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Abstract— We consider a mean field LQG game model with
a major player and a large number of minor players which are
parametrized by a continuum set. We approximate the mean
field generated by the minor players by a kernel representation
using the Brownian motion of the major player, and local
optimal control problems are solved for both the major player
and a representative minor player via backward stochastic
differential equations. The resulting set of decentralized control
strategies based on consistent mean field approximations is
shown to have an ε-Nash equilibrium property.

I. INTRODUCTION

Large population stochastic dynamic games with mean

field coupling have experienced intense investigation in the

past decade; see, e.g., [1], [4], [10], [11], [12], [13], [16],

[17], [19], [20], [21], [22], [23]. To obtain low complexity

strategies, consistent mean field approximations provide a

powerful approach, and in the resulting solution, each agent

only needs to know its own state information and the

aggregate effect of the overall population which may be

pre-computed off-line. One may further establish an ε-Nash

equilibrium property for the set of control strategies [12].

The technique of consistent mean field approximations is

also applicable to optimization with a social objective [5],

[14], [20]. The survey [3] on differential games presents a

timely report of recent progresses in mean field game theory.

A naturally motivated generalization of the mean field

game modeling has been introduced in [9] where a major

player and a large number of minor players coexist pursuing

their individual interests. Such interaction models are often

seen in economic or engineering settings, simple examples

being a few large corporations and many much smaller

competitors, a network service provider and a large number

of small users with their respective objectives. Traditionally,

game models differentiating vastly different strengths of

players have been well studied in cooperative game theory,

and static models are usually considered [6], [7], [8].

The LQG model in [9] shows that the presence of the

major player causes an interesting phenomenon called the

lack of sufficient statistics. More specifically, in order to

obtain asymptotic equilibrium strategies, the major player

cannot simply use a strategy as a function of its current state

and time; for a minor player, it cannot simply use the current

states of the major player and itself. To overcome this lack

of sufficient statistics for decision, the system dynamics are

augmented by adding a new state, which approximates the
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mean field and is driven by the major player’s state. This

additional state enters the obtained decentralized strategy of

each player and it captures the past history of the major

player.

A crucial modeling assumption in [9] is that the minor

players are from a finite number of classes labelled by a set

{1, . . . ,K}, where players in each class share the same set

of parameters in their dynamics and costs. The size of the

additional state introduced in [9] depends on the number of

classes so that it provides sub-mean field approximations for

different classes, and this approach becomes invalid when

the dynamic parameters are from an infinite set.

In this paper, we consider a population of minor players

parametrized by an infinite set such as a continuum, and

seek a different approach for mean field approximations. Due

to the linear quadratic structure of the game with a finite

number of players, it is plausible to assume that the limiting

mean field is a Gaussian process and may be represented

by using the driving noise of the major player. Eventually

we will justify this argument by showing consistency of the

mean field approximation. Given the above representation of

the limiting mean field, we may approximate the original

problems of the major player and a typical minor player by

stochastic control problems with random coefficients in the

dynamics and costs [2], [24]. This further enables the use

of powerful tools from the theory of backward stochastic

differential equations [2]. Also, the Gaussian property of

various processes involved will play an important role and

we exploit this to develop kernel representation to reduce the

analysis to function spaces [18].

The organization of the paper is as follows. Section II

formulates the mean field game. Section III solves two

auxiliary stochastic control problems in the mean field limit.

The consistency condition for mean field approximations is

introduced in Section IV, and Section V shows an asymptotic

Nash equilibrium property. Section VI concludes the paper.

II. THE MEAN FIELD DYNAMIC GAME MODEL

We consider the LQG game with a major player A0 and a

population of minor players {Ai,1 ≤ i ≤ N}. At time t ≥ 0,

the states of the players A0 and Ai are, respectively, denoted

by x0(t) and xi(t), 1 ≤ i ≤ N. Let (Ω,F ,Ft ,t ≥ 0,P) be the

underlying filtration. The dynamics of the N +1 players are

given by a system of linear stochastic differential equations

dx0 = (A0x0 + B0u0 + F0x(N))dt + D0dW0, (1)

dxi = (A(θi)xi + B(θi)ui + F(θi)x
(N))dt + D(θi)dWi, (2)
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where the initial states are given by x0(0) and xi(0), 1 ≤
i ≤ N, and x(N) = (1/N)∑N

i=1 xi. For simplicity, we may take

Ft = σ{xi(0),Wi(s),0 ≤ i ≤ N,s ≤ t}.
The states x0,xi and controls u0,ui are, respectively, n

and n1 dimensional vectors. The noise processes W0,Wi

are n2 dimensional independent standard Brownian mo-

tions adapted to Ft , which are also independent of the

initial states {xi(0),0 ≤ i ≤ N}. The deterministic matrices

A0,B0,F0,D0,A(·),B(·),F(·) and D(·) all have compatible

dimensions. The vector θi is a parameter of the dynamics

associated with player Ai. We assume that θi takes its value

from a compact subset Θ of R
d .

