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Abstract— We consider a linear-quadratic-Gaussian (LQG)
game with a major player and a large number of minor players
with mean field coupling. The state of the major player appears
in the dynamics of the minor players, causing the mean field to
be responsive to its control. We construct decentralized ε-Nash
strategies. This is accomplished by combining (i) stochastic
control with random coefficients and (ii) a procedure called
anticipative variational calculations which addresses the major
player’s ability to simultaneously perturb its own state process
and the mean field.

I. INTRODUCTION

In the recent years there has been a very rapid accumu-

lation of research on large population stochastic dynamic

games with mean field coupling [1], [6], [11], [12], [14],

[15], [16], [21], [23], [24], [26], [28]. Extensive efforts have

been devoted to LQG models [3], [11], [12], [16], [21].

To obtain low complexity strategies, consistent mean field

approximations provide a powerful approach, and in the

resulting solution to a large but finite population model,

each agent only needs to know its own state information

and the off-line computable aggregate effect of the overall

population. One may further establish an ε-Nash equilibrium

property for the set of control strategies [12]. Consistent

mean field approximations are also applicable to optimization

with a social objective [7], [13], [23], estimation and filtering

[22], [27], and recharging control of large populations of

electric vehicles [17]. A maximum principle is developed

for mean field control models in [2]. The survey [5] presents

a timely report of recent progress in mean field game theory.

A natural generalization of the mean field game modeling

has been introduced in [10] where a major player and a

large number of minor players coexist. The major player

model is extended to Markovian switching dynamics in [25].

Traditionally, games differentiating vastly different strengths

of players have been well studied in cooperative game theory,

and static models are usually considered [8], [9].

The LQG model in [10] contains minor players of a finite

number of types. A state space augmentation approach was

developed there by adding a new state which approximates

the mean field and is described by a stochastic ordinary

differential equation (ODE) driven by the major player’s

state. The use of this additional state Markovianizes the

limiting decision problems. When the minor players are

parametrized by a continuum set, the method in [10] faces
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challenges since it would lead to an infinite dimensional

augmented state space. The work [18], [19], [20] treated a

continuum parameter set by viewing the local control prob-

lems of the major player or a representative minor player as

stochastic optimal control with random coefficient processes

[4], and they were solved by use of adjoint equations in

the form of linear backward stochastic differential equations

(BSDEs) [4], [29], and subsequently consistent mean field

approximations were developed. A limitation of the analysis

in [18], [19], [20] is that it only deals with non-responsive

mean field where the state of the major player does not

appear in the dynamics of the minor players.

This paper considers responsive mean field by allowing

the state of the major player to appear in the dynamics of

the minor players as in [10]. Although we only consider

homogeneous minor players, it is of interest to extend the

BSDE based approach in [19], [20] since sufficient condi-

tions on the existence of a solution can be developed by using

linear operator techniques. By contrast, if the state space

augmentation approach in [10] were applied to the finite

horizon control problem in this paper, it would introduce

a mean field ODE with time-varying coefficients due to

the transient behavior of the mean field evolution. Then

the consistent mean field approximation in [10] would lead

to equality constraints on these coefficient functions. It is

generally difficult to verify these constraints.

The paper is organized as follows. Section II introduces

the game model. Section III describes anticipative variational

calculations and the two limiting control problems. Sections

IV and V solve the optimal control problems of the major

player and the minor player, respectively. Consistent mean

field approximations are analyzed in Section VI, and the

equilibrium property is established in Section VII. Section

VIII concludes the paper. Due to limited space, we omit all

proofs of our results in this paper.

II. THE MEAN FIELD LQG GAME

The LQG game consists of a major player A0 and a

population of minor players {Ai,1 ≤ i ≤ N}. At time t ≥ 0,

the state of player A j is denoted by x j(t), 0 ≤ j ≤ N. Let

(Ω,F ,{Ft}t≥0,P) be a filtered probability space with the

filtration {Ft}t≥0. The dynamics of the players are given by

a system of linear stochastic differential equations (SDEs)

dx0(t) = (A0x0(t)+ B0u0(t)+ F0x(N)(t))dt + D0dW0(t),
(1)

dxi(t) = (Axi(t)+ Bui(t)+ Fx(N)(t)+ Gx0(t))dt + DdWi(t)

1 ≤ i ≤ N, (2)
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where x(N) = (1/N)∑N
i=1 xi. When G 6= 0, the minor player

receives a significant impact from the major player and any

other minor player has only a negligible impact if N is large.

