Binary Mean Field Stochastic Games:
Stationary Equilibria and Compar ative Statics

Minyi Huang and Yan Ma

Abstract This paper considers mean field games in a multi-agent Madkeision
process (MDP) framework. Each player has a continuum stadeb@ary action,
and benefits from the improvement of the condition of the al@opulation. Based
on an infinite horizon discounted individual cost, we shovgnce of a stationary
equilibrium, and prove its uniqueness under a positiveragligy condition. We
further analyze comparative statics of the stationaryldagisim by quantitatively
determining the impact of the effort cost.

1 Introduction

Mean field game theory provides a powerful methodology fduogng complexity
in the analysis and design of strategies in large populalyeramic games [25, 30,
37]. Following ideas in statistical physics, it takes a ammtm approach to specify
the aggregate impact of many individually insignificantygles and solves a special
stochastic optimal control problem from the point of viewaakpresentative player.
By this methodology, one may construct a set of decentidistetegies for the
original large but finite population model and showstblash equilibrium property
[25, 26, 30]. A related solution notion in Markov decision deds is the oblivious
equilibrium [55]. The readers are referred to [12, 16, 17,188 for an overview on
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mean field game theory and further references. For mean figdddptimal control,
see [12, 56], but the analysis in these models only invoh&sgle decision maker.

Dynamic games within an MDP setting originated from the wafrshapley and
are called stochastic games [21, 50]. Their mean field gateasion has been stud-
ied in the literature; see e.g. [3, 13, 46, 55]. Continuometmean field games with
finite state space can be found in [22, 35]. Our previous waik P8] studied a
class of mean field games in a multi-agent Markov decisiocgss (MDP) frame-
work. The players in [27] have continuum state spaces anarpiaction spaces,
and have coupling through their costs. The state of eacleplayised to model its
risk (or unfitness) level, which has random increase if nivaatontrol is taken.
Naturally, the one-stage cost of a player is an increasingtfon of its own state
apart from coupling with others. The motivation of this miag framework comes
from applications including network security investmeattes and flue vaccination
games [34, 38, 40]; when the one-stage cost is an increasimagién of the pop-
ulation average state, it reflects positive externalitMarkov decision processes
with binary action spaces also arise in control of queuesmaachine replacement
problems [4, 10]. Binary choice models have formed a sulgjéstgnificant inter-
est [8, 15, 48, 49, 54]. Our game model has connection witmgmous sequential
games [33], which combine stochastic game modeling withngilmoum of players.
In anonymous sequential games one determines the equifibes a joint state-
action distribution of the population and leaves the indlixl strategies unspecified
[33, Sec. 4], although there is an interpretation of randewhiactions for players
sharing a given state.

For both anonymous games and MDP based mean field gamesnatgtsolu-
tions with discount have been studied in the literature 83, Bhese works give more
focus on fixed point analysis to prove the existence of agstatly distribution. This
approach does not address ergodic behavior of individuatseopopulation while
assuming the population starts from the steady-statélitibn at the initial time.
Thus, there is a need to examine whether the individualectlely have the ability
to move into that distribution at all when they have a genieral distribution. Our
ergodic analysis based approach will provide justificatibthe stationary solution
regarding the population’s ability to settle down arounel limiting distribution.

The previous work [27, 28] studied the finite horizon meardfgame by show-
ing existence of a solution with threshold policies, andemah infinite horizon
discounted cost further proved there is at most one statjagauilibrium for which
existence was not established. A similar continuous timdeting is introduced in
[57], which addresses Poisson state jumps and impulseatoltitshould be noted
that except for linear-quadratic models [9, 26, 31, 39, ARjan field games rarely
have closed-form solutions and often rely on heavy numkcaraputations. Within
this context, the consideration of structured solutionshsas threshold policies, is
of particular interest from the point of view of efficient cpotation and simple
implementation. Under such a policy, the individual stateslve as regenerative
processes [6, 51].

By exploiting stochastic monotonicity, this paper adoptseygeneral state tran-
sition assumptions than in [27, 28] and continues the aisatysthe stationary equa-
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tion system. The first contribution of the present paperéspioof of the existence
of a stationary equilibrium. Our analysis depends on chegckie continuous de-
pendence of the limiting state distribution on the thredhmdrameter in the best
response. The existence and uniqueness analysis in thés pap appeared in a
preliminary form in the conference paper [29].

A key parameter in our game model is the effort cost. Intalivthis parameter
is a disincentive indicator of an individual for taking atiefforts, and in turn will
further impact the mean field forming the ambient environheénthat agent. This
suggests that we can study a family of mean field games patiaeteby the effort
costs and compare their solution behaviors. We addresénthie setup of com-
parative statics, which have a long history in the econoitgcdture [24, 42, 47]
and operations research [53] and provide the primary meessalyze the effect of
model parameter variations. For dynamic models, such asoaaic growth mod-
els, the analysis follows similar ideas and is sometimdedabmparative dynamics
[5, 11, 45, 47] by comparing two dynamic equilibria. In catand optimization,
such studies are usually called sensitivity analysis [14,32]. For comparative
statics in large static games and mean field games, see AuPanalysis is accom-
plished by performing perturbation analysis around theilibgiwm of the mean
field game.

The paper is organized as follows. Section 2 introduces #enrfield stochastic
game. The best response is analyzed in Section 3. Sectioovépexistence and
uniqueness of stationary equilibria. Comparative stadiesanalyzed in Section 5.
Section 6 concludes the paper.

2 The Markov Decision Process M odel

2.1 Dynamics and Costs

The system consists & players denoted by, 1 <i < N. Attmete Z, =
{0,1,2,...}, the state of is denoted by, and its action by}. For simplicity, we
consider a population of homogeneous (or symmetric) ptayeach player has state
spaceS = [0, 1] and action spaca = {ag,a;}. A value of S may be interpreted as
a risk or unfitness level. A player can either take inacti@a(@ or make an active
effort (asa;). For an interval, let (1) denote the Borefr-algebra of .

The state of each player evolves as a controlled Markov pgy@éhich is affected
only by its own action. For > 0 andx € S, the state has a transition kernel specified

by

P(x+1 € BJx =xa = 80) = Qo(BI), (1)
P(XLLl = O|X{ = Xvail = al) = 17 (2)
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whereQo(-|x) is a stochastic kernel defined Bre #(S) andQp([x,1]|x) = 1. By
the structure of)p, the state of the player deteriorates if no active contrtdken.
The vector proceséq,...x") constitutes a controlled Markov process in higher
dimension with its transition kernel defining a product meason (#(S))N for
given(xt,--- . at,...,aN).