The cost function for A0 is given by

J0 = E

∫ T

0

{
∣

∣x0 −Ψ0(x
(N))

∣

∣

2

Q0
+ uT

0 R0u0

}

dt, (3)

where Ψ0(x
(N)) = H0x(N) + η0. Here and hereafter, we may

write zT Mz = |z|2M for a positive semi-definite matrix M. The

cost function for Ai, 1 ≤ i ≤ N, is given by

Ji = E

∫ T

0

{∣

∣xi −Ψ(x0,x
(N))

∣

∣

2

Q
+ uT

i Rui

}

dt, (4)

where Ψ(x0,x
(N)) = Hx0 + Ĥx(N) + η . The component Hx0

in the coupling term Ψ indicates the strong influence of the

major player on each minor player. In (3) and (4), all the

deterministic constant matrices or vectors H0, H, Ĥ, Q0 ≥ 0,

Q ≥ 0, R0 > 0, R > 0, η0 and η have compatible dimensions.

We introduce the following assumptions:

(A1) The initial states xi(0), 0 ≤ i ≤ N, are independent,

Exi(0) = 0 for 1 ≤ i ≤ N and there is a constant C indepen-

dent of N such that sup0≤i≤N E|xi(0)|2 ≤C.
(A2) There exists a distribution function F(θ ) on R

d

such that the empirical distribution function FN(θ ) =
1
N ∑N

i=1 1{θi≤θ}, where the inequality holds componentwise,

converges to F weakly, i.e., for any bounded and continuous

function h(θ ) on R
d ,

lim
N→∞

∫

Rd
h(θ )dFN(θ ) =

∫

Rd
h(θ )dF(θ ).

(A3) A(·),B(·),F(·) and D(·) are continuous matrix func-

tions of θ ∈ Θ, where Θ is a compact subset of R
d .

It is worth noting that in the special case where Θ =
{1,2, ...,K} is a finite set, a similar game problem has

been treated in [9] using the aggregation approach. By

aggregating all states xi with the same value of the parameter

θi = k,1 ≤ k ≤ K, the mean field process x(N)(t) can be

characterized by a Kn dimensional process z̄(t) described by

an ordinary differential equation driven by the state of the

major player. In this paper, Θ is assumed to be a compact set,

not necessarily a finite set. It turns out that such a modeling

gives the game a very different nature, and the Markovian

state space augmentation approach developed in [9] is no

longer applicable.

Remark: If a term Gx0 appears in (2), the control pertur-

bation of the major player will immediately impact on the

mean field term and the limiting control problem of the major

player will be different. For simplicity, we let (2) take the

present simple form. �

III. THE LIMITING CONTROL PROBLEM

A. Two Auxiliary Optimal Control Problems

To obtain decentralized control synthesis, we formulate the

auxiliary control problems within the population limit via the

approximation of x(N) by a process z. Intuitively, due to the

linear quadratic nature of the game, z should be a Gaussian

process (except an additive component related to x0(0)), and

moreover, it should depend only on the driven noise of the

major player since the noises of the minor players ought

to be averaged out. Now we consider the following control

problems.

Problem (I)–Optimal control of the major player. The

dynamics are given by
{

z(t) = f1(t)+ f2(t)x0(0)+
∫ t

0 g(t,s)dW0(s),

dx0 = (A0x0 + B0u0 + F0z)dt + D0dW0,
(5)

where z replaces x(N) in the finite population model. For

the mean field approximation, we consider f1 ∈C([0,T ],Rn),
f2 ∈C([0,T ],Rn×n), and g ∈C(∆,Rn×n2), where ∆ = {(t,s) :

0 ≤ s ≤ t ≤ T}. The cost function is given by

J̄0(u0) = E

∫ T

0

{∣

∣x0 −H0z−η0

∣

∣

2

Q0
+ uT

0 R0u0

}

dt. (6)