The states x0,xi and controls u0,ui are, respectively, n and

n1 dimensional vectors. The noise processes W0,Wi are n2

dimensional independent standard Brownian motions adapted

to {Ft}t≥0, which are also independent of the initial states

{x j(0),0≤ j ≤N}. For simplicity, we may take the σ -algebra

Ft = σ{x j(0),Wj(s),0 ≤ j ≤ N,s ≤ t}. The deterministic

matrices A0, B0, F0, D0, A, B, F , G and D all have compatible

dimensions. We will often drop time t in x0(t), u0(t), etc.

The cost function for A0 is given by

J0 = E

∫ T

0

{∣

∣x0 −Ψ0(x
(N))

∣

∣

2

Q0
+ uT

0 R0u0

}

dt, (3)

where Ψ0(x
(N)) = H0x(N) + η0. Here and hereafter, we may

write zT Mz = |z|2M for a positive semi-definite matrix M. The

cost function for Ai, 1 ≤ i ≤ N, is given by

Ji = E

∫ T

0

{∣

∣xi −Ψ(x0,x
(N))

∣

∣

2

Q
+ uT

i Rui

}

dt, (4)

where Ψ(x0,x
(N)) = Hx0 + Ĥx(N) + η . The component Hx0

in the coupling term Ψ indicates the strong influence of

the major player on each minor player. In (3) and (4), all

the deterministic constant matrices or vectors H0, H, Ĥ,

Q0 ≥ 0, Q ≥ 0, R0 > 0, R > 0, η0 and η have compatible

dimensions. We use L2
F

(0,T ;Rk) to denote all Rk-valued

random processes y defined on [0,T ] which are adapted to

{Ft}t≥0 and E
∫ T

0 |y(t)|2dt < ∞.

A. Assumption

(A) The initial states {x j(0),0 ≤ j ≤ N} are independent,

Exi(0) = 0 for 1 ≤ i ≤ N and there is a constant C indepen-

dent of N such that sup0≤ j≤N E|x j(0)|2 ≤C. ♦
For simplicity we assume zero initial mean for the minor

players and this condition may be relaxed.

III. OPTIMIZATION WITH ANTICIPATIVE VARIATIONAL

CALCULATIONS

We consider the approximation of the control problem of

the major player. Let x(N) in (1) and (3) be approximated by

a process z. This gives the dynamics

dx0(t) =
(

A0x0(t)+ B0u0(t)+ F0z(t)
)

dt + D0dW0(t) (5)

and the cost

J̄0 = E

∫ T

0

{
∣

∣x0 −Ψ0(z)
∣

∣

2

Q0
+ uT

0 R0u0

}

dt. (6)

To avoid introducing too many variables, we still use x0

to denote the state of the limiting control problem. The

Brownian motion W0 is the same as in (1). We may write J̄0

as J̄0(x0,u0;z) and use (6) to define the cost associated with

general processes (x′0,u
′
0,z

′) not necessarily satisfying (5).

Our objective is to find a solution pair (x̄0, ū0) such that

the cost attains its minimum in some sense. Before solving

the control problem, an immediate issue is how z should be

specified and in what sense J̄0 is optimized. To proceed, let

P(t) ≥ 0 be the solution of the Riccati equation
{

Ṗ+ PA + ATP−PBR−1BT P+ Q = 0,

P(T ) = 0.
(7)

Definition 1: Let z∗ ∈ L2
F

(0,T ;Rn) be given. We say

(x̄0, ū0) is an equilibrium solution with respect to z∗ if

(i) (x̄0, ū0,z
∗) satisfies the SDE

dx̄0(t) =
(

A0x̄0(t)+ B0ū0(t)+ F0z∗(t)
)

dt + D0dW0(t),

(ii) J̄0(x̄0, ū0;z∗) ≤ J̄0(x̄0 + δx0, ū0 + δu0;z∗ + δ z) for all

δu0 ∈ L2
F

(0,T ;Rn1), where

dδx0 = (A0δx0 + B0δu0 + F0δ z)dt, (8)

dδ z =
(

(A−BR−1BT P + F)δ z+ Gδx0

)

dt, (9)

δx0(0) = δ z(0) = 0. (10)

♦
We may simply call ū0 an equilibrium solution. We have

the relation

d(x̄0 + δx0) =
(

A0(x̄0 + δx0)+ B0(ū0 + δu0)+ F0(z
∗ + δ z)

)

dt

+ D0dW0. (11)

It should be noted that Definition 1 does not claim that

J̄0(x̄0, ū0,z
∗) ≤ J̄0(x0,u0,z

∗), ∀u0 ∈ L2
F (0,T ;Rn1),

where (x0,u0) satisfies (5) with z = z∗.