Define the population average staf® = & 5N, %. The one stage cost of is

c(d. %" al) = R4, HM) VL gy

wherey > 0 andyl{a{:al} is the effort cost. The functioR > 0 is defined or5 x S

and models the risk-related cost. hétdenote the strategy of. We introduce the
infinite horizon discounted cost

JI(Xé,,X'al,Vl,7VN):E%BIC(X{,X§N)781|), 1S|SN (3)
t=

The standard methodology of mean field games may be appligpgrgximating
{xt(N),t > 0} by a deterministic sequende;,t > 0} which depends on the initial
condition of the system. One may solve the limiting optimahtrol problem of
< and derive a dynamic programming equation for its value tionadenoted by
Vi(t, X, (z)k_o), Wwhose dependence ois due to the time-varying sequen{z,t >
0}. Subsequently one derives another equation for the meah{figk > 0} by
averaging the individual states across the populatiors &pproach, however, has
the drawback of heavy computational load.

2.2 Stationary Equilibrium

We are interested in a steady-state form of the solution efntlean field game
starting with{z,t > 0}. Such steady state equations provide information on thg lon
time behavior of the solution and are of interest in their aigiht. They may also
be used for approximation purposes to compute stratediesafly. We introduce
the system

v =min[B [ V)Qey) +R2), BUO)+RKD Y], @)
z:/olxu(dx), (5)

wherey is a probability measure d® We say(v,z u,al(-)) is astationary equilib-
rium to (4)-(5) if i) the feedback policg'(-), as a mapping fror to {ap,a; }, is the
best response with respecizim (4), ii) given an initial distribution ok}J, {x,t>0}
under the policya' has its distribution converging (under a total variatiommar
only weakly) to the stationary distribution (or called limi distribution)y.
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We may interpret as the value function of an MDP with coﬂ;_t(xio,z,vi) =
E S oB'c(x,za). An alternative way to interpret (4)-(5) is that the initiihte of
<% has been sampled according to the “right” distributigrand thatz is obtained
by averaging an infinite number of such initial values by #he bf large numbers
[52]. A similar solution notion is adopted in [2, 3] but ergoitly is not part of their
solution specification.

Let the probability measurgy be the distribution ofR-valued random vari-
ablezy, k= 1,2. We sayp, stochastically dominateg;, and denoteu; <gt Ho,
if ta((y,0)) > pr((y,»)) (or equivalentlyP(Z, >y) > P(Zy >y)) for all y. It is
well known [44] thatu; <g o if and only if

Jwwmsiy) < [wreay Q)

for all increasing functionp (not necessarily strictly increasing) for which the two
integrals are finite. A stochastic kerng|(B|x), 0 < x < 1,B € #(S), is said to be
strictly stochastically increasing f (x) := [s@/(y)£2(dy|X) is strictly increasing in

x € Sfor any strictly increasing functiog : [0, 1] — R for which the integral is nec-
essarily finite.2(:|x) is said to be weakly continuousgf is continuous whenever
Y is continuous.

Let {¥,t > O} be a Markov process with state spgdéel], transition kernel
Qo(-|x) and initial stateYp = 0. So each of its trajectories is monotonically in-
creasing. Deﬁnerg0 = inf{t|\; > 8} for 6 € (0,1). It is clear thatrgé < rgé for
0<b< B <.

The following assumptions are introduced.

(A1) {X,i> 1} arei.i.d. random variables taking valuesSn

(A2) R(x,2) is a continuous function o8 x S. For each fixed, R(-,z) is strictly
increasing.

(A3) i) Qo(-|x) satisfiep([x,1]|x) = 1 for anyx, and is strictly stochastically in-
creasing; ii)Qo(dy|x) is weakly continuous and has a positive probability density
q(y|x) for each fixedk < 1; iii) for any small 0< d < 1, infyQop([1— J,1]|x) > 0.

(A4) R(x,-)isincreasing for each fixed

(A5)  limgyy Ergo = oo,

(A3)-iii) will be used to ensure the uniform ergodicity ofetltontrolled Markov
process. In fact, under (A3) we can sh&mgo < o, The following condition is a
special case of (A3).

(A3) There exists a random variable such tha(-|x) is equal to the law of
x4+ (x—1)¢& for some random variabl& with probability densityf; (x) > 0, a.e.
XeS.

When (A3) holds, we can verify (A5) by analyzing the stopping time=
inf{t|i_; & < 1— 0}, where{&,s > 1} is a sequence of i.i.d. random variables
with probability densityfs . For existence analysis of the mean field game, (A5) will
be used to ensure continuity of the mean field when the thigg¢happroaches 1.
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Proposition 1 The two conditions are equivalent:

) 1 <st H2, andpiy # Ho;
i) Jr @(y)pa(dy) < [ @(y)2(dy) for all strictly increasing functiorp for which

both integrals are finite.

Proof. Assume i) holds. By [44, Theorem 1.2.16], we have

®(Z1) <st 9(Z2), (7)

and soE@(Z;) < E@(Z,). Sincepy # Uy, there existyp such thatP(Z; > yp) #
P(Z2 > yo). Taker such thatp(yp) =r. Then

P(o(Z1) > ) # P(@(Z2) > ). (8)

If EQ(Z1) = E@(Z,) were true, by (7) and [44, Theorem 1.2.8[Z1) and@(Z)
would have the same distribution, which contradicts (8). &lacludeE@(Z;) <
E@(Z,), which is equivalent to ii).

Next we show ii) implies i). Lety be any increasing function satisfying (6)
with two finite integrals. When ii) holds, we takg = (¢ + 1+M’ € > 0. Then
J@a(dy) < [ @p2(dy) holds for alle > 0. Lettinge — 0, then (6) follows and
M1 <st M. Itis clearpy # p. O

3 Best Response

For this section we assume (A1)-(A3). We take any fixed|0, 1] and consider (4)
as a separate equation, which is rewritten below:

— min B/ Y)Qoldyx) +R(x2), BuO)+Rx2+y}.  (9)

Herezis not required to satisfy (5). In relation to the mean fieldhgathe resulting
optimal policy will be called the best response with resgect. DenoteG(x) =

Jov(y)Qo(dy[x).

Lemma 1. i) Equation(9) has a unique solution & C([0,1],R).
i) v is strictly increasing.
iii) The optimal policy is determined as follows:
a) If BG(1) < Bv(0) + . & (x) = .
b) If BG(1) = Bv(0) +y, & (1) = a and d(x) = ap for x < 1.
¢) I BG(0) > Bv(0) +y. d (x) = ay.
d) If BG(0) < Bv(0) + y < pG(1), there exists a unique’xe (0,1) and d is a
threshold policy with parameterxi.e., d(x) = ay if x > x* and d(x) = ag if x < x*.

Proof. Define the dynamic programming operator
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(2909 =min{B [ 9)Qu(dy) + Rx2), B0 +RK2) v}, (10

which is fromC([0,1],R) to itself. The proving method in [27], [28, Lemma 6],
which assumed (A3, can be extended to the present equation (9) in a straightfo
ward manner.