Problem (II)–Optimal control of the minor player. After

solving problem (I), we may express the state x0 of the major

player by its initial condition and its Brownian motion, and

further denote the state process by x̄0. By combining z, x̄0

with the limiting dynamics for the minor player, we introduce

the equation system










z(t) = f1(t)+ f2(t)x0(0)+
∫ t

0 g(t,s)dW0(s),

x̄0(t) = fx̄0,1(t)+ fx̄0,2(t)x0(0)+
∫ t

0 gx̄0
(t,s)dW0(s),

dxi =
(

A(θi)xi + B(θi)ui + F(θi)z
)

dt + D(θi)dWi.

(7)

The cost function is given by

J̄i(ui) = E

∫ T

0

{∣

∣xi −Hx̄0 − Ĥz−η
∣

∣

2

Q
+ uT

i Rui

}

dt. (8)

B. The Analysis of Problem (I)

Lemma 1: (i) There exists a unique optimal control to

problem (I) for the major player.

(ii) The pair (x̄0, ū0) is the optimal solution to problem (I)

if and only if ū0(t) = R−1
0 BT

0 p0(t), where (x̄0(t), p0(t),q0(t))
is the solution of the following forward-backward SDE











dx̄0 =
(

A0x̄0 + B0R−1
0 BT

0 p0 + F0z
)

dt + D0dW0,

d p0 =
[

Q0

(

x̄0 −H0z−η0

)

−AT
0 p0

]

dt + q0dW0,

x̄0(0) = x0(0), p0(T ) = 0.

(9)

(iii) The forward-backward SDE (9) has a unique solution

(x̄0, p0,q0). �

Let P0(t) ≥ 0 be the solution of the Riccati equation
{ .

P0 +P0A0 + AT
0 P0 −P0B0R−1

0 BT
0 P0 + Q0 = 0,

P(T ) = 0.
(10)

To analyze (9), write p0(t) = −P0(t)x0(t) + ν0(t), where

ν0(t) will be determined later with the terminal condition
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ν0(T ) = 0. Denote A0(t) = A0 − B0R−1
0 BT

0 P0(t). Note that

we may write ū0(t) = R−1
0 BT

0 (−P0(t)x̄0(t)+ ν0(t)). By Ito’s

formula, it can be shown that the coupled equation system

(9) is equivalent to the system of forward-backward SDE



















dx̄0 = (A0x̄0 + B0R−1
0 BT

0 ν0 + F0z
)

dt + D0dW0,

dν0 =
{

−A
T
0 ν0 +

[(

P0F0 −Q0H0

)

z−Q0η0

]}

dt

+(q0 + P0D0)dW0,

x̄0(0) = x0(0), ν0(T ) = 0,

(11)

where v0 is now decoupled from x0.

To proceed, we will find a representation of x̄0 determined

by (11) in the form

x̄0(t) = fx̄0,1(t)+ fx̄0,2(t)x0(0)+

∫ t

0
gx̄0

(t,s)dW0(s), (12)

where fx̄0,1 ∈C([0,T ],Rn), fx̄0,2 ∈C([0,T ],Rn×n), and gx̄0
∈

C(∆,Rn×n2) are to be determined.

To solve the second equation in (11), denote ζ0(t) =
(P0(t)F0 − Q0H0)z(t)− Q0η0 and µ0(t) = q0(t) + P0(t)D0.

Then by the equation of z in (5),

ζ0(t) = fζ0,1(t)+ fζ0,2(t)x0(0)+

∫ t

0
gζ0

(t,s)dW0(s),

where fζ0,1(t) = [P0(t)F0 − Q0H0] f1(t) − Q0η0, fζ0,2(t) =
[P0(t)F0 −Q0H0] f2(t), gζ0

(t,s) = [P0(t)F0 −Q0H0]g(t,s) and

dν0(t) = (ζ0(t)−A
T
0 (t)ν0(t))dt + µ0(t)dW0(t).