A. Some Heuristics on the Control Formulation

In order to enable an approximation to the strategy selec-

tion of the major player in the original game, the optimization

of (x0,u0) in (5) should be anticipative with respect to z.

Specifically, there is an implicit dependence of z on u0. When

u0 changes to u0 +δu0, it causes a state variation δx0 which

in turn generates a state variation δxi for a minor player.

Subsequently, a large number of minor players contribute

to a variation δ z for the mean field. This responsive nature

of the mean field does not appear in [19], [20] where the

dynamics of each minor player do not contain x0.

In order to specify δ z as appearing in Definition 1, we

describe the following replicating argument using N minor

players. Suppose the minor player has a fixed control ui =
−R−1BT (Pxi − νi), where P is defined in (7) and νi is

not affected by u0. The state of the major player is x0

corresponding to u0. We have

dxi =
(

(A−BR−1BT P)xi + BR−1BT νi + Fx(N) + Gx0

)

dt

+ DdWi.

Now we include a variation δx0 due to δu0 to obtain

d(xi + δxi) =
(

(A−BR−1BT P)(xi + δxi)+ BR−1BT νi

+(1/N)F
N

∑
i=1

(xi + δxi)+ G(x0 + δx0)
)

dt + DdWi. (12)

Hence dδx(N) = (A − BR−1BT P + F)δx(N)dt + Gδx0dt.

When N → ∞, we replace δx(N) by δ z and obtain (9).

5793



B. The Limiting LQG Control Problems

1) Optimal Control Problem 1 (P1): Following the same

reasoning as in [19], [20], we introduce a process of the form

z̄(t) = f1(t)+ f2(t)x0(0)+

∫ t

0
g(t,s)dW0(s), (13)

where f1 ∈ C([0,T ],Rn), f2 ∈ C([0,T ],Rn×n) and g ∈
C(∆,Rn×n2), where ∆ = {(t,s)|0 ≤ s ≤ t ≤ T}.

Now Problem (P1) is stated as: find an equilibrium solu-

tion (x̄0, ū0) with respect to z̄ for (5)-(6).

2) Optimal Control Problem 2 (P2): Minimize the cost

J̄i = E

∫ T

0

{
∣

∣xi −Ψ(xi, z̄)
∣

∣

2

Q
+ uT

i Rui

}

dt (14)

subject to the system dynamics

dxi =
(

Axi + Bui + Fz̄+ Gx̄0

)

dt + DdWi,

dx̄0 = (A0x̄0 + B0ū0 + F0z̄)dt + D0dW0,

z̄(t) = f1(t)+ f2(t)x0(0)+

∫ t

0
g(t,s)dW0(s),

where (x̄0, ū0) is determined from (P1) as the equilibrium

solution with respect to z̄.

IV. THE SOLUTION OF PROBLEM (P1)

Suppose (x̄0, ū0) is an equilibrium solution with respect to

z̄ for Problem (P1). Let δu0 ∈ L2
F

(0,T ;Rn1) be a perturbation

of ū0, x̄0 + δx0 the trajectory corresponding to the control

u0 = ū0 +δu0. The variations of x̄0, z̄ are determined by (8)-

(10). The first and second order variations of the cost are

δ J̄0

2
= E

∫ T

0

[

[δx0 −H0δ z]T Q0[x̄0 −H0z̄−η0]+ δuT
0 R0ū0

]

dt,

δ 2J̄0 = E

∫ T

0

[

[δx0 −H0δ z]T Q0[δx0 −H0δ z]+ δuT
0 R0δu0

]

dt.

Since δ 2J̄0 > 0 for all δu0 satisfying E
∫ T

0 |δu0|2dt > 0,

for (x̄0, ū0) to be an equilibrium solution to Problem (P1), a

sufficient and necessary condition is δ J̄0 = 0 for all δu0.

Lemma 2: Assume (x̄0, p0, pz,q0,qz) ∈ L2
F

(0,T ;R3n ×
Rn×n2 × Rn×n2) is a solution of the forward-backward

stochastic differential equation (FBSDE)






















dx̄0 =
[

A0x̄0 + B0R−1BT
0 p0 + F0z̄

]

dt + D0dW0,

d p0 =
[

Q0(x̄0 −H0z̄−η0)−AT
0 p0 −GT pz

]

dt + q0dW0,

d pz =
[

−HT
0 Q0(x̄0 −H0z̄−η0)−FT

0 p0

−(AT −PBR−1BT + FT )pz

]

dt + qzdW0,
x̄0(0) = x0(0), p0(T ) = 0, pz(T ) = 0.

