∞)⊂ Ra0 and(0,δ )⊂ Ra1.

Lemma D.3. Let (r,vr) be the parameter and the associated solution in(D.6).
i) If r > 0 satisfies
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ρ
∫ 1

0
vr(y)Q0(dy|x)≤ ρvr(0)+ r, ∀x, (D.11)

then any r′ > r is in Ra0.
ii) If r > 0 satisfies

ρ
∫ 1

0
vr(y)Q0(dy|x)≥ ρvr(0)+ r, ∀x, (D.12)

then any r′ ∈ (0, r) is in Ra1.

Proof. i) For r ′ > r, vr ′ is uniquely solved from (D.6) withr ′ in place ofr. We can
use (D.11) to verify

vr(x) = min

[

ρ
∫ 1

0
vr(y)Q0(dy|x)+R1(x), ρvr(0)+R1(x)+ r ′

]

.

Hencevr ′ = vr for all x∈ [0,1]. It follows thatρ
∫ 1

0 vr ′(y)Q0(dy|x)< ρvr ′(0)+ r ′ for
all x. Hencer ′ ∈ Ra0.

ii) By (D.6) and (D.12),vr(0) =
R1(0)+r

1−ρ , and subsequently,

vr(x) = ρvr(0)+R1(x)+ r =
ρR1(0)+ r

1−ρ
+R1(x).

By substitutingvr(0) andvr(x) into (D.12), we obtain

ρR1(0)+ r ≤ ρ
∫ 1

0
R1(y)Q0(dy|x), ∀x. (D.13)

Now for 0< r ′ < r, we constructvr ′(x), as a candidate solution to (D.6) withr
replaced byr ′, to satisfy

vr ′(0) = ρvr ′(0)+R1(0)+ r ′, vr ′(x) = ρvr ′(0)+R1(x)+ r ′, (D.14)

which gives

vr ′(x) =
ρR1(0)+ r ′

1−ρ
+R1(x). (D.15)

We show thatvr ′(x) in (D.15) satisfies

ρvr ′(0)+ r ′ < ρ
∫ 1

0
vr ′(y)Q0(dy|x), ∀x, (D.16)

which is equivalent toρR1(0) + r ′ < ρ
∫ 1

0 R1(y)Q0(dy|x) for all x, which in turn
follows from (D.13). By (D.14) and (D.16),vr ′ indeed satisfies (D.6) withr replaced
by r ′. Sor ′ ∈ Ra1. ⊓⊔

Further define
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r = supRa1, r = inf Ra0.

Lemma D.4. i) r satisfiesρ
∫ 1

0 vr(y)Q0(dy|0) = ρvr(0)+ r, andθ (r) = 0.
ii) r satisfiesρ

∫ 1
0 vr(y)Q0(dy|1) = ρvr(1) = ρvr(0)+ r, andθ (r) = 1.

iii) We have0< r < r < ∞.
iv) The thresholdθ (r) as a function of r∈ (0,∞) is continuous and strictly in-

creasing on[r , r].

Proof. i)-ii) By Lemmas D.2 and D.3, we have 0< r ≤ ∞ and 0≤ r < ∞. Assume
r = ∞; thenRa1 = (0,∞) giving Ra0 = /0, a contradiction. So 0< r < ∞. Forδ > 0
in Lemma D.2, we have(0,δ ) ⊂ Ra1. Therefore, 0< r̄ < ∞. Note thatvr depends
on the parameterr continuously, i.e., lim|r ′−r|→0supx |vr ′(x)− vr(x)|= 0. Hence

ρ
∫ 1

0
vr(y)Q0(dy|0)≥ ρvr(0)+ r.

Now assume

ρ
∫ 1

0
vr(y)Q0(dy|0)> ρvr(0)+ r. (D.17)

Then there exists a sufficiently smallε > 0 such that (D.17) still holds when(r +
ε,vr+ε) replaces(r ,vr); sinceg(x) =

∫ 1
0 vr+ε(y)Q0(dy|x) is increasing inx, then

r +ε ∈ Ra1, which is impossible. Hence (D.17) does not hold, and this proves i). ii)
can be shown in a similar manner.

To show iii), assume

0< r < r < ∞. (D.18)

Then, recalling Remark D.1, there existr ′ ∈ Ra0 andr ′′ ∈ Ra1 such that

0< r < r ′ < r ′′ < r < ∞.

By Lemma D.3-i),r ′′ ∈ Ra0, and thenr ′′ ∈ Ra0 ∩Ra1 = /0, which is impossible.
Therefore, (D.18) does not hold and we conclude 0< r ≤ r < ∞. We further assume
r = r. Then i)-ii) would imply

∫ 1
0 vr(y)Q0(dy|0) = vr(1), which is impossible since

vr is strictly increasing on[0,1] and (A3) holds. This proves iii).
iv) By the definition ofr andr , it can be shown using (D.6) thatθ (r) ∈ (0,1) for

r ∈ (r , r). By the continuous dependence of the functionvr(·) onr and the method of
proving [27, Lemma 10], we can show the continuity ofθ (r) on (0,1), and further
show limr→r+ θ (r) = 0 and limr→r− θ (r) = 1. Soθ (r) is continuous on[r, r]. If θ (r)
were not strictly increasing on[r, r ], there would existr < r1 < r2 < r such that

θ (r1)≥ θ (r2). (D.19)

If θ (r1) > θ (r2) in (D.19), by the continuity ofθ (r), θ (r) = 0, θ (r) = 1, and the
intermediate value theorem we may findr ′ ∈ (r , r1) such thatθ (r ′1) = θ (r2). Next,
we replacer1 by r ′1. Thus ifθ (r) is not strictly increasing, we may findr1 < r2 from
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(r, r) such thatθ (r1) = θ (r2) ∈ (0,1), which is a contradiction to Lemma D.1. This
proves iv). ⊓⊔

Remark D.2.By Lemmas D.3 and D.4,Ra1 = (0, r) andRa0 = (r,∞).
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25. Huang, M., Caines, P.E., Malhamé, R.P.: Individual andmass behaviour in large popula-

tion stochastic wireless power control problems: Centralized and Nash equilibrium solutions.
Proc. 42nd IEEE Conference on Decision and Control, pp. 98-105, Maui, HI (2003)
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