Let Φ0(t,s) be the solution of the following system
{

dΦ0(t,s) = A0(t)Φ0(t,s)dt,

Φ0(s,s) = I, t ≥ 0, s ≥ 0.
(13)

Then by [15, Lemma A.1 (ii)],

ν0(t) = fν0,1(t)+ fν0,2(t)x0(0)+

∫ t

0
gν0

(t,s)dW0(s), (14)

where

fν0,1(t) =

∫ T

t
ΦT

0 (s1,t)
[

(

Q0H0 −P0(s1)F0

)

f (s1)+ Q0η0

]

ds1,

(15)

fν0,2(t) =

∫ T

t
ΦT

0 (s1,t)
(

Q0H0 −P0(s1)F0

)

f (s1)ds1, (16)

gν0
(t,s) =

∫ T

t
ΦT

0 (s1,t)
(

Q0H0 −P0(s1)F0

)

g(s1,s)ds1. (17)

We continue to solve the first equation in (11). Let ξ0(t) =
B0R−1

0 BT
0 ν0(t)+F0z(t). Then, by the equation of z in (5) and

(14)-(17),

ξ0(t) = fξ0,1(t)+ fξ0,2(t)x0(0)+

∫ t

0
gξ0

(t,s)dW0(s),

where fξ0, j(t) = B0R−1
0 BT

0 fν0, j(t) + F0 f j(t), j = 1,2, and

gξ0
(t,s) = B0R−1

0 BT
0 gν0

(t,s)+ F0g(t,s).
We have

dx̄0(t) = (ξ0(t)+ M0(t)x̄0(t))dt + D0dW0(t).

Therefore, by [15, Lemma A.1 (i)] we obtain (12), where

fx̄0,1(t) =
∫ t

0
Φ0(t,s1) fξ0,1(s1)ds1

=
∫ t

0

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 ΦT
0 (s2,s1)

×
(

(

Q0H0 −P0(s2)F0

)

f1(s2)+ Q0η0

)

ds2ds1

+

∫ t

0
Φ0(t,s1)F0 f1(s1)ds1

=: [Γ0,1 f1](t), (18)

fx̄0,2(t) = Φ0(t,0)+

∫ t

0
Φ0(t,s1) fξ0,2(s1)ds1

=

∫ t

0

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 ΦT
0 (s2,s1)

×
(

Q0H0 −P0(s2)F0

)

f2(s2)ds2ds1

+

∫ t

0
Φ0(t,s1)F0 f2(s1)ds1 + Φ0(t,0)

=: [Γ0,2 f2](t), (19)

gx̄0
(t,s) =

∫ t

s
Φ0(t,s1)gξ0

(s1,s)ds1 + Φ0(t,s)D0

=
∫ t

s

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 ΦT
0 (s2,s1)

×
(

Q0H0 −P0(s2)F0

)

g(s2,s)ds2ds1

+

∫ t

s
Φ0(t,s1)F0g(s1,s)ds1 + Φ0(t,s)D0

=: [Λ0g](t,s). (20)

C. The Analysis of Problem (II)

Lemma 2: (i) There exists a unique optimal control to

problem (II).

(ii) The pair (x̄i, ūi) is the optimal solution to prob-

lem (II) if and only if ūi(t) = R−1BT (θi)pi(t), where

(x̄i(t), pi(t),qi(t),ri(t)) is the solution of the forward-

backward SDE


































dx̄i =
(

A(θi)x̄i + B(θi)R
−1BT (θi)pi + F(θi)z

)

dt

+D(θi)dWi,

d pi =
[

Q
(

x̄i −Hx̄0 − Ĥz−η
)

−AT (θi)pi

]

dt

+qidWi + ridW0,

x̄i(0) = xi(0), pi(T ) = 0.

(21)

(iii) The forward-backward SDE (21) has a unique solution

(x̄i, pi,qi,ri). �

Let Pθi
(t) ≥ 0 be the solution of the Riccati equation











.
Pθi

+Pθi
A(θi)+ AT (θi)Pθi

−Pθi
B(θi)R

−1
0 BT (θi)Pθi

+ Q = 0,

Pθi
(T ) = 0.

(22)

Write pi(t) = −Pθi
(t)xi(t) + νθi

(t), where νθi
(t) will be

determined later satisfying the terminal condition νθi
(T ) = 0.
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Denote Aθi
(t) = A(θi)−B(θi)R

−1BT (θi)Pθi
(t). Similar to

(11), the coupled equation system (21) is equivalent to the

following forward-backward SDE


































dx̄i =
{

Aθi
x̄i + B(θi)R

−1BT (θi)νθi
+ F(θi)z

}

dt

+D(θi)dWi,

dνθi
=

{

−A
T
θi

νθi
+(Pθi

F(θi)−QĤ)z−QHx̄0 −Qη
}

dt

+(qi + Pθi
D(θi))dWi + ridW0,

x̄i(0) = xi(0), νθi
(T ) = 0.

