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Abstract— We consider dynamic games in a large popula-
tion of stochastic agents which are coupled by both individual
dynamics and costs. These agents each have local noisy
measurements of its own state. We investigate the synthesis
of decentralized Nash strategies for the agents. The study for
this class of large-scale systems provides interesting insights
into competitive decision-making with localized information
under large population conditions.

I. I NTRODUCTION AND MOTIVATION

The modeling and analysis of dynamic systems with
many competing agents is of importance due to their wide
appearance in socio-economic and engineering areas [11],
[10], [12], [17], [1], as well as biological science [18], [20],
and central issues concerning analysis and optimization
of those systems include appropriate characterization of
competition, temporal evolution of system behavior, in-
formation constraints, and implementation complexity of
control strategies. Aiming at addressing these issues and
developing a general optimization methodology, we study
weakly coupled multi-agent decision-making with partial
information. The underlying model and the methodology
developed here will provide useful insights into under-
standing the behavior of systems in a wider scope with
complex interactions between agents.

This kind of weak coupling in both dynamics and costs
is used to model the mutual impact of agents during
competitive decision-making. Specifically, cost coupling
has been frequently encountered in economic theory where
the agent’s payoff is affected by the market condition,
e.g., price, which in turn is affected by the aggregate
population behavior such as the production level of all
agents [17], [13]. In contrast, the dynamic coupling is
used to specify an environment effect to the individual’s
decision-making generated by the population. For this
kind of dynamic coupling involving the population effect,
a simple illustrative example is the oligopoly product
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advertising model in which the given firm’s sales rate is
influenced by its own advertising expenditure (treated as
a control variable) and the unsold market proportion (i.e.,
the market potential minus the total sales rate of all firms);
for details see the bilinear Vidale-Wolfe oligopoly models
examined in [8], [10]. In the engineering area, there is
a similar phenomenon with Internet applications — as the
aggregate consumption of all network users causes a higher
congestion level, each individual user feels more difficultto
acquire extra improvement in its service. In other words,
the availability of network resource is responsive to the
instantaneous activity of all users [5].

Although the models arising in these application areas
take their different specific forms, the dynamic interaction
between the individual and the mass (consisting of all
others or the overall population) has a close resemblance to
the generic linear model investigated in this paper. Specif-
ically, as a key common feature to these different systems
arising in economics, engineering or biology, while each
agent only receives a negligible influence from any other
given individual, the effect from the overall population is
significant for each agent’s strategy selection.

In this paper, we focus on the analysis for the lin-
ear models and develop a methodology for multi-agent
competitive decision-making with local information and,
in contrast to the extensive literature on linear-quadratic
(LQ) or linear-quadratic-Gaussian (LQG) games (see, e.g.,
[22], [6], [24]), we are particularly interested in large
populations. We note that games with a large or infinite
population have long been a major research area in game
theory [16], [3], [4], [21], [23], but traditionally most
work has been based on static models. To simplify the
analysis of our stochastic dynamic game, we consider a
system of uniform agents, i.e., the agents are described by
similar individual dynamics. Differing from our previous
research [13], [14], [15], in the present system, each agent
only has noisy observations of its own state. To obtain a
localized control synthesis, it is critical to extract its state
information from its available measurements, and it turns
out this further depends on an appropriate anticipation of
the collective effect of all agents.

A. The general approach and organization

In the decentralized game setting, we first introduce a
local state estimation scheme for each agent, which is
achieved by using a deterministic function̄z to approx-
imate the mass effect, where the construction ofz̄ will
form a key step in the analysis. Then by state aggregation
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we obtain the control synthesis for the individual agents
utilizing the filter output. The above localized filtering-
control design relies on specifying a consistency relation-
ship between the individual actions and the mass effect in a
large population limit context. Subsequently, we examine
the close-loop stable behavior of the population. Finally
we present performance analysis by establishing anε-Nash
equilibrium property for the decentralized control laws of
the agents.

II. T HE WEAKLY COUPLED SYSTEMS

Consider ann dimensional linear stochastic system
where each state component and its measurement are
described by

dzi = (azi + bui)dt + αz(n)dt + σdwi, t ≥ 0, (1)

dyi = czidt + σ̄dvi, 1 ≤ i ≤ n, (2)

where {wi, vi, 1 ≤ i ≤ n} denotes2n independent
standard scalar Wiener processes andz(n) = 1

n

∑n
i=1 zi,

α ∈ R. Hence, z(n) may be looked at as a nominal
driving term imposed by the population. The Gaussian
initial conditionszi(0) are mutually independent and are
also independent of{wi, vi, 1 ≤ i ≤ n}. In addition,b 6= 0.
Each state component shall be referred to as the state of
the corresponding individual (also to be called an agent
or a player). We note that the limiting version of equation
(1) (i.e, asn → ∞) may be viewed as a linear controlled
version of the well-known McKean-Vlasov equation for
weakly interacting diffusions [7], [19].