(15)

Then the pair (x̄0, ū0) ∈ L2
F

(0,T ;Rn+n1), where ū0(t) =
R−1

0 BT
0 p0(t), is a solution to Problem (P1). �

A. Riccati Equations and State Feedback Control

Assume that P0(t), Pz(t) are Rn×n-valued deterministic

functions satisfying the system of ODEs of Riccati type


















Ṗ0 + P0A0 −P0B0R−1
0 BT

0 P0 + AT
0 P0 + Q0 + GT Pz = 0,

Ṗz + PzA0 −PzB0R−1
0 BT

0 P0 +(AT −PBR−1BT + FT )Pz

+FT
0 P0 −HT

0 Q0 = 0,

P0(T ) = Pz(T ) = 0.
(16)

To analyze (15), write p0 = −P0x̄0 + ν0, pz = −Pzx̄0 + νz,

where the two processes ν0, νz are to be determined with

the terminal conditions ν0(T ) = νz(T ) = 0. Note that we can

write ū0 = −R−1
0 BT

0 (P0x̄0 −ν0). By Ito’s formula, it can be

shown that the coupled equation system (15) is equivalent to

the FBSDE

dx̄0 =
[

(A0 −B0R−1BT
0 P)x̄0 + B0R−1BT

0 ν0 + F0z̄
]

dt + D0dW0,

dν0 =
[

(P0B0R−1
0 BT

0 −AT
0 )ν0 −GT νz +(P0F0 −Q0H0)z̄

−Q0η0

]

dt +(q0 + P0D0)dW0, (17)

dνz =
[

− (AT −PBR−1BT + FT )νz +(PzB0R−1
0 BT

0 −FT
0 )ν0

+(HT
0 Q0H0 −PzF0)z̄+ HT

0 Q0η0

]

dt

+(qz + PzD0)dW0, (18)

x̄0(0) = x0(0), ν0(T ) = νz(T ) = 0.

Theorem 3: If there is a unique solution to (16), the

FBSDE (15) has a unique solution. �

To proceed, we will find a representation of x̄0 determined

by (17) in the form

x̄0(t) = fx̄0,1(t)+ fx̄0,2(t)x0(0)+

∫ t

0
gx̄0

(t,s)dW0(s), (19)

where fx̄0,1 ∈C([0,T ],Rn), fx̄0,2 ∈C([0,T ],Rn×n), and gx̄0
∈

C(∆,Rn×n2) are to be determined.

To solve the equations (17) and (18), denote

ν0z =

[

ν0

νz

]

, MT
0z =

[

AT
0 −P0B0R−1

0 BT
0 GT

FT
0 −PzB0R−1

0 BT
0 AT −PBR−1BT + FT

]

,

F0 =

[

P0F0 −Q0H0

HT
0 Q0H0 −PzF0

]

, Q0 =

[

−Q0

HT
0 Q0

]

, µ0z =

[

P0D0 + q0

PzD0 + qz

]

.

Denote ζ0z = F0z̄+Q0η0. Then by (13),

ζ0z(t) = fζ0z,1
(t)+ fζ0z,2

(t)x0(0)+
∫ t

0
gζ0z

(t,s)dW0(s),

where fζ0z ,1(t) = F0 f1(t) + Q0η0, fζ0z ,2(t) = F0 f2(t),
gζ0z

(t,s) = F0g(t,s) and

dν0z = (ζ0z −MT
0z(t)ν0z)dt + µ0zdW0.

Let Φ0z(t,s) be the solution of the following system
{

dΦ0z(t,s) = M0z(t)Φ0z(t,s)dt,

Φ0z(s,s) = I, t ≥ 0, s ≥ 0.
(20)

Then by [19, Lemma A.1 (ii)],

ν0z(t) = fν0z,1(t)+ fν0z,2(t)x0(0)+

∫ t

0
gν0z

(t,s)dW0(s),

(21)

where

fν0z,1(t) =

∫ T

t
ΦT

0z(s1,t)
[

F0 f1(s1)+Q0η0

]

ds1, (22)

fν0z,2(t) =

∫ T

t
ΦT

0z(s1,t)F0 f2(s1)ds1, (23)

gν0z
(t,s) =

∫ T

t
ΦT

0z(s1,t)F0g(s1,s)ds1. (24)
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We continue to solve the first equation in (17). Let ξ0(t) =
B0R−1

0 BT
0 ν0(t) + F0z̄(t). Denote I =

[

I 0
]

∈ Rn×2n. Then

ν0 = Iν0z. Therefore, by (13) and (21)-(24),

ξ0(t) = fξ0,1(t)+ fξ0,2(t)x0(0)+
∫ t

0
gξ0

(t,s)dW0(s),

where fξ0, j(t) = B0R−1
0 BT

0 I fν0z, j(t) + F0 f j(t), j = 1,2, and

gξ0
(t,s) = B0R−1

0 BT
0 Igν0z

(t,s)+ F0g(t,s).