(23)

We will represent x̄i(t) in the form

x̄i(t) = fx̄i ,1(t)+ fx̄i,2(t)x0(0)+ fx̄i,3(t)xi(0)

+

∫ t

0
gx̄i

(t,s)dW0(s)+

∫ t

0
hx̄i

(t,s)dWi(s), (24)

where fx̄i ,1 ∈ C([0,T ],Rn), fx̄i ,2, fx̄i ,3 ∈ C([0,T ],Rn×n), and

gx̄i
,hx̄i

∈C([0,T ],Rn×n2) are to be determined.

Let ζi(t) = (Pθi
(t)F(θi) − QĤ)z(t) − QHx̄0(t) − Qη ,

λi(t) = qi(t)+ Pθi
(t)D(θi). Then by (12),

ζi(t) = fζi ,1(t)+ fζi,2(t)x0(0)+

∫ t

0
gζi

(t,s)dW0(s),

where

fζi ,1(t) =
[

Pθi
(t)F(θi)−QĤ

]

f1(t)−QH fx̄0,1(t)−Qη ,

fζi ,2(t) =
[

Pθi
(t)F(θi)−QĤ

]

f2(t)−QH fx̄0,2(t),

gζi
(t,s) =

[

Pθi
(t)F(θi)−QĤ

]

g(t,s)−QHgx̄0
(t,s).

By (23), we have

dνθi
(t) = [ζi(t)−A

T
θi

νθi
(t)]dt + ri(t)dW0(t)+ λi(t)dWi(t).

Let Φθi
(t,s) be the solution of

{

dΦθi
(t,s) = Aθi

(t)Φθi
(t,s)dt,

Φθi
(s,s) = I, t,s ≥ 0.

(25)

Then by [15, Lemma A.2 (ii)],

νθi
(t) = fνθi

,1(t)+ fνθi
,2(t)x0(0)+

∫ t

0
gνθi

(t,s)dW0(s), (26)

where

fνθi
,1(t) =

∫ T

t
ΦT

θi
(s1,t)

[

(

QĤ −Pθi
(s1)F(θi)

)

f1(s1)

+ QH fx̄0,1(s1)+ Qη
]

ds1, (27)

fνθi
,2(t) =

∫ T

t
ΦT

θi
(s1,t)

[

(

QĤ −Pθi
(s1)F(θi)

)

f2(s1)

+ QH fx̄0,2(s1)
]

ds1, (28)

gνθi
(t,s) =

∫ T

t
ΦT

θi
(s1,t)

[

(

QĤ −Pθi
(s1)F(θi)

)

g(s1,s)

+ QHgx̄0
(s1,s)

]

ds1. (29)

Next, let ξi(t) = B(θi)R
−1BT (θi)νθi

(t) + F(θi)z(t). Then

by the equation of z in (5) and (26), ξi(t) = fξi ,1(t) +

fξi ,2(t)x0(0)+
∫ t

0 gξi
(t,s)dW0(s) with

fξi , j(t) = B(θi)R
−1BT (θi) fνθi

, j(t)+ F(θi) f j(t), j = 1,2,

(30)

gξi
(t,s) = B(θi)R

−1BT (θi)gνθi
(t,s)+ F(θi)g(t,s). (31)

We have

dx̄i(t) =
(

ξi(t)+Aθi
(t)x̄i(t)

)

dt + D(θi)dWi(t).

Therefore from [15, Lemma A.2 (i)], we obtain (24), where

fx̄i ,1(t) =

∫ t

0
Φθi

(t,s1) fξi ,1(s1)ds1

=

∫ t

0
Φθi

(t,s1)B(θi)R
−1BT (θi)

∫ T

s1

ΦT
θi
(s2,s1)×

×
[

(

QĤ −Pθi
(s2)F(θi)

)

f1(s2)+ QH fx̄0,1(s2)+ Qη
]

ds2ds1

+

∫ t

0
Φθi

(t,s1)F(θi) f1(s1)ds1

=: [Γθi ,1 f1](t), (32)

fx̄i ,2(t) =

∫ t

0
Φθi

(t,s1) fξi ,2(s1)ds1

=

∫ t

0
Φθi

(t,s1)B(θi)R
−1BT (θi)