In particular, for the proof of ii) and iii), we obtain proggively stronger prop-
erties ofv andG. First, denotingyp = 0 andgy 1 = -Zgk for k> 0, we use a suc-
cessive approximation procedure to show thistincreasing, which implies th&
is continuous and increasing by weak continuity and moriotiyrof Q. SinceR
is strictly increasing irx, by the right hand side of (9), we show thais strictly
increasing, which implies the same property®lby strict monotonicity 0f)g. O

For the optimal policy specified in part iii) of Lemma 1, we darmally denote
the threshold parameters for the corresponding casés=al", b)6 =1,c)0 =
0, and d)6 = x*. Such a policy will be called #-threshold policy. We give the
condition for@ = 0 in the best response.

Lemma 2. For y > 0 and v solving9),
BG(0) = Bv(0) +vy (11)

holds if and only if

v<B [ Ry.2Q(dy0) - BRO.2) (12)

Proof. We show necessity first. Suppose (11) holds. Note @&} is strictly in-
creasing orf0, 1]. Equation (9) reduces to

v(X) = Bv(0) + R(x,2) + vy, (13)
BG(x) = Bv(0) +y, Vx. (14)

From (13), we uniquely solve

v(0)

[R(0,2+Vy], v(x)= [R(0,2) + V] + R(x,2) +, (15)

_ 1 B
S 1-p 1-B
which combined with (14) implies (12).

We continue to show sufficiency. f> 0 satisfies (12), we use (15) to construct
v and verify (13) and (14). Seis the unique solution of (9) satisfying (11)0

The next lemma gives the condition f8r= 17 in the best response.
Lemma 3. For y > 0 and v solving9), we have
BG(1) <Bv(0) +y (16)

if and only if
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y> BVp(1) —Vp(0)], 17

where \(x) € C([0,1],R) is the unique solution of

X1 =B [ Ve(y)Qu(ayx) +Rx2) 19)

Proof. By Banach’s fixed point theorem, we can show that (18) has quenso-
lution. Next, by a successive approximati{)‘mgk),k > 0} with Véo) =0 in the
fixed point equation, we can further show tNatis strictly increasing. Moreover,
folvﬁ (y)Qo(dy|x) is increasing inx by monotonicity 0fQ.

We show necessity. Sin€is strictly increasing, (16) implies that the right hand
side of (9) now reduces to the first term within the parentbese thav = Vg. So
(17) follows.

To show sufficiency, suppose (17) holds. We have

B [ Va(y)Qo(ayi) < V(1) < BYp(0) £y,

Thereforey := Vg gives the unique solution of (9) affG(1) < Bv(0)+y. O

Example 1LetR(x,z) = x(c+ z), wherec > 0. TakeQo(-|x) as uniform distribution
on|[x,1]. Then (18) reduces to

1
V(%) = 1‘% /X Vs (y)dy+R(x,2).

Define ¢(x) = fxlvﬁ (y)dy, x € [0,1]. Theng/(x) = —%(p(x) —R(x,2) holds and
we solve

where the right hand side converges to &as 1~. We further obtain

Vp(x) = B(1—x)P? /X ' (T(_S’ SZ))B ds+R(x,2)

for x € [0,1), and the right hand side has the Iinw asx — 1~. This gives a

well defineavg € C([0,1],R). ThereforeV(0) = (1%% Then (17) reduces to
y> 2B c;z)
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4 Existence of Stationary Equilibria

Assume (A1)-(A5) for this section. Define the clas% of probability measures
on S as follows:v € &, if there exist a constart, > 0 and a Borel measurable
functiong(x) > 0 defined orj0, 1] such that

V(B) = /Bg(x)dx+ ¢y 18(0),

whereB € Z(S) and % is the indicator function oB. When restricted t¢0, 1], v is
absolutely continuous with respect to the Lebesgue measiiPe

LetX be a random variable with distributione 2. Set = X. DefineYo =x_ ;
by applyinga} = ao. Further definer; = X, ; by applying ther-threshold policye}
with r € (0,1).

Lemma 4. The distributionv; of ¥ is in #25 fori =0, 1.

Proof. Let q(y|x) denote the density function d®o(:|x) for x € [0,1), where
q(y|x) = 0 fory < x. Denote

G)= [ avvdn, ye (1),

and _
au(y) = / a(yx)v(dx), ye (0,1).

JOKX<YAr

Then it can be checked that
PYocB) = [ goly)dy. PV eB)= [ qiy)dy+P(X = 1)1s(0).

This completes the lemma.Od

In order to show that (4)-(5) has a solution, we define a mappinS — S by
the following rule. Forz € [0,1], we solve (4) to obtain a well defined threshold
8(2) € [0,1JU {1"}, which in turn determines a limiting distributiqmg, of the
closed-loop state processby Lemma A.1. Define

1
r@= [ xHo (dv.

If I has a fixed point, we obtain a solution to (4)-(5).
We analyze the case where the best response gives a stosttivp threshold.
Assume

1
y>B 2231(] /O [R(Y,2) — R(0,2)|Qo(dy]0). (19)
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Note that under a zero threshold policy, the behavior of thie process is sensitive
to a positive perturbation of the threshold. The above d@ensures that the zero
threshold will not occur, and this will ensure continuity/ofto facilitate the fixed
point analysis.

Lemma 5. Assumg19). Thenl™ (2) is continuous on0, 1].

Proof. Letz € [0, 1] be fixed, giving a corresponding threshold paraméjerhen
(9) is solved usingg. We check continuity at; and consider 3 cases.

Case i) € (0,1). Let my be the stationary distribution with thé-threshold
policy. Consider any fixed > 0. There exists; such that for alb € (6p — €1, 60+
&) C (0,1), | J&xm(dx) — [3xm(dX)| < &, wherer is the stationary distribution
associated witl. This follows since liny_, g, | T— mo||Tv = 0 by Lemma A.3. Now
by the continuous dependence of the solution of the dynarogrpmming equation
onz, we can select a sufficiently smalt> 0 such that for allz— z| < 8, zgenerates
athreshold parametére (6 — &1, 6o + £1), which implies|I" (2) — I (z)| < &.

Case ii)zp givesBy = 1. Thenl" (z5) = 1. Fix anye > 0. Then we can show there
existsg; such that for all € (1— €1,1), the associated stationary distributiog
gives|l (z0) — folxrre(dx)| < &, where we use (A5) and the right hand side of (C.1)
to estimate a lower bound f(féxrre(dx). Now, there exist® > 0 such that any
satisfying|z— z| < d gives a threshol® either in(1— &,1) or equal to 1 or 1;
for each case, we havE (z) — jblxne(dx)| <E.