For simplicity of analysis, in this paper we consider a
system of uniform agents in the sense that all agents share
the same set of parameters(a, b, α, σ) and (c, σ̄) as given
in (1) and (2).

We investigate the behavior of the agents when they
interact with each other through specific coupling terms
appearing in their cost functions; this is displayed in the
following set of individual cost functions which shall be
used henceforth in the analysis:

Ji(ui, νi)
△
= E

∫ ∞

0

e−ρt[(zi − νi)
2 + ru2

i ]dt. (3)

The objective of our work is to design the individual
control strategies such that each agent’s cost function is
optimized in a certain sense utilizing only its local infor-
mation, and we will cast the specific optimality criteria
into the Nash equilibrium framework.

In particular, we assume the cost-coupling to be of the
following form:

νi = Φ(z(n)) = Φ(
1

n

n
∑

k=1

zk),

whereΦ is a continuous function onR. The linking termνi

gives a measure of the average effect generated by the mass
formed by all agents. Here we assumeρ, r > 0 and unless
otherwise stated, throughout the paperzi is described by
the dynamics (1).

III. C OMPETITIVE DECISION-MAKING WITH LOCAL

INFORMATION

Although the underlying system is linear, a straight
application of Kalman filtering to then dimensional system
is out of question due to the information constraints for the
agents. In other words, in our model there is not a central
optimizer which can access all agents’ outputs and then
form the optimal estimate of the state vector. To overcome
such a difficulty, we first formally approximate the term
z(n) by a deterministic function̄z (to be determined later).
Note that when a function̄z, instead ofz(n), appeared
in the dynamics ofzi leading to uncoupled dynamics,
the optimal state estimation forzi would be given by the
standard scalar Kalman filtering. Now in the large but finite
population condition, it is expected that the Kalman filter-
ing structure will still produce a satisfactory estimate when
z(n) appears in the state equation (1) but is approximated
by z̄ when constructing the filtering equation.

It is evident that the termz(n) and hencēz are related
to the control laws of all agents. However, here we simply
proceed by presuminḡz as a given function, and the exact
procedure for determining this function will be clear after
the control synthesis is described.

A. The auxiliary output regulation problem

As a preliminary step for the control design of the multi-
agent system, we first introduce the following auxiliary
Gaussian-Markov model

dz0
i = (az0

i + bui)dt + αz̄dt + σdwi, t ≥ 0, (4)

dy0
i = cz0

i dt + σ̄dvi, (5)

where z̄ ∈ Cb[0,∞) is given. We denote byCb[0,∞) the
set of deterministic, bounded and continuous functions on
[0,∞). The noise terms have the same statistics as in the
model (1)-(2). The cost function is

J0(ui)
△
= E

∫ ∞

0

e−ρt[(z0
i − z∗)2 + ru2

i ]dt, (6)

wherez∗ ∈ Cb[0,∞).
Let Π > 0 be the solution to the Riccati equation:

ρΠ = 2aΠ − b2

r
Π2 + 1. (7)

And denoteβ1 = −a + b2

r Π, β2 = −a + b2

r Π + ρ. It is
easy to check thatβ2 > ρ

2 . For Kalman filtering, we write
the Riccati equation:

dP (t)

dt
= 2aP (t) − c2R−1P 2(t) + Q, t ≥ 0, (8)

where R = σ̄2 and Q = σ2. The initial condition for
P (t) is taken as the variance ofz0

i (0). Let s be a bounded
solution for the differential equation

ρs =
ds

dt
+ as − b2

r
Πs + αΠz̄ − z∗. (9)

Remark:It can be shown that there exists a unique initial
conditions(0) leading to a bounded solutions and that any
other initial condition gives an unbounded solution [14].
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In fact, we have the expression [14]

s(t) = eβ2t

∫ ∞

t

e−β2τ [αΠz̄(τ) − z∗(τ)]dτ ∈ Cb[0,∞).