Denote A0 = A0 −B0R−1BT
0 P0. We have

dx̄0(t) = (ξ0(t)+A0(t)x̄0(t))dt + D0dW0(t).

Let Φ0(t,s) be the solution of the following system
{

dΦ0(t,s) = A0(t)Φ0(t,s)dt,

Φ0(s,s) = I, t ≥ 0, s ≥ 0.
(25)

Therefore, by [19, Lemma A.1 (i)] we obtain (19), where

fx̄0,1(t) =

∫ t

0
Φ0(t,s1) fξ0 ,1(s1)ds1

=

∫ t

0

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 IΦT
0z(s2,s1)

×
(

F0(s2) f1(s2)+Q0η0

)

ds2ds1 +

∫ t

0
Φ0(t,s1)F0 f1(s1)ds1

=: [Γ0,1 f1](t), (26)

fx̄0,2(t) = Φ0(t,0)+

∫ t

0
Φ0(t,s1) fξ0,2(s1)ds1

=

∫ t

0

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 IΦT
0z(s2,s1)F0(s2) f2(s2)ds2ds1

+

∫ t

0
Φ0(t,s1)F0 f2(s1)ds1 + Φ0(t,0)

=: [Γ0,2 f2](t), (27)

gx̄0
(t,s) =

∫ t

s
Φ0(t,s1)gξ0

(s1,s)ds1 + Φ0(t,s)D0

=
∫ t

s

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 IΦT
0z(s2,s1)F0(s2)g(s2,s)ds2ds1

+

∫ t

s
Φ0(t,s1)F0g(s1,s)ds1 + Φ0(t,s)D0

=: [Λ0g](t,s). (28)

V. THE SOLUTION OF PROBLEM (P2)

Lemma 4: Suppose Problem (P1) has an equilibrium so-

lution with respect to z̄. Then the following holds:

(i) There exists a unique optimal control to Problem (P2).

(ii) The pair (x̄i, ūi) is the optimal solution to Prob-

lem (P2) if and only if ūi(t) = R−1BT pi(t), where

(x̄i(t), pi(t),qi(t),ri(t)) is the solution of the FBSDE










dx̄i =
(

Ax̄i + BR−1BT pi + Fz̄+ Gx̄0

)

dt + DdWi,

d pi =
[

Q
(

x̄i −Hx̄0 − Ĥz−η
)

−AT pi

]

dt + qidWi + ridW0,

x̄i(0) = xi(0), pi(T ) = 0.
(29)

(iii) (29) has a unique solution (x̄i, pi,qi,ri). �

Let P(t) ≥ 0 be the solution of the Riccati equation

(7). Write pi(t) = −P(t)xi(t) + νi(t), where νi(t) will be

determined later satisfying the terminal condition νi(T ) = 0.

Denote A(t) = A−BR−1BT P(t). Similar to (17)-(18), the

coupled equation system (29) is equivalent to the FBSDE



















dx̄i =
(

Ax̄i + BR−1BT νi + Fz̄+ Gx̄0

)

dt + DdWi,

dνi =
{

−AT νi +(PF −QĤ)z̄+(PG−QH)x̄0−Qη
}

dt

+(qi + PD)dWi + ridW0,

x̄i(0) = xi(0), νi(T ) = 0.
(30)

We will represent x̄i(t) in the form

x̄i(t) = fx̄i ,1(t)+ fx̄i,2(t)x0(0)+ fx̄i,3(t)xi(0)

+

∫ t

0
gx̄i

(t,s)dW0(s)+

∫ t

0
hx̄i

(t,s)dWi(s), (31)

where fx̄i ,1 ∈ C([0,T ],Rn), fx̄i ,2, fx̄i ,3 ∈ C([0,T ],Rn×n), and

gx̄i
,hx̄i

∈C([0,T ],Rn×n2) are to be determined.

Let ζi(t) = (P(t)F −QĤ)z̄(t)+ (P(t)G−QH)x̄0(t)−Qη ,

λi(t) = qi(t)+ P(t)D. Then by (19),

ζi(t) = fζi ,1(t)+ fζi,2(t)x0(0)+

∫ t

0
gζi

(t,s)dW0(s),

where

fζi ,1(t) =
[

P(t)F −QĤ
]

f1(t)+
[

P(t)G−QH
]

fx̄0,1(t)−Qη ,

fζi ,2(t) =
[

P(t)F −QĤ
]

f2(t)+
[

P(t)G−QH
]

fx̄0,2(t),

gζi
(t,s) =

[

P(t)F −QĤ
]

g(t,s)+
[

P(t)G−QH
]

gx̄0
(t,s).