Case iii)zg gives 6y = 1™. Then there existd > 0 such that any satisfying
|z— 2| < d gives a threshold paramet®r=1". Thenl (z) = () =1. O

Theorem 1. Assumé&19). There exists a stationary equilibrium ¢)-(5).

Proof. Sincerl is a continuous function frorf0, 1] to [0, 1] by Lemma 5, the theo-
rem follows from Brouwer’s fixed point theoremO

Let x{’e and iy denote the state process and its stationary distributespec-
tively, under af-threshold policy. Denote(6) = folxrre(dx). We have the first
comparison theorem on monotonicity.

Lemma®6. z(6;) <z(6,) for0< 6; < 6, < 1.

Proof. By the ergodicity of{x{’e' ,t >0} in Lemma A.2, we have the representation
2(8) = limy o £ 7% w.p.1. Lemma C.2 implies(6;) < z(6,). O

To establish uniqueness, we consitk,z) = R;(x)Rx(z), whereR; > 0 and
R, > 0, and which satisfies (A1)-(A5). We further make the follogzassumption.

(AB) Ry > 0Ois strictly increasing ois.

This assumption indicates positive externalities sincimdividual benefits from
the decrease of the population average state. This conditis a crucial role in the
uniqueness analysis.

Given the product form oR, now (9) takes the form:
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V00 =min[B [ V)Qo(ayx) + Ri(xRe(2), BV(0) +RINRe(2) ]

Consider <z <z <1 and

1
M (09 =min[B | Vi(y)Qo(dy) + Ra¥Re(a).  BYI(0) +RiORe(2) +Y].
(20)
Denote the optimal policy as a threshold policy with param@tin [0, 1] or equal
to 1*, where we follow the interpretation in Section 36f = 1. We state the

second comparison theorem about the threshold parametdes different mean
field parameters.

Theorem 2. 6; and 6, in (20) are specified according to the following scenarios:
i) If 61 =0, then we have eithel, € [0,1] or 6, = 1%.
i) If 6; € (0,1), we have either a, € (6;,1), orb) 6, =1,0rc) 6, = 1*.
iIf 6,=1,0,=1%.
iV) If 91 = 1+, 92 =1

Proof. SinceRx(z) > Rx(z2) > 0, we divide both sides of (20) i (z) and define

V= WVZI)' Then 0< y1 < y». The dynamic programming equation reduces to (D.2).

Subsequently, the optimal policy is determined accordiiggmma D.4. O

Corollary 1. Assume (A6) in addition to the assumptions in Theorem 1. Tieen
systen(4)-(5) has a unique stationary equilibrium.

Proof. The proof is similar to [27, 28], which assumed (A3 O.

5 Comparative Statics

This section assumes (A1)-(A6). Consider the two solutietesns

1) = min[B [ 0y)Qo(ayx) + Ri(0Re(,  BAO) + R(Re(2) + 7],
1

z= [ xii(d),
(21)

and
v = min B [ V) Qoldy) + RaOR(, BYIO) + Ra(xRe(2) +7]

z= /(;lxu(dx).
(22)
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Supposey satisfies (19). By Corollary 1, (21) has a unique solutionodet by
(V,Z i, 8), where@ is the threshold parameter. We further assuhe (0,1). Sup-
posey > y. Then we can uniquely solv@/,z i, 8). The next theorem presents a
result on monotone comparative statics [53].

Theorem 3. If y > y, we have
0>0, z>7 V>V

Proof. We prove by contradiction. Assun&< 6. Then by Lemma 6z < z, and
therefore,v{z) > %. By the method of proving Theorem 2, we would establish
6 > 6, which contradicts the assumptién< 8. We concluded > 6. By Lemma 6
and Remark B.1, we have> z. For (21), we use value iteration to approximate —
by an increasing sequence of functiapsvith vo = 0. Similarly,v is approximated
by vk with vo = 0. By induction, we havey > v for all k. This proves > v.

Next, we havgBv(0) + Ry (X)Rx(z) + y > BV(0) + Ri(X)R2(Z) + y on [0, 1], and
B Jo v(y)Qo(dylx) +Ri()Re(2) > B Jo VIY)Qo(dylx) +Re(X)Re(Z) on (0, 1]. By the
method in [27, Lemma 2], we have > v on (0,1]. Then folv(y)Qo(dy|0) >
fol\T(y)Qo(dwO). This further implies/(0) > v(0). O

Remark 11t is possible to havé = 17 in Theorem 3.

By a continuity argument, we can further show Jigy(|6 — 6| +z—7 +
sup|v(x) — v(x)|) = 0. In the analysis below, we take= y+ ¢ for some small
€ > 0. For this section, we further introduce the following asgtion.

(A7) Fory>y, (v,z 0) has the representation

V(X) = V(X) + ew(x) +0(g), 0<x<1, (23)
z=17+¢€z,+0(¢), (24)
6=6+¢e6,+0(¢), (25)

wherev,z 0 are solved depending on the paramgtandw is a function defined
on|[0,1]. The derivativeg, and6, aty exist, andR(z) is differentiable or0, 1].
For 0< x < 1, the probability density functiog(y|x), y € [x, 1], for Qo(dy|X) is
continuous o (x,y)[0 < x <y < 1}. Moreover,% exists and is continuous
in (x,y).

We aim to provide a characterizationwfz,, 6y.
Theorem 4. The function w satisfies
1 _
wio — | B | WOIQu(@) + RiRY @z, 0<x<B. 0
w(0) + R (X)R(2)z, + 1, 0 <x<1

Proof. We have
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7 =8 [ Qe + RixRe(Z), x< (0.8

and
B/ y)Qo(dyix) + Ri(X)Re(2), x € [0,6].

Note thaté > 6. For any fixedk € [0, 9_] we have

V) 1) = B [ (W) ~ ) Qofy0) + Ra(¥)(Rel2) ().

Then the equation ofi(x) for x € [0, 6] is derived. We similarly treat the cases
(6,1. O

Remark 2In generalw has discontinuity ak = 6, so thatf3 folw(y)Qo(dy|6) +
Bw(0) + 1. We give some interpretation. Let the value function be emitasv(x, y)

to explicitly indicatey. Let the rectangl€0, 1] x [ya, ] be a region of interest in
which (x,y) varies so that the value function defines a continuous seurfelcen
(6,y) starts a8, y) and traces out the curve of an increasing function alonghwhic
the expression of the value function has a switch, and thgeviinction surface
may be visualized as two pieces glued together along theedara non-smooth
way. The value ofv amounts to finding on the surface the directional derivative
the direction ofy; and therefore, discontinuity may occunat 6.