∫ T

s1

ΦT
θi
(s2,s1)×

×
[

(

QĤ −Pθi
(s2)F(θi)

)

f2(s2)+ QH fx̄0,2(s2)
]

ds2ds1

+

∫ t

0
Φθi

(t,s1)F(θi) f2(s1)ds1

=: [Γθi,2 f2](t), (33)

and

gx̄i
(t,s) =

∫ t

s
Φθi

(t,s1)gξi
(s1,s)ds1

=
∫ t

s
Φθi

(t,s1)B(θi)R
−1BT (θi)

∫ T

s1

ΦT
θi
(s2,s1)×

×
[

(

QĤ −Pθi
(s2)F(θi)

)

g(s2,s)+ QHgx̄0
(s2,s)

]

ds2ds1

+
∫ t

s
Φθi

(t,s1)F(θi)g(s1,s)ds1

=: [Λθi
g](t,s), (34)

and furthermore,

fx̄i ,3(t) = Φθi
(t,0), hx̄i

(t,s) = Φθi
(t,s)D(θi). (35)

The importance of (24) is that it explicitly relates the

functions in the limiting mean field to the representation of

x̄i, and hence in the analysis of the replica of the mean field

z, we may solely focus on function spaces.

IV. THE CONSISTENCY CONDITION

We now introduce the consistency condition for the mean

field approximation. More precisely, when the controls ob-

tained in Section III are applied, the mean field replicated by
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the closed loop in the population limit should coincide with

the one assumed at the beginning. To proceed, denote

[Γ j f ](t) =

∫

Θ
[Γθ , j f j](t)dF(θ ), 0 ≤ t ≤ T, j = 1,2, (36)

[Λg](t,s) =
∫

Θ
[Λθ g](t,s)dF(θ ), 0 ≤ s ≤ t ≤ T, (37)

for f1 ∈ C([0,T ],Rn), f2 ∈ C([0,T ],Rn×n) and g ∈
C(∆,Rn×n2), where ∆ = {(t,s) : 0 ≤ s ≤ t ≤ T}. Here,

[Γθ , j f j](t), j = 1,2, and [Λθ g](t,s) are, respectively, defined

as in (32)-(34) with θi = θ .

Lemma 3: Assume (A1)-(A3).

(i) Γ1 is a mapping from C([0,T ],Rn) to C([0,T ],Rn).
(ii) Γ2 is a mapping from C([0,T ],Rn×n) to C([0,T ],Rn×n).
(iii) Λ is a mapping from C(∆,Rn×n2) to C(∆,Rn×n2). �

Denote

CNCE = C([0,T ],Rn)×C([0,T ],Rn×n)×C(∆,Rn×n2).

Definition 4: A triple ( f1, f2,g) ∈ CNCE is called a con-

sistent solution to the Nash certainty equivalence (NCE)

equation system if
{

f j(t) = [Γ j f j](t), 0 ≤ t ≤ T, j = 1,2,

g(t,s) = [Λg](t,s), 0 ≤ s ≤ t ≤ T.
(38)

�

Denote the linear operators Γ̄0,1, Γ̄0,2 and Λ̄0 on

C([0,1],Rn), C([0,T ],Rn×n) and C(∆,Rn×n2), respectively,

as follows:

[Γ̄0, j f j](t) =

∫ t

0

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 ΦT
0 (s2,s1)

×
(

Q0H0 −P0(s2)F0

)

f j(s2)ds2ds1

+

∫ t

0
Φ0(t,s1)F0 f j(s1)ds1, j = 1,2,

[Λ̄0g](t,s) =

∫ t

s

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 ΦT
0 (s2,s1)

×
(

Q0H0 −P0(s2)F0

)

g(s2,s)ds2ds1

+

∫ t

s
Φ0(t,s1)F0g(s1,s)ds1,

which are obtained by retaining the linear term of the affine

operators Γ0, j and Λ0, respectively.