By (30), we have

dνi(t) = [ζi(t)−AT νi(t)]dt + ri(t)dW0(t)+ λi(t)dWi(t).

Let Φ(t,s) be the solution of
{

dΦ(t,s) = A(t)Φ(t,s)dt,

Φ(s,s) = I, t,s ≥ 0.
(32)

Then by [19, Lemma A.2 (ii)],

νi(t) = fνi ,1(t)+ fνi,2(t)x0(0)+

∫ t

0
gνi

(t,s)dW0(s), (33)

where

fνi ,1(t) =

∫ T

t
ΦT (s1,t)

[

(

QĤ −P(s1)F
)

f1(s1)

+
(

QH −P(s1)G
)

fx̄0,1(s1)+ Qη
]

ds1, (34)

fνi ,2(t) =

∫ T

t
ΦT (s1,t)

[

(

QĤ −P(s1)F
)

f2(s1)

+
(

QH −P(s1)G
)

fx̄0,2(s1)
]

ds1, (35)

gνi
(t,s) =

∫ T

t
ΦT (s1,t)

[

(

QĤ −P(s1)F
)

g(s1,s)

+
(

QH −P(s1)G
)

gx̄0
(s1,s)

]

ds1. (36)

Next, let ξi(t) = BR−1BT ν
i
(t)+ Fz̄(t). Then by (13) and

(33), ξi(t) = fξi ,1(t)+ fξi,2(t)x0(0)+
∫ t

0 gξi
(t,s)dW0(s) with

fξi , j(t) = BR−1BT fνi , j(t)+ F f j(t), j = 1,2, (37)

gξi
(t,s) = BR−1BT gνi

(t,s)+ Fg(t,s). (38)
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We have dx̄i(t) =
(

ξi(t)+A(t)x̄i(t)
)

dt +DdWi(t). Therefore

from [19, Lemma A.2 (i)], we obtain (31), where

fx̄i ,1(t) =

∫ t

0
Φ(t,s1) fξi ,1(s1)ds1

=

∫ t

0
Φ(t,s1)BR−1BT

∫ T

s1

ΦT (s2,s1)×
[

(QĤ −P(s2)F) f1(s2)+ (QH −P(s2)G) fx̄0,1(s2)+ Qη
]

ds2ds1

+

∫ t

0
Φ(t,s1)F f1(s1)ds1 =: [Γ1 f1](t), (39)

fx̄i ,2(t) =
∫ t

0
Φ(t,s1) fξi ,2(s1)ds1

=
∫ t

0
Φ(t,s1)BR−1BT

∫ T

s1

ΦT (s2,s1)×
[

(

QĤ −P(s2)F
)

f2(s2)+
(

QH −P(s2)G
)

fx̄0,2(s2)
]

ds2ds1

+

∫ t

0
Φ(t,s1)F f2(s1)ds1 =: [Γ2 f2](t), (40)

gx̄i
(t,s) =

∫ t

s
Φ(t,s1)gξi

(s1,s)ds1

=

∫ t

s
Φ(t,s1)BR−1BT

∫ T

s1

ΦT (s2,s1)×
[

(

QĤ −P(s2)F
)

g(s2,s)+
(

QH −P(s2)G
)

gx̄0
(s2,s)

]

ds2ds1

+

∫ t

s
Φ(t,s1)Fg(s1,s)ds1 =: [Λg](t,s), (41)

and furthermore, fx̄i ,3(t) = Φ(t,0), hx̄i
(t,s) = Φ(t,s)D.

VI. THE CONSISTENCY CONDITION

Lemma 5: We have

(i) Γ1 is a mapping from C([0,T ],Rn) to C([0,T ],Rn).
(ii) Γ2 is a mapping from C([0,T ],Rn×n) to C([0,T ],Rn×n).
(iii) Λ is a mapping from C(∆,Rn×n2) to C(∆,Rn×n2). �

Denote the product space

CNCE = C([0,T ],Rn)×C([0,T ],Rn×n)×C(∆,Rn×n2).

The definition below characterizes the consistency condi-

tion for the mean field approximation. When the controls ob-

tained in Section III-B are applied, the mean field replicated

by the closed loop in the population limit should coincide

with the one assumed at the beginning.