To better understand the solution of (26), we consider timege equation

<x<
W = B [ WO)Qdy) + Ri(xRy(z0)co, 0= x< b, )
BW(0) + Ry (x)R5(20)Co + 1, 6o <x<1,

wherecy, zp € [0,1] and6y € (0,1) are arbitrarily chosen and fixed. LB{[0, 1], R)
be the Banach space of bounded Borel measurable functidhsnerm ||g|| =
sup|g(x)|. By a contraction mapping, we can show (27) has a uniqueisolut
W € B([0,1],R).

We continue to characterize the sensitivifyof the threshold. Recall the partial
derivative%{(‘x) .

Lemma 7. We have

] [y 2921 oy a3)a(616)] o, = 1.+ pw(0) - B [ wiy)olcy6).
@8)

Proof. Write y = y+ €. By the property of the threshold, we have

B [ q)Qo(0y18) = BA0)+7. B [ vy)Q(eyi6) = B(0) + T+e.
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Note thatd > 6. We check
8= [ VQolavie) - [ ) Qulcid)

1 — 6 —
= [ V() - [ Ty)Qule8) - [ w)n(ay8)
= [ V() - [ Ty)Qulie)

1 _ -0 _
+ [ T)Qo(ei) — [ T)o(ei8) — [ qy)Qo(avid)

= [ wyiai8)dy+ (8- 8) [y [0ai6)/oxdy~ (6 - 8@

~—

+o(e+]6-8])
= [Cwyjai8idy+ (8- 8) [y [0ai8)/oxdy -~ (6 - B EaEl8)
+o(e+]0—0)).
Note that
BA = BIv(0)~0)] +¢
We derive

(I)

B [ w)Qotavi®) + 88, [y 292 0y ad)a(618), = puio) +1

This completes the proof.00

Lemma 8. Given the threshol@ € (0,1), the stationary distributiopu has a prob-
ability density function (p.d.f.) () on (0,1], and u({0}) = 1, where(p, ) is
determined by

1
= /5 p(x)dx, (29)
| aty)pdy+ reao), 0 <x< 8.

P(X) =4 "6 _ (30)
| aeypdy-+ mao), 6<x<1

Proof. Let & be the dirac measurext= 0. For any Borel subs&c [0, 1], we have
H(B) = [31Qo(BIY)1y5) + %(B)L,g)]H(dy). Then it can be checked thi, o)
satisfying the above equations determines the statioristrjtaition. Now we show
there exists a unique solution. Lag > 0 be a constant to be determined. Consider
the Volterra integral equation

/ q(xly)p(y)dy+ meq(x|0), 0<x<86, (31)



Binary Mean Field Stochastic Games: Stationary Equilibrid Comparative Statics 15

and we obtain a unique solutignin C(]0, 8],R) (see e.g. [36, p.33)). In fagtis a
nonnegative function wit%e p(x)dx> 0. Subsequently, we further determing 0
on[8,1] by (30). The solutiorp on [0, 1] depends linearly om and so there exists
a uniquerg such thatjb1 p(x)dx+ 1 = 1. After we uniquely solvep for (30), we

integrate both sides of this equation[onl] and obtainjbl p(x)dx= jbe p(x)dx+ o,
which implies that (29) is satisfied.O

5.1 Special Case

Now we suppos€p(dy|x) has uniform distribution offx, 1] for all fixed 0< x < 1,
andR(x,z) = Ry (X)Rz(2) = x(c+ z), whereRy(X) = X, Ry(z) = c+zandc > 0. In
this case, (A2)-(A6) are satisfied. For (21), we have

B

-1
\T(X) _ {m/x \T(y)dy+ Rl(X)RZ(Z)v ’ (32)

BV(0) +Ri(X)Rx(2) +,
Denote (x) = [ V(y)dy. Then

d(x) = —%(q) —Ri(¥Rx(Z), 0<x<86.

Taking the initial conditiorp (0), we have

600 = $(0)(1—x° ~ (1P [ R D ar

Oon|0, 6],

Ix) = (1—x)P~(0) - B(1— X)Bfl/ox %dr FRI(XR(D)

B(c+2) B 2x
Tt AT e )

By the continuity ofvand its form on@, 1], we have

— (1-x)PL[W(0) -

7(6) = BU0) + B(Z+0) + 7. (33)

Hence,

c+2[(1-0P -1 Bc+70
(1-B)(2-B) 2=~

On the other hand, sinaeis increasing and is the threshold, we have

(1-8)P1— pjo) = P! (34)
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_ 1 1 _
:B'/Q_[BWO) +(c+2y+ 7 =5dy+ (c+28
B(c +7

B*V0) +By+ (2+1)(c+76
which combined with (33) gives
P c+91+6)= (B0 + (1), (3)

Given the special form dp(dy|x), (26) becomes

1 _
w4 o L WOy ROOR@, 0<x<6, g
Bw(0) + Ri(X)R5(Z)z, + 1, 6<x<1l

The computation ofv now reduces to uniquely solving(0). By the expression of
won [0, 8], we have

W(8) = B [ w)Qo(ay|d) + Ru(GR(T
:BZW(O)—i—B—i-Rl( IR, ( ijy+BR/ Z)ZV/ Ra(

— B2W(0) + B+ Bz, + Bz, Ze. (37)
Forx € [0, 8], we further write
1
wix) = 72 [ wiy)dy+ Ri9Ry @,
and solve
B . (1-xFt 1 1-x
w(x) = (1= W(0) + 2% Bzv[u—ﬁ)(z—m 5 2p)

which further gives

w(B) = (1- 8)P'w(0) + 2,8 — Bz | == a-of? 1 ,1-6)

By (37)—(38), we have

Ba-8P w0 =1+7,( 50+ +3

Now from (30) we have



Binary Mean Field Stochastic Games: Stationary Equilibrid Comparative Statics
"X
0o l-y
9 1 —

——p(y)dy+7H, 0<x<6,
p(x) =

which determines

whererp = T8 We determine the mean field

z_/ Xp(X dx+/ xp(x)dx= 1—Q—In( -0)).
We further obtaingZ aty as

In(1-6) -3+ ;%5
YT p—in1-e)p

(40)

(41)

17

We note that a perturbation analysis directly based on thergécase (30) is more

complicated.
Now (28) reduces to

/ _ Bu6)
1-6J6 1-6 1-0

|8 =1+ Bw(0) 3/ —dy
By the expression of in (32) andw in (36) atf = 6, we obtain

(1—B)\R15_); 6(c+7 8, = 1+ Bw(0) — w(B) + Bz,

Recalling (33) and (37), we have

(1—B)[BV(0) + ] — BO(Z+c) 1+6
1-6

By combining (34), (35) and (40), we have

— __Bfl_ —
WO):[(1—9)371_5171[3(”5[(1 6)F 1 -1 _B(C+i)6+ﬁ7

(1-B)(2-pB) 2-pB
5 21-B)BNO)+7)
Be+g
— 1 1-6 —
z —In(l—@)( > —In(1-9)).