Corresponding to Γθ ,1, Γθ ,2 and Λθ g, define the linear

operators Γ̄1, Γ̄2, and Λ̄ on C([0,1],Rn), C([0,T ],Rn×n) and

C(∆,Rn×n2), respectively, as follows:

[Γ̄θ , j f j](t) =

∫ t

0

∫ T

s1

Φθ (t,s1)B(θ )R−1BT (θ )ΦT
θ (s2,s1)×

×
[

(

QĤ −Pθ(s2)F(θ )
)

f j(s2)+ QH[Γ̄0, j f j](s2)
]

ds2ds1

+

∫ t

0
Φθ (t,s1)F(θ ) f j(s1)ds1, j = 1,2,

[Λ̄θ g](t,s) =

∫ t

s

∫ T

s1

Φθ (t,s1)B(θ )R−1BT (θ )ΦT
θ (s2,s1)×

×
[

(

QĤ −Pθ(s2)F(θ )
)

g(s2,s)+ QH[Λ̄0g](s2,s)
]

ds2ds1

+

∫ t

s
Φθ (t,s1)F(θ )g(s1,s)ds1.

Let C([0,1],Rn), C([0,T ],Rn×n) and C(∆,Rn×n2) be en-

dowed with the usual sup-norms ‖·‖∞ so that they are all

Banach spaces. Define the linear operators

[Γ̄ j f j](t) =

∫

Θ
[Γ̄θ , j f j](t)dF(θ ), j = 1,2,

[Λ̄g](t,s) =

∫

Θ
[Λ̄θ g](t,s)dF(θ ).

For f2 ∈ C([0,T ],Rn×n), we write f2 = [ f2,1, ..., f2,n],
where f2,i ∈ C([0,T ],Rn) for each i = 1, ...,n. Then

[Γ̄2 f2](t) =
[

[Γ̄1 f2,1](t), ..., [Γ̄1 f2,n](t)
]

. We have the follow-

ing result for the NCE equation system.

Theorem 5: Under (A1)-(A3), if the norms of Γ̄ and Λ̄
satisfy ‖Γ̄1‖ < 1 and ‖Λ̄‖ < 1, then there exists a unique

solution ( f1, f2,g) ∈CNCE to (38). �

V. ASYMPTOTIC EQUILIBRIUM ANALYSIS

Throughout this section we assume that there exists a

solution ( f1, f2,g) ∈CNCE to the NCE equation system (38).

Define εN ≥ 0 by ε2
N = ε2

f1,N + ε2
f2,N

+ ε2
g,N , where

ε2
f j ,N

=
∫ T

0

∣

∣

∣

∫

Θ
[Γθ , j f j](t)dFN(θ )−

∫

Θ
[Γθ , j f j](t)dF(θ )

∣

∣

∣

2

dt,

ε2
g,N =

∫ T

0

∫ t

0

∣

∣

∣

∫

Θ
[Λθ g](t,s)dFN(θ )−

∫

Θ
[Λθ g](t,s)dF(θ )

∣

∣

∣

2

dsdt.

Lemma 6: Under (A1)-(A3), limN→∞ εN = 0. �

Consider the system (1)-(2). Let the control laws of A0

and Ai, 1 ≤ i ≤ N, be given by

û0(t) = R−1
0 BT

0

(

−P0(t)x0(t)+ ν0(t)
)

, (39)

ûi(t) = R−1BT (θi)
(

−Pθi
(t)xi(t)+ νθi

(t)
)

, (40)

where ν0(t) and νθi
(t) are determined by (9) and (21)

corresponding to the solution ( f1, f2,g) to (38). Their explicit

solutions are given by (14) and (26). After the control laws

(39)-(40) are applied, the dynamics of A0 and Ai may be

written in the form

dx0 =
{

A0x0 + B0R−1
0 BT

0 P0ν0 + F0x(N)
}

dt + D0dW0, (41)

dxi =
{

Aθi
xi + B(θi)R

−1BT (θi)Pθi
νθi

+ F(θi)x
(N)

}

dt

+ D(θi)dWi, 1 ≤ i ≤ N, (42)

where x(N) = (1/N)∑N
i=1 xi.

We now construct the limiting equation system for the

N + 1 players

dx̄0 =
{

A0x̄0 + B0R−1
0 BT

0 P0ν0 + F0z
}

dt + D0dW0, (43)

dx̄i =
{

Aθi
x̄i + B(θi)R

−1BT (θi)Pθi
νθi

+ F(θi)z
}

dt

+ D(θi)dWi, 1 ≤ i ≤ N, (44)

with the initial conditions x̄i(0) = xi(0). We have the propo-

sition on the mean field approximation.

Proposition 7: Assume (A1)-(A3). Then

E

∫ T

0

∣

∣z(t)− x̄(N)(t)
∣

∣

2
dt = O

(

ε2
N + 1/N

)

,

where x̄(N) = (1/N)∑N
i=1 x̄i. �
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By Proposition 7 we may further establish the next theorem.