(10)

Then it is easy to check that the optimal control law is
given by

dẑ0
i = (aẑ0

i + bui + αz̄)dt + P (t)cR−1[dy0
i − cẑ0

i dt],

ui = − b

r

[

Πẑ0
i + s(t)

]

.

B. The local approximate Kalman filtering

In the multi-agent system, since each agent’s infor-
mation is restricted to its own measurement, one cannot
directly use the standard Kalman filtering. However, after
introducing a structural approximation for the mass effect,
the state of each agent can be estimated by use of only its
local information, and the associated approximate filtering
equation may be constructed by the usual Kalman filtering
for a scalar model. The justification of such an approxima-
tion will be given during the closed-loop stability analysis.

For agenti, the initial condition for equation (8) isκi
△
=

V ar(zi(0)) and we denote the corresponding solution by
Pi(t). To simplify our analysis below, we first assume all
κi are equal to the same valueκ > 0, and hence the same
function P (t) is used for all agents.

The local filter is constructed as follows:

dẑi = (aẑi + bui + αz̄)dt + P (t)cR−1[dyi − cẑidt],
(11)

wherez̄, used for approximatingz(n), is to be determined.
We shall call this the approximate Kalman filter since an
approximation step involvinḡz is introduced here. Note
that sincezi is driven by z(n) in its actual model, the
correcting termdyi − cẑidt is not an innovation process
(i.e., a Wiener process). Denote the error term

z̃i = zi − ẑi.

The approximate Kalman filtering equation may be written
in the form

dẑi = (aẑi + bui + αz̄)dt + P (t)c2R−1z̃idt

+ P (t)cR−1σ̄dvi.

Combining (1) and (11) gives the error equation

dz̃i =
[

a − P (t)c2R−1
]

z̃idt + α[z(n) − z̄]dt

+ σdwi − P (t)cR−1σ̄dvi.

C. Feedback and closed-loop dynamics

By use of the single agent based control law in Section
III-A, we proceed to formally construct the individual
control laws forn agents as follows:

u0
i = − b

r
[Πẑi + s(t)] , 1 ≤ i ≤ n, (12)

which henceforth will be adopted by the individual agents
with ẑi determined by (11). Here the functions in (12)

is to be constructed using a large population limit; and
the remaining critical issue is to first determine a tracking
reference trajectoryz∗ and thens.

To determines(t) in (12), we use the state aggregation
technique within a population limit as in [13], [14], and
introduce the state aggregation equation system

ρs =
ds

dt
+ as − b2

r
Πs + αΠz̄ − z∗, (13)

dz̄

dt
= az̄ − b2

r
[Πz̄ + s(t)] + αz, (14)

z∗ = Φ(z̄), (15)

wheres ∈ Cb[0,∞). For given z̄ and z∗, whose bound-
edness will be established later, there is a unique initial
condition s(0) yielding a bounded solutions, and hence
it is unnecessary to specifys(0) separately. Here (13)
results form the single agent based optimal tracking once
the population effect is approximated by the functionz̄.
Equation (14) is based on taking expectation in the closed-
loop of (1) with control lawu0

i , where we approximatez(n)

by z̄ and the expectationEẑi is also approximated by the
samez̄ under the condition of uniform agents.

The underlying mechanism for devising the control
strategy (12) is that, in the large population limit and for
a given mass effect̄z ∈ Cb[0,∞), each individual will
tend to take an optimal tracking action, and in turn, these
individual actions will collectively generatethe same mass
effectz̄ as described by (14) corresponding to the optimal
tracking based control law. This constitutes the so-called
mutual consistency relationshipbetween the individual
and the mass, and this notion is captured mathematically
by a fixed point theorem (to be discussed below) which
provides the existence of such a trajectoryz̄ ∈ Cb[0,∞)
and characterizes the resulting pair(z̄, s) as the unique
bounded solution to (13)-(15).