Oy~ B(1~B)W(O0) +——PBz=1-B.

(42)

(43)
(44)

(45)
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451

4 /
35 —

Fig. 1 Value functionv and perturbation functiow

Next, combining (39), (41) and (42), we obtain

L_PIPVO LV _BOE+ g 1 pywo)+ 108z~ 1-p. (40

1-6
_ ~ 5 B 1+6 (1-6PF1 1-6 1
B 1-06)P 1_B]w(0)_1+zy( > +(1_B)(2_B)+2_B—1_B),
(47)
_9)_31 4
In(1-6)-3+1%; )

YT 2-mE-e)) "

After (v(0),z, 5) has been determined from (43)-(45), the above gives a |evpaa-
tion system with unknowns(0), 6, andz,.

Example 2We takeR;(x) = x andR,(z) = 0.5+ z y = 0.5. We numerically solve
(43)-(45) to obtainv(0) = 3.497854 6 = 0.485162 z= 0.345854, and (46)-(48)
to obtainw(0) = 4.563055 6, = 1.162861 z, = 0.336380. The curves ofx) and
w(x) are displayed in Fig. 1, whene has a discontinuity ax = 6 as discussed
in Remark 2. The positive value &, implies the threshold increases wigh as
asserted in Theorem 3.

6 Conclusion

This paper considers mean field games in a framework of biki@nkov decision
processes (MDP) and establishes existence and uniquehstgionary equilib-
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ria. The resulting policy has a threshold structure. Wehierranalyze comparative
statics to address the impact of parameter variations imthael.

For future research, there are some potentially interggtitensions. One may
consider a heterogenous population and study the emergérfoee-riders who
care more about their own effort costs and have less inaetdicontribute to the
common benefit of the population. Another modelling of a gulifferent nature
involves negative externalities where other players’ ioyement brings more pres-
sure on the player in question. For instance, this arisesnmpetitions for market
share. The modelling and analysis of the agent behaviobeitif interest.

Appendix A: Preliminaries on Ergodicity

Assume (A3). The next two lemmas determine the limitingrdiation of the state
process under threshold policies.

LemmaA.1. i) If 8 =0, then the distribution ofixemains to be the dirac measure
& forallt > 1, for any 5%, _

i) If 6=1o0r 6 =1", the distribution of kconverges to the dirac measude
weakly.

Proof. Part i) is obvious and part ii) follows from (A3).0

Let x{*e denote the state process generated bydthlereshold policy withf €
(0,1), and letP}(x, -) be the distribution o&® givenx;® = x.

LemmaA.2. For 6 € (0,1), {x{’e,t > 0} is uniformly ergodic with stationary prob-
ability distribution g, i.e.,

sup|[Ph(x,) — 1yl rv < Kr', (A.1)

XeS

for some constants i O and re (0,1), where|| - ||ty is the total variation norm of
signed measures.

Proof. The proofis similar to that of the ergodicity theorem in [2®hich assumed
(A3"). We use (A3)-iii) to estimate. O
We takeCs = {0} as a small set anél € (0,1). The 6-threshold policy gives

. . 1
P(’ = 0jxy’ = 0) > /e q(y|0)dy=: €. (A.2)

So for any Borel seB, P(xiz’e € B|x89 =0) > g (B), wheredy is the dirac measure.
For 6’ in a small neighborhood @, we can ensure that ti#-threshold policy gives

Y] i ol &
P(x” €Blx;” =0)>

0
- %(B). (A.3)
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Lemma A.3. Supposé, 8’ € (0,1) for two threshold policies. Let the correspond-
ing stationary distributions of the state processrbgnd 7. Then

lim || — mmi|tv = 0.
Jim |l v

Proof. Fix 8 € (0,1). By (A.3) and [41], there exist a neighborhobg= (6 —
Ko, 0 + Ko) C (0,1) and two constants, r € (0,1) such that for alb’ < |y,

||Pte(X,-) — 7THTV < Crt, HPé,(X, ) — T[’HTV < Crt, VX e [O, 1].
Subsequently,
|7 — mllrv < [|P3:(0,-) — P§(0,-)[|rv +2Cr".

For any givere > 0, fix a largeko such that 2r'v < £/2. We show for alle’ suffi-
ciently close to9,
||P§9(O, )= PgO(O, v < €/2.

Given two probability measures, pf, define the probability measures, 1 and
W | |
Hia(B) = [Py BI(dy). ,a(B) = [ Po(vB ()

for Borel setB C [0,1]. Then
|He1(B) — 14 (B) < | /S Po(y, B) ik (dy) — /S Por (¥, B) ke (dy)|

+| [[PovB)e(dy) — [[Po(yBIK (@)
S JS
=:D1+Do.

We have
D2 = | [ Po (3. B)1a(dy)— [ Po(y B (dy)| < 2k — rv.
Denoted = min{6,0’} and@ = max{0,6’}. Then
D= [ QolBIY)(ay) + 1s(0)14(16.8)] < w([8.9)).
Settingpo = py = do, thenpy = Py(0,-), ki = P}, (0,-). Hence,
|Ps (0,B) — P5"*(0,B)| < 2||Py(0,) —Py(0,-)[lrv + P5(0,(6,8)),  (A.4)
which implies

IPS(0,) — P50, ) [|rv < 4][P§,(0,) — P5(0, ) [lrv + 2P5(0,[6,6')).  (A.5)
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For Lo = p = &, we haveP}(0,-) = P(0,-). Itis clear from (A.5) and Lemma 4
that for each > 1,

lim ||P5(0,-) — P5(0,-)|ltv =0, lim P§(0,(6,8)) = 0.
0'—06 0'—0

Therefore, for the fixel, there exist® > 0 such that for alp’ satisfying|6’ — 6| <
0, HPg‘,’(O, )= Pgo(o, Jlrv < § and|| — mj|tv < &. The lemma follows. O

Appendix B: Cycle Average of A Regenerative Process

Let 0<r < r’ < 1. Consider a Markov procedy;,t > 0} with state spac0, 1]
and transition kernéDy (-|y) which satisfieQy ([y, 1]|y) = 1 for anyy € [0,1] and is
stochastically increasing. Suppoge= yo < r. Define the stopping times

T=inf{t]y >r}, T =inf{t|]y>r'}.
LemmaB.1. IfET < o, then EJ{_,¥; < 0 and

Exfo%  EYo+EYi+ 32 1 EMMr1lpyen)
1+Et 2+ S P(Yc<T)

(B.1)

Proof. Since 0<Y; <1w.p.LEY[ oY <1+Ert.ltisclearthaft >k} = {Y_1 <
r} fork > 1. We have

Er= gP(rzk):1+§P(Yk<r), (B.2)
k=1 k=1

and

T 0 k
E Y, =E Ye | 1
-3 (50 2w

=EYo+EYi+ 5 E(Mdrk)
K=2

=EYo+EVi+ ) E(Vigaliy<r))-
=]