Definition 6: A triple ( f1, f2,g) ∈ CNCE is called a con-

sistent solution to the Nash certainty equivalence (NCE)

equation system if
{

f j(t) = [Γ j f j](t), 0 ≤ t ≤ T, j = 1,2,

g(t,s) = [Λg](t,s), 0 ≤ s ≤ t ≤ T.
(42)

♦
Denote the linear operators Γ̄0,1, Γ̄0,2 and Λ̄0 on

C([0,1],Rn), C([0,T ],Rn×n) and C(∆,Rn×n2), respectively,

as follows:

[Γ̄0, j f j](t) =

∫ t

0

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 IΦT
0z(s2,s1)×

×F0(s2) f j(s2)ds2ds1 +
∫ t

0
Φ0(t,s1)F0 f j(s1)ds1, j = 1,2,

[Λ̄0g](t,s) =

∫ t

s

∫ T

s1

Φ0(t,s1)B0R−1
0 BT

0 IΦT
0z(s2,s1)×

×F0(s2)g(s2,s)ds2ds1 +

∫ t

s
Φ0(t,s1)F0g(s1,s)ds1,

which are obtained by retaining the linear term of the affine

operators Γ0, j and Λ0, respectively.

Corresponding to Γ1, Γ2 and Λ, define the linear op-

erators Γ̄1, Γ̄2, and Λ̄ on C([0,1],Rn), C([0,T ],Rn×n) and

C(∆,Rn×n2), respectively, as follows:

[Γ̄ j f j](t) =

∫ t

0

∫ T

s1

Φ(t,s1)BR−1BT ΦT (s2,s1)×

×
[

(

QĤ −P(s2)F
)

f j(s2)+
(

QH −P(s2)G
)

[Γ̄0, j f j](s2)
]

ds2ds1

+

∫ t

0
Φ(t,s1)F f j(s1)ds1, j = 1,2,

[Λ̄g](t,s) =

∫ t

s

∫ T

s1

Φ(t,s1)BR−1BT ΦT (s2,s1)×

×
[

(

QĤ −P(s2)F
)

g(s2,s)+
(

QH −P(s2)G
)

[Λ̄0g](s2,s)
]

ds2ds1

+
∫ t

s
Φ(t,s1)Fg(s1,s)ds1.

Let C([0,1],Rn), C([0,T ],Rn×n) and C(∆,Rn×n2) be en-

dowed with the usual sup-norms ‖·‖∞ so that they are

all Banach spaces. For f2 ∈ C([0,T ],Rn×n), we write f2 =
[ f2,1, ..., f2,n], where f2,i ∈ C([0,T ],Rn) for each i = 1, ...,n.

Then [Γ̄2 f2](t) =
[

[Γ̄1 f2,1](t), ..., [Γ̄1 f2,n](t)
]

. We have the

following result for the NCE equation system.

Theorem 7: If the norms of Γ̄1 and Λ̄ satisfy ‖Γ̄1‖< 1 and

‖Λ̄‖ < 1, (42) has a unique solution ( f1, f2,g) ∈CNCE. �

VII. ASYMPTOTIC EQUILIBRIUM ANALYSIS

Throughout this section we assume that there exists a

solution ( f1, f2,g) ∈CNCE to the NCE equation system (42).

Consider the system (1)-(2). Let the control laws of A0

and Ai, 1 ≤ i ≤ N, be given by

û0(t) = R−1
0 BT

0

(

−P0(t)x̂0(t)+ ν0(t)
)

, (43)

ûi(t) = R−1BT
(

−P(t)x̂i(t)+ νi(t)
)

, (44)

where ν0(t), νz(t) and νi(t) are determined by (17), (18) and

(29) corresponding to the solution ( f1, f2,g) to (42). Their

explicit solutions are given by (21) and (33). After the control

laws (43)-(44) are applied, the dynamics of A0 and Ai may

be written in the form

dx̂0 =
(

A0x̂0 + B0R−1
0 BT

0 P0ν0 + F0x̂(N)
)

dt + D0dW0,

dx̂i =
(

Ax̂i + BR−1BT Pνi + Fx̂(N) + Gx̂0

)

dt + DdWi,

where 1 ≤ i ≤ N and x̂(N) = (1/N)∑N
i=1 x̂i.