Now we have the closed-loop equations forẑi and z̃i

after the control lawu0
i is implemented:

dẑi =

(

a − b2

r
Π

)

ẑidt + P (t)c2R−1z̃idt + αz̄dt

− b2

r
s(t)dt + P (t)cR−1σ̄dvi, (16)

dz̃i =
[

a − P (t)c2R−1
]

z̃idt +
α

n

n
∑

j=1

ẑjdt +
α

n

n
∑

j=1

z̃jdt

− αz̄dt + σdwi − P (t)cR−1σ̄dvi. (17)

Letting ẑ†n = 1
n

∑n
j=1 ẑj and z̃†n = 1

n

∑n
j=1 z̃j , we

obtain

dẑ†n =

(

a − b2

r
Π

)

ẑ†ndt + P (t)c2R−1z̃†ndt − b2

r
s(t)dt

+
1√
n

P (t)cR−1σ̄dv†, (18)

dz̃†n = αẑ†ndt +
[

a − P (t)c2R−1 + α
]

z̃†ndt − αz̄dt

+
1√
n

σdw† − 1√
n

P (t)cR−1σ̄dv†, (19)
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wherew† = n−1/2
∑n

i=1 wi andv† = n−1/2
∑n

i=1 vi are
two independent standard Wiener processes.

Remark.For specifying the mean trajectories ofẑ†n and
z̃†n, it suffices to remove the noise terms at the right hand
side of (18)-(19).

IV. STABLE POPULATION BEHAVIOR

We introduce the following assumptions:

(H1) Let P † > 0 denote the steady state value of the
solution to the filtering Riccati equation (8). Assume
a − b2

r Π < 0 and the matrix

M =

[

a − b2

r Π P †c2R−1

α a − P †c2R−1 + α

]

(20)

is strictly stable.
(H2) The functionΦ is Lipschitz continuous onR with a

Lipschitz constantγ > 0, i.e., |Φ(y1) − Φ(y2)| ≤
γ|y1 − y2| for all y1, y2 ∈ R.

(H3) β1 > 0, and |α|
β1

+ b2(γ+|α|Π)
rβ1β2

< 1, whereβ1, β2 are
computed from the Riccati equation (7). The constant
γ is specified in (H2).

(H4) All agents have mutually independent Gaussian initial
conditions of zero mean, i.e.Ezi(0) = 0. In addition,
all Ez2

i (0) = κ > 0, i ≥ 1.

Remark: It is easy to verify thata − P †c2R−1 < 0.
Hence for sufficiently small|α|, the matrixM in (H1) is
always stable provided thata − b2

r Π < 0 holds.
Before analyzing it solution, it is of interest to note

that the state aggregation equation system (13)-(15) is not
affected by the partial observation situation; in other words,
the case of full information will still yield the same set
of equations; see [14], [15] for details. Then using the
method in [14], [15] to the current special case of uniform
agents, we may eliminates in (14) and derive a fixed point
equation forz̄, for which we can establish the existence
and uniqueness of a bounded solution under(H2)− (H4).
Accordingly, a unique bounded solution to (13)-(15) can be
obtained. The following theorem is a direct consequence of
the existence theorem in [14] for a system of non-uniform
agents and perfect observations, which itself is proven by
a fixed point argument.

Theorem 1: [14]Under (H2)-(H4), the state aggrega-
tion equation system (13)-(15) admits a unique bounded
solution z̄ ∈ Cb[0,∞) ands ∈ Cb[0,∞).

Theorem 2:Under (H2)-(H4) and the control strategies
u0

i for all agents, the closed-loop system for then agents
admits a unique strong solution.

Proof. This follows by verifying the Lipschitz condition
for the closed-loop system when alln agents apply the set
of control laws(u0

1, · · · , u0
n).

Theorem 3:Under (H1)-(H4), there exists a constatC

such that

sup
t≥0,1≤i≤n

E
[

ẑ2
i (t) + z̃2

i (t)
]

≤ C (21)

whereC is independent of the population sizen.

Proof. We begin by constructing the deterministic time-
varying ODE system,

dx

dt
=

[

a − b2

r Π P (t)c2R−1

α a − P (t)c2R−1 + α

]

x. (22)

We denote the fundamental solution matrix for the ODE
(22) by Φ(t, t0) where t ≥ t0 ≥ 0 and Φ(t0, t0) = I. It
can be checked thatΦ(t, t0) is exponentially stable under
(H1). By use of this fact, we establish theL2 stability of
ẑ†n and z̃†n, i.e.,

sup
t≥0,1≤i≤n

E
(

|ẑ†n(t)|2 + |z̃†n(t)|2
)

≤ C1, (23)

which combined with (17) gives

sup
t≥0,1≤i≤n

Ez̃2
i (t) ≤ C2. (24)

The constantsC1 andC2 do not depend onn.
By virtual of (24) and (16) we further get

sup
t≥0,1≤i≤n

Eẑ2
i (t) ≤ C, (25)

for some constantC > 0 independent ofn. This completes
the proof.