The lemma follows. O
Lemma B.2. Assume E' < «. We have

Eyiot < Eyiot

. B.3
1+Et — 1+4+ET (B:3)

Proof. ET <  sincer < v’ w.p.1. Fork > 1, denote
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k=P <r), m=Pr<Ye<r),
me =EMaalygery)s A =EMalpayery)

By LemmaB.1,
ESio%t  EYo+EWVi+3,m
1+ET 243 P
ESfo% _ EYo+EYi+3R o (mc+4)
1+ET 2+ v (pk+m)

So (B.3) is equivalent to
EYo+EY1+ > m)(d md < (Y M2+ D i) (B.4)
k=1 K=1 K=1 k=1
By the stochastic monotonicity @}y, we have

1
ElYicr1Lpyeary Yk = Liyer) /O yQv (dy[Yk)
1
< 1{Yk<r} /0 yQy(dy|r) =! CI':I-{Yk<r}-
Note that
Cr =/ yQv(dyir) >r. (B.5)
Jy>r
Moreover,
1
E[Yk+11{r§Yk<r’}|Yk] = 1{r§Yk<r’}/O yQY(dYIYk)

2 Cr 1{I’§Yk<l’/}'

It follows that

Mg = EMa1liyen] <o, Ak = EMa1lir<yary] > Gk (B.6)

SinceYg=yp <,
1
E[Y1|Yo] :/o yQv (dyiYo) < ¢:.

HenceE(Yo+ VY1) <r-+c¢. By (B.6) and (B.5),
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(EYo+EY1+ i mk)(i M) —(iﬂk)(ﬂr i Pk)
k=1 k=1 k=1 k=1

[

T r > T 00 ? 00
<(r+c+¢ k;pk)(k;”k) ¢ (k;nk)( +kZ1pk)

8

=(r—c¢)) <0,
k=1

which establishes (B.4).0

Remark B.1If for eachy € [0,1), Qy(dXy) has probability density functiagy (x|y) >
0 forx e (y,1), thenc, >r andny > O for allk > 1. In this case, a strict inequality
holds for (B.3). O

Appendix C

We assume (A3). Le{x{’e,t > 0} be the Markov chain generated byehreshold
policy with0< 6 < 1, Wherexge is given. By Lemma A.2{x{’9,t > 0} is ergodic.
We next define an auxiliary Markov chaify;,t > 0} with Y, = 0 and the same
transition kernel ax{’e. DenoteS = Z}:oYi fort > 0. Definetr = inf{t|Y; > 6}.

LemmaC.1. We have

1k71 ES[
im >y Y=
Kok T 1+ ET

w.p.1. (C.1)

Proof. By (A3), we can shovwET < «. Since{Y;,t > 0} has the same transition
probability kernel as{x{’e,t > 0}, it is ergodic, and therefore the left hand side of
(C.1) has a constant limit w.p.1. Defifig = 0 andT, as the time fofY;,t > 0} to
return to state O for theth time. SoT; = 7+ 1. DefineB, = thQ}nllet forn>1.We
observe thafY;,t > 0} is a regenerative process (see e.g. [6, 51] and [7, Theorem
4]) with regeneration time$§T,,n > 1} and that{By,n > 1} is a sequence of i.i.d.
random variables. Note thBi = S; is the sum ofr + 1 terms. By the strong law of
large numbers for regenerative processes [6, pp. 177]etheb follows. O

Suppose & 6 < 8’ < 1. Then there exist two constai@g, Cy such that

. 1k71i9 . 1k71i9/
lim P X~ =Cg, im X X~ =Cgq, w.p.l.

I
k—oo K /& k—eo K /&
Lemma C.2. We have @ < Cgy.

Proqf. Due to t_he ergodicity of the Markov chai@g (resp.,Cqy) does not depend
onxg? (resp.,;?). Therefore, liM e & 2% = Co w.p.1. The lemma follows
from Lemmas C.1 and B.2.0
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Appendix D: An Auxiliary MDP

Assume (A3). This appendix introduces an auxiliary conprablem to show the
effect of the effort cost on the threshold parameter of thiénwad policy. The state
and control process€$x, a}),t > 0} are specified by (1)-(2). The cost has the form

F=E3 PRl + ey (D.1)
t=

whereR; is continuous and strictly increasing @ 1] andp € (0,1), r € (0,).
Let r take two different values & y; < y» and write the corresponding dynamic
programming equation

V() = min{p'/o' WY)Qo(dy) + Rix), oy <0>+R1<x>+w}, =12, xes
(D.2)

By the method in proving Lemma 1, it can be shown that therst®x unique
solutionv; € C([0,1],R) and that the optimal policg"' (x) is a threshold policy. If
P Jwi(y)Qo(dy|1) < pvi (0) + 1, & (x) = ap, and we follow the notation in Section
3 to denote the thresholl = 1*. Otherwisea"' (x) is a -threshold policy with
8 €[0,1],i.e.,a"(x) =ay if x> §, anda"! (x) = ag if x< §.

LemmaD.1. If 6; € (0,1), 6> # 6.
Proof. We prove by contradiction. Suppose for soéhe (0,1),
6=6,=06. (D.3)

Under (D.3), the resulting optimal policy leads to the reprgation (see e.g. [23,
pp- 22]) .
M =E 3 p RO+ Wlyay] . 1=22
t=
where{x,t > 0} is generated by th@-threshold policyg} (%) andx, = x. Denote
D1=Vo— 1.

For fixedx > 6 andxi0 = X, denote the resulting optimal state and control pro-
cesses by (%,4&),t > 0}. Thenay = a; w.p.1., and

Va(X) —Va(X) = dp1 + O1E zlpt Lig—ay X0
t=

Next considerx}J = 0 and denote the optimal state and control processes by
{(%,d),t > 0}.Then

V2(0) —v1(0) = &1E EOptl{é{:al} =:A.
t=
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Itis clear thatx; = 0 w.p.1. By the optimality principlef(%,&)),t > 1} may be
interpreted as the optimal state and control processeg ®fibP with initial state 0
att = 1. Hence the two processg&, & ),t > 1} and{(%,&),t > 0}, wherex}; = 0,
have the same finite dimensional distributions. In paréicul, , anda] have the
same distribution fot > 0. Therefore,

ESp M, . =ES P4 ...
t; {&=a1} tzo {d=a1}
It follows that
V2(X) = V1(X) = dp1+ pA, Vx> 6. (D.4)

Combining (D.2) and (D.3) gives

p [[UmQdye)=pu0) +y,  1=12

which implies

p [0 ~(X]Qo(d0) = 3+ pA. (0.5)