Theorem 8: Assume (A1)-(A3). We have

E

∫ T

0

(

∣

∣z(t)− x(N)(t)
∣

∣

2
+ sup

0≤ j≤N

∣

∣x j(t)− x̄ j(t)
∣

∣

2
)

dt

= O
(

ε2
N + 1/N

)

. (45)

�

Consider the system of N +1 agents described by (1) and

(2). Let the class UW consist of all processes yW of the form

yW (t) =

∫ t

0
[h0(t,s)dW0(s), . . . ,hN(t,s)dWN(s)]T

where each h j is an R
n×n2-valued bounded measurable

function on ∆.

For any i = 0, ...,N, the admissible control Ui of agent Ai

consists of control ui as a time dependent function linear in

x0,x1, . . . ,xN ,yW for some yW ∈ UW . The resulting control

of a player may not be purely in a feedback form since the

noise process may be used via yW ; this more general form

of controls is necessary in order to include the decentralized

controls (39)-(40) that we have derived. Since the control

still uses the players’ states, (u0,u1, . . . ,uN) is in a partial

feedback form, and will be called a set of partial feedback

strategies. Note that Ui is not restricted to be decentralized.

Given each set of strategies in U0× . . .×UN , the closed-loop

system has a unique strong solution. For i = 0, ...,N, denote

u−i = (u0,u1, ...,ui−1,ui+1, ...,uN).
Definition 9: A set of controls ui ∈ Ui, 0 ≤ i ≤ N, for the

N +1 players is called an ε-Nash equilibrium with respect to

the costs Ji, 0 ≤ i ≤ N, where ε ≥ 0, if for any i, 0 ≤ i ≤ N,

we have Ji(ui,u−i) ≤ Ji(u
′
i,u−i)+ ε, when any alternative u′i

is applied by player Ai. �

Theorem 10: Assume (A1)-(A3). Let ū0 and ūi be the

optimal controls in the limiting control problems (I) and (II).

For 0 ≤ j ≤ N,
∣

∣

∣
J j(û j, û− j)− J̄ j(ū j)

∣

∣

∣
= O

(

εN + 1/
√

N
)

.

�

By using Theorem 10 we can further establish the next

theorem.

Theorem 11: Assume (A1)-(A3). Then the set of controls

û j, 0≤ j ≤N, for the N +1 players is an ε-Nash equilibrium,

i.e., for 0 ≤ j ≤ N,

J j(û j, û− j)− ε ≤ inf
u j

J j(u j, û− j) ≤ Ji(û j, û− j),

where 0 ≤ ε = O(εN + 1/
√

N). �

VI. CONCLUSION

This paper considers mean field LQG games with a major

player and a continuum-parametrized minor players. The

mean field structure does not allow the Markovian state space

augmentation approach developed in the previous work [9].

We introduce random Gaussian mean field approximations

and solve the resulting limiting problems as stochastic opti-

mal control with random coefficients, and we further derive

decentralized controls for the players.
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[19] M. Nourian, R. P. Malhamé, M. Huang, and P. E. Caines. Mean

field (NCE) formulation of estimation based leader-follower collective
dyanmics. Internat. J. Robotics Automat., vol. 26, no. 1, pp. 120-129,
2011.

[20] H. Tembine, J.-Y. Le Boudec, R. El-Azouzi, and E. Altman. Mean field
asymptotics of Markov decision evolutionary games and teams. Proc.
International Conference on Game Theory for Networks, Istanbul,
Turkey, pp. 140-150, May 2009.

[21] H. Tembine, Q. Zhu, and T. Basar. Risk-sensitive mean-field stochastic
differential games. Proc. 18th IFAC World Congress, Milan, Italy, Aug.
2011.

[22] G. Y. Weintraub, C. L. Benkard, and B. Van Roy. Markov perfect
industry dynamics with many firms. Econometrica, 76, no. 6, pp. 1375-
1411, 2008.

[23] H. Yin, P. G. Mehta, S. P. Meyn, and U. V. Shanbhag. Synchronization
of coupled oscillator is a game. Proc. American Control Conference,
Baltimore, MD, pp. 1783-1790, June, 2010.

[24] J. Yong and X. Y. Zhou. Stochastic Controls: Hamiltonian Systems

and HJB Equations, Springer-Verlag, New York, 1999.

1017