We now construct the limiting equation system for the

N + 1 players

dx̄0 =
(

A0x̄0 + B0R−1
0 BT

0 P0ν0 + F0z̄

)

dt + D0dW0,

dx̄i =
(

Ax̄i + BR−1BT Pνi + Fz̄+ Gx̄0

)

dt + DdWi,

where 1 ≤ i ≤ N and the initial conditions are x̄i(0) = xi(0).
We have the error estimate of the mean field approximation.
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Proposition 8: Assume (A). We have

E

∫ T

0

∣

∣z̄(t)− x̄(N)(t)
∣

∣

2
dt = O

( 1

N

)

,

E

∫ T

0

[

∣

∣z̄(t)− x̂(N)(t)
∣

∣

2
+ sup

0≤ j≤N

∣

∣x̂ j(t)− x̄ j(t)
∣

∣

2
]

dt = O

( 1

N

)

,

where x̄(N) = (1/N)∑N
i=1 x̄i. �

Consider the system of N +1 agents described by (1) and

(2). Let the class UW consist of all processes yW of the form

yW (t) =

∫ t

0
[h0(t,s)dW0(s), . . . ,hN(t,s)dWN(s)]T

where each h j is an Rn×n2-valued bounded measurable

function on ∆.

For any j = 0, ...,N, the admissible control set U j of

agent A j consists of control u j as a time dependent function

linear in x0,x1, . . . ,xN ,yW for some yW ∈ UW . The resulting

control of a player may not be purely in a feedback form

since the noise process may be used via yW ; this more

general form of controls is necessary in order to include

the decentralized controls (43)-(44) that we have derived.

Since the control still uses the players’ states, (u0,u1, . . . ,uN)
is in a partial feedback form, and will be called a set of

partial feedback strategies. Note that U j is not restricted

to be decentralized. Given (u0,u1, . . . ,uN) ∈ U0 × . . .×UN ,
the closed-loop system has a unique strong solution. For

j = 0, ...,N, denote u− j = (u0,u1, ...,u j−1,u j+1, ...,uN).
Definition 9: A set of controls u j ∈U j, 0≤ j ≤N, for the

N +1 players is called an ε-Nash equilibrium with respect to

the costs J j, 0 ≤ j ≤ N, where ε ≥ 0, if for any j, 0 ≤ j ≤ N,

we have J j(u j,u− j) ≤ J j(u
′
j,u− j)+ ε, when any alternative

u′j is applied by player A j. ♦
Theorem 10: Assume (A). Then the set of controls û j,

0 ≤ j ≤ N, for the N + 1 players is an ε-Nash equilibrium,

i.e., for 0 ≤ j ≤ N,

J j(û j, û− j)− ε ≤ inf
u j∈U j

J j(u j, û− j) ≤ J j(û j, û− j),

where 0 < ε = O(1/
√

N). �

VIII. CONCLUSION

This paper has extended the BSDE based approach in [18],

[19], [20] to treat responsive mean field in large population

stochastic dynamic games involving a major player. The key

step is the development of a procedure called anticipative

variational calculations for the control analysis of the major

player. The consistent mean field approximation reduces to

fixed point analysis of linear operators on function spaces.

REFERENCES

[1] S. Adlakha, R. Johari, G. Weintraub, and A. Goldsmith. Oblivious
equilibrium for large-scale stochastic games with unbounded costs.
Proc. IEEE CDC 2008, Cancun, Mexico, pp. 5531-5538, Dec. 2008.

[2] D. Andersson and B. Djehiche. A maximum principle for SDEs of
mean-field type. Appl. Math. Optim., vol. 63, no. 3, pp. 341-356, 2011.

[3] M. Bardi. Explicit solutions of some linear-quadratic mean field
games. Netw. Heterogeneous Media, vol. 7, no. 2, pp. 243-261, 2012.

[4] J. M. Bismut. Linear quadratic optimal stochastic control with random
coefficients. SIAM J. Control Optim., vol. 14, no. 3, pp. 419-444, 1976.

[5] R. Buckdahn, P. Cardaliaguet, and M. Quincampoix. Some recent
aspects of differential game theory. Dynamic Games and Appl., vol.
1, no. 1, pp. 74-114, 2011.

[6] D. A. Gomes, J. Mohr, and R. R. Souza. Discrete time, finite state
space mean field games. J. Math. Pures Appl., vol. 93, pp.308-328,
2010.

[7] N. Gast, B. Gaujal, and J.-Y. Le Boudec. Mean field for Markov
decision processes: from discrete to continuous optimization. IEEE
Trans. Autom. Control, vol. 57, no. 9, pp. 2266-2280, Sept. 2012.

[8] Z. Galil. The nucleolus in games with major and minor players.
Internat. J. Game Theory, vol. 3, pp. 129-140, 1974.

[9] S. Hart. Values of mixed games. Internat. J. Game Theory, vol. 2, pp.
69-86, 1973.

[10] M. Huang. Large-population LQG games involving a major player: the
Nash certainty equivalence principle. SIAM J. Control Optim., vol. 48,
no. 5, pp. 3318-3353, 2010.

[11] M. Huang, P. E. Caines, and R. P. Malhamé. Individual and mass
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