By Qo([0,8)|8) =0 and (D.4), (D.5) further yields(d1+ pA) = &1+ pA, which
is impossible since & p < 1 andd,1+ pA > 0. Therefore, (D.3) does not hold.
This completes the proof.00

For the MDP with cost (D.1), we continue to analyze the dyrgonogramming
equation

w() =min[p | )X LR, pw(O) LR 4] (D)

For each fixed € (0,), we obtain the optimal policy as a threshold policy with
threshold parameté(r). By evaluating the cost (D.1) associated with the two poli-
ciesa;(x) = ap anda} (X ) = a1, respectively, we have the prior estimate

Vi (X) < min{Tl_(Jg, Rl(x)+r+1’%R1p(o)}_ (D.7)

On the other hand, lefx,t > 0} with xb = X be generated by any fixed Markov
policy. Then

E 3 P(RU4) + Lig ) 2 Ri0 + 5 PRIO)

which implies
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R (0
V(%) > Ry(x) + 2RO (D.8)
1-p
Ifr> le+(pl), it follows from (D.7) that
1
p [ w(Qu(dy <pwi(0)+r. ¥ 09)

ie,0(r)=1".
LemmaD.2. There exist® > 0 such thatforallo <r < 9,
1
p [ w()Q(dy > pu(©)+r, ¥ (D.10)

and sof(r) =0.
Proof. By (D.8),

1 1 2
p [ (e > p [ Ruty) e+ A
1 2
> p [ Ray)o(eyio) + £,
and (D.7) gives
pvr(0)+r < lei(g) + ]_i—p

SinceRy (X) is strictly increasing,

1
Cr, == /0 Ry (¥)Qo(dy|0) — Ry(0) > 0.

And we have
P/O Vi (¥) Qo(dyx) = (P (0) +1) = pCry — 7.

It suffices to taked = p(1—p)Cr,. O
Define the nonempty sets

Hay = {r > 0|(D.9) hodg, Za = {r >0|(D.10) holdg.

Remark D.1We have(le+§)1),oo) C Hay and(0,0) C Zy, .

LemmaD.3. Let(r,v;) be the parameter and the associated solutio(Cir6).
i) If r > O satisfies
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1
p [ ve(y)Q(dy < pu(©)+1, ¥ (0-12)

thenany > ris in Za,.
ii) If r > O satisfies

1
p [ ve()Q(dy > pu(©) +r, ¥ (D.12)

thenany t € (0,r) is in Za,.

Proof. i) Forr’ > r, v is uniquely solved from (D.6) with’ in place ofr. We can
use (D.11) to verify

V() = min [p [ w0y R0, pw(0)+Rac) |

Hencev,, = v; for all x € [0, 1]. It follows thatp f3 v/ (y)Qo(dyix) < pvy/(0) +r’ for
all x. Hencer’ € Za,.

ii) By (D.6) and (D.12)y:(0) = B2 and subsequently,
PR1(0) +r

()= pu(0)+ Rufx + 7 = L

+ Ry (%).
By substitutingv; (0) andv, (x) into (D.12), we obtain

1
PRIO)+7 < p [ RiY)Q(dy). ¥x (D.13)

Now for O < r’ < r, we construct (x), as a candidate solution to (D.6) with
replaced by’, to satisfy

Ver(0) = pVir (0) + Re(0) + 1, Vir(X) = pVyr (0) + Ry (x) + 1, (D.14)
which gives
Vo (X) = %);r/ +Ri(X). (D.15)

We show that//(x) in (D.15) satisfies
1
pu(0)+1' < p [ vo(y)Q(dy), W (D.16)

which is equivalent tR;(0) + 1’ < p [+ Ri(y)Qo(dyx) for all x, which in turn
follows from (D.13). By (D.14) and (D.16Y,. indeed satisfies (D.6) withreplaced
byr'. Sor’ € #a,. O

Further define
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I =SUpZa,, T =IinfPZy,.

LemmaD.4. i) r satisfiesp jble(y)Qo(dym) =pv(0)+r,andB(r) =0.

i) T satisfiesp jblvr(y)Qo(dy| 1) =pw (1) = pw(0)+T, andO(T) = 1.

iii) We haved <r <T < oo,

iv) The threshold(r) as a function of re (0,) is continuous and strictly in-
creasing onr,T].

Proof. i)-ii) By Lemmas D.2 and D.3, we haver < o and 0< T < c. Assume
I = o0; thenZ,, = (0, ) giving Za, = 0, a contradiction. So & r < . Ford > 0
in Lemma D.2, we hav€0,d) C Za,,. Therefore, O< r < . Note thatv; depends
on the parametarcontinuously, i.e., liny__oSup Vi’ (X) — vr(x)| = 0. Hence

o [ w)Q0(a0) = pw(0) +1.

Now assume

1
P /O Ve (Y)Qo(dy|0) > pv; (0) +r. (D.17)

Then there exists a sufficiently smalt> 0 such that (D.17) still holds whef +
£,Vr1¢) replaces(r,v;); sinceg(x) = folng(y)Qo(dy|x) is increasing inx, then
I +& € Za,, which is impossible. Hence (D.17) does not hold, and thises i). ii)
can be shown in a similar manner.

To show iii), assume

0<T<rI <00, (D.18)
Then, recalling Remark D.1, there exiSE %, andr” € Z,, such that
O<T<r' <r'"<r <o,

By Lemma D.3-i),I"" € Za,, and thenr” € %a, N %a, = 0, which is impossible.
Therefore, (D.18) does not hold and we concludel0< T < c. We further assume
r =T. Then i)-ii) would implyj'(leL(y)Qo(dy|0) = V¢(1), which is impossible since
v; is strictly increasing off0, 1] and (A3) holds. This proves iii).

iv) By the definition ofr andr, it can be shown using (D.6) thétr) € (0,1) for
r € (r,T). By the continuous dependence of the functigh) onr and the method of
proving [27, Lemma 10], we can show the continuity@df) on (0,1), and further
show lim_,;+ 8(r) =0and lim_;- 68(r) = 1. So6(r) is continuous oifr,T]. If O(r)
were not strictly increasing oln, 7], there would exist < r; < ry < T such that

8(r1) > 6(rz). (D.19)
If 8(r1) > B(r2) in (D.19), by the continuity 0B(r), 6(r) =0, 8(F) = 1, and the

intermediate value theorem we may firide (r,r1) such thatd(r}) = 6(r2). Next,
we replace by rj. Thusif6(r) is not strictly increasing, we may fid < r, from



Binary Mean Field Stochastic Games: Stationary Equilibrid Comparative Statics 29

(r,T) such tha(r1) = 6(r2) € (0,1), which is a contradiction to Lemma D.1. This
provesiv). O

Remark D.2By Lemmas D.3 and D.4%,, = (0,r) and%a, = (T, ).
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