V. THE ASYMPTOTIC EQUILIBRIUM ANALYSIS

For the population ofn agents, the agents’ admis-
sible control setU1,··· ,n consists of all feedback con-
trols (u1, · · · , un) adapted to theσ-algebraσ(yi(τ), τ ≤
t, 1 ≤ i ≤ n) (i.e., each uk(t) is a functional of
(t, y1(τ), · · · , yn(τ)), τ ≤ t) such that a unique strong
solution to the closed-loop system of then agents exists
on [0,∞). Here we only have a very general requirement
for the control such that it depends on the measurements
(yi, 1 ≤ i ≤ n) and is allowed to depend on all available
past history as long as a solution is well defined. With the
coupling in dynamics, each agent’s admissible control set
may be affected by the strategies taken by other agents.
This is very similar to the social equilibrium scenario [2]
by imposing additional constraints on individuals’ choices
of strategies; such a notion dates back to the early work [9]
and is widely used for the analysis of Nash equilibrium in
the economics literature. In our setting, the implicit con-
straints (in the sense that then agents’ joint strategy space
U1,··· ,n does not decompose into the Cartesian product of
n individual strategy sets) on each agent’s control serve
only to ensure the existence of a well-defined solution
for the closed-loop system. We useu−k to denote the
vector of individual strategies obtained by deletinguk in
(u1, · · · , un). Then the vector(u1, · · · , uk, · · · , un) may
be equivalently denoted as(uk, u−k). For a fixedu−k, we
induce the projection ofU1,··· ,n to itskth component as the
setUk|u

−k
= {uk|(uk, u−k) ∈ U1,··· ,n}. Note thatUk|u

−k

is not restricted to be decentralized sinceuk is allowed to
depend onyi, i 6= k, which actually leads to a stronger
characterization for the decentralized control law analyzed
in this section. In this setup we give the definition.
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Definition 4: A set of controls(uk)n
k=1 ∈ U1,··· ,n for n

players is called anε-Nash equilibriumwith respect to the
costsJk, 1 ≤ k ≤ n, if there existsε ≥ 0 such that for
any fixed1 ≤ i ≤ n, we have

Ji(ui, u−i) ≤ Ji(u
′
i, u−i) + ε, (26)

when any alternative controlu′
i ∈ Ui|u

−i
is applied by the

ith player.
Note that the costsJk, 1 ≤ k ≤ n, appearing in

Definition 4 are deterministic quantities in the functional
form of a set of individual feedback control laws depending
on the system outputs(y1, · · · , yn).

For obtaining a desired performance estimate, the fol-
lowing lemma is useful. Notice that for independent ran-
dom variables, it is usually easy to derive magnitude
estimate of this type. When there exists dependence, the
estimate is less obvious. In the following we will get the
estimate by use of the stability property for the closed-loop
system.

Lemma 5:Assume (H1)-(H4) hold. Under the optimal
tracking based control lawsu0

i , 1 ≤ i ≤ n, we have

sup
t≥0

E

∣

∣

∣

∣

∣

n−1
n

∑

i=1

(ẑi − Eẑi)

∣

∣

∣

∣

∣

2

+ sup
t≥0

E

∣

∣

∣

∣

∣

n−1
n

∑

i=1

(z̃i − Ez̃i)

∣

∣

∣

∣

∣

2

= O(n−1),

which further impliessupt≥0 E
[

n−1
∑n

i=1(zi − Ezi)
]2

=
O

(

n−1
)

.
Proof. From (18) and (19), we get

d(ẑ†n − Eẑ†n) =

(

a − b2

r
Π

)

(ẑ†n − Eẑ†n)dt

+ P (t)c2R−1(z̃†n − Ez̃†n)dt

+
1√
n

P (t)cR−1σ̄dv†,

d(z̃†n − Ez̃†n) = α(ẑ†n − Eẑ†n)dt

+
[

a − P (t)c2R−1 + α
]

(z̃†n − Ez̃†n)dt

+
1√
n

σdw† − 1√
n

P (t)cR−1σ̄dv†.

As in proving Theorem 3, letΦ(t, τ) denote the fun-
damental solution matrix to the ODE (22), which can be
shown to be uniformly exponentially stable, i.e, there exists
a constantC > 0 and0 < θ < 1 such that for0 ≤ τ ≤ t,

‖Φ(t, τ)‖ ≤ Cθt−τ . (27)

We write Φ(t, τ) as a2 × 2 matrix to get

Φ(t, τ) = (Φij(t, τ))2i,j=1.

Then it follows that

(ẑ†n − Eẑ†n)(t) =Φ11(t, 0)ẑ†n(0) + Φ12(t, 0)z̃†n(0)

+
1√
n

∫ t

0

[Φ11(t, τ) − Φ12(t, τ)]P (τ)cR−1σ̄dv†
τ

+
1√
n

∫ t

0

Φ12(t, τ)σdw†
τ

where ẑ†n(0) = 0 and z̃†n(0) = 1
n

∑n
i=1 zi(0). Hence this

gives

E|ẑ†n(t) − Eẑ†n(t)|2

= O(
1

n
)+

O(
1

n

∫ t

0

∣

∣[Φ11(t, τ) − Φ12(t, τ)]P (τ)cR−1σ̄
∣

∣

2
dτ)

+ O(
1

n

∫ t

0

|Φ12(t, τ)σ|2dτ).

And it follows that

sup
t≥0

E|ẑ†n(t) − Eẑ†n(t)|2 = O(
1

n
). (28)

Similarly, we obtain

sup
t≥0

E|z̃†n(t) − Ez̃†n(t)|2 =O(
1

n
), (29)

and the Lemma follows readily from (28) and (29).
For establishing the main result given by Theorem 7,

the following Lemma 6 is instrumental and quantifies the
impact generated by a given agent’s strategy deviation
provided that a prior bound is known for its performance
when other agents stick to their optimal tracking based
strategies. Define

I(ui, u
0
−i) = E

∫ ∞

0

e−ρt

[

z∗ − Φ(
1

n

n
∑

k=1

zk)

]2

(ui,u0

−i
)

dt,

I(u0
i , u

0
−i) = E

∫ ∞

0

e−ρt

[

z∗ − Φ(
1

n

n
∑

k=1

zk)

]2

(u0

i
,u0

−i
)

dt,

where the state trajectories inside the integral are generated
by the associated control strategies, andz∗, as the tracking
reference trajectory, is determined by the state aggregation
equation system (13)-(15).

Lemma 6:Assume (H1)-(H4) for the system ofn
agents. Leti be fixed andui ∈ Ui|u0

−i

be a control such
that Ji(ui, u

0
−i) ≤ C, for a fixedC > 0 independent ofn,

where all other agents take the controlsu0
j , j 6= i. Then

there existsC1 independent ofn such that
∫ ∞

0

e−ρtE(z2
i + u2

i )dt ≤ C1.

And moreover, for the above fixedi,

|I(ui, u
0
−i) − I(u0

i , u
0
−i)| = O(

1

n
). (30)

By making use of Theorem 3, we can find a constant
C independent ofn such thatJi(u

0
i , u

0
−i) ≤ C, which

hence ensures that the constantC > 0 used in Lemma 6
exists. The lemma can be proven by use of the closed-
loop system of then agents, and the main step is to
show

∫ ∞

0
e−ρtEz2

i |(ui,u0

−i
)dt < ∞ whenJi(ui, u

0
−i) ≤ C

holds.

2729



Now we are in a position to state the central result of
this paper. Let the individual control lawu0

i be given by
(12).

Theorem 7:Suppose (H1)-(H4) hold for the system of
n agents. Then the set of feedback strategies given by
(u0

1, · · · , u0
n) is an ε-Nash equilibrium, whereε → 0 as

n → ∞.
Proof. Based on Lemmas 5 and 6, this theorem can be

proven by a similar method as in [12], [13], [14]. The
details are omitted here.

Recall that when specifying theε-Nash equilibrium in
Definition 4, the admissible control set for then agents
depends on centralized information. In conjunction with
this definition, the implication of Theorem 7 is that, in a
large but finite population, the decentralized observation
dependent control is almost as good as global history in-
formation based controls; any deviating agenti cannot take
essential advantage of others by utilizing full information
of the system outputs, provided that all other agents stick
to their optimal (output) tracking based control lawsu0

−i.

VI. CONCLUSION

In this paper we investigate distributed decision-making
in a system of uniform agents coupled by their linear
dynamics and individual costs, where each agent has noisy
measurements of its own state. We propose a decentralized
control synthesis in which each agent utilizes its local
information for its control strategies. The key steps in
the control design consist of local approximate Kalman
filtering based on the anticipation of the collective effect
of all agents, and then of an optimal tracking based
control law. It is shown that the resulting set of individual
control laws leads to stable population behavior and has
an asymptotic Nash equilibrium property.
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