Proceedings of the 17th International Symposium on Mathematical FrP08.3
Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006

Distributed Multi-Agent Decision-Making with Partial
Observations: Asymptotic Nash Equilibria

Minyi Huang, Peter E. Cainés and Roland P. Malhaéh

Abstract— We consider dynamic games in a large popula- advertising model in which the given firm’'s sales rate is

tion of stochastic agents which are coupled by both individual_ influenced by its own advertising expenditure (treated as

dynamics and costs. These agents each have local noiSy, control variable) and the unsold market proportion (i.e.,
measurements of its own state. We investigate the SyntheSIS

of decentralized Nash strategies for the agents. The study for the market potential minus the total sales rate of all firms);

this class of large-scale systems provides interesting insights for details see the bilinear Vidale-Wolfe oligopoly models
into competitive decision-making with localized information examined in [8], [10]. In the engineering area, there is

under large population conditions. a similar phenomenon with Internet applications — as the
aggregate consumption of all network users causes a higher
. INTRODUCTION AND MOTIVATION congestion level, each individual user feels more diffitmilt

The modeling and analysis of dynamic systems witigcquire extra improvement in its service. In other words,
many competing agents is of importance due to their wigthe availability of network resource is responsive to the
appearance in socio-economic and engineering areas [1H}stantaneous activity of all users [5].

[10], [12], [17], [1], as well as biological science [18],dR Although the models arising in these application areas
and central issues concerning analysis and optimizatidake their different specific forms, the dynamic interagtio
of those systems include appropriate characterization 8ftween the individual and the mass (consisting of all
competition, temporal evolution of system behavior, inothers or the overall population) has a close resemblance to
formation constraints, and implementation complexity ofhe generic linear model investigated in this paper. Specif
control strategies. Aiming at addressing these issues aif@lly: as a key common feature to these different systems
developing a general optimization methodology, we stud@fising in economics, engineering or biology, while each
weakly coupled multi-agent decision-making with partiagent only receives a negligible influence from any other
information. The underlying model and the methodologiven individual, the effect from the overall population is
developed here will provide useful insights into undersignificant for each agent's strategy selection.

standing the behavior of systems in a wider scope with In this paper, we focus on the analysis for the lin-
complex interactions between agents. ear models and develop a methodology for multi-agent

This kind of weak coupling in both dynamics and costgompetitive decision-making with local information and,
is used to model the mutual impact of agents durinén contrast to the extensive literature on linear-quadrati
competitive decision-making. Specifically, cost couplinj—Q) or linear-quadratic-Gaussian (LQG) games (see, e.g.,
has been frequently encountered in economic theory whel#2l, [6], [24]), we are particularly interested in large
the agent's payoff is affected by the market conditionPopulations. We note that games with a large or infinite
e.g., price, which in turn is affected by the aggregat®opulation have long been a major research area in game
population behavior such as the production level of afiheory [16], [3], [4], [21], [23], but traditionally most
agents [17], [13]. In contrast, the dynamic coupling igvork has been based on static models. To simplify the
used to specify an environment effect to the individual'@nalysis of our stochastic dynamic game, we consider a
decision-making generated by the population. For thigystem of uniform agents, i.e., the agents are described by
kind of dynamic coupling involving the population effect, similar individual dynamics. Differing from our previous

a simple illustrative example is the oligopoly product®search [13], [14], [15], in the present system, each agent
only has noisy observations of its own state. To obtain a
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we obtain the control synthesis for the individual agents Ill. COMPETITIVE DECISION-MAKING WITH LOCAL
utilizing the filter output. The above localized filtering- INFORMATION
control design relies on specifying a consistency relation Although the underlying system is linear, a straight
ship between the individual actions and the mass effect ina%,pncaﬂon of Kalman filtering to the dimensional system
large population limit context. Subsequently, we examings ot of question due to the information constraints for the
the close-loop stable behavior of the population. Finallygents. In other words, in our model there is not a central
we present performance analysis by establishing-Blash  optimizer which can access all agents’ outputs and then
equilibrium property for the decentralized control laws oform the optimal estimate of the state vector. To overcome
the agents. such a difficulty, we first formally approximate the term
2(") by a deterministic functiors (to be determined later).
Note that when a functiorz, instead ofz("), appeared
Consider ann dimensional linear stochastic systemi, the dynamics ofz; leading to uncoupled dynamics,
where each state component and its measurement gi@ optimal state estimation faz would be given by the
described by standard scalar Kalman filtering. Now in the large but finite
dz; = (azi + bu)dt + az™dt + odw;, t>0, (1) population con_ditio_n, it is expecteq that the quman filter-
ing structure will still produce a satisfactory estimateanh
2(") appears in the state equation (1) but is approximated

where {w;,v;,1 < i < n} denotes2n independent by z when constructing the filtering equation.

standard scalar Wiener processes afid = 1 57 | z, It is evident that the term(™ and hencez are related
a € R. Hence,»(™ may be looked at as alﬁéminal to the control laws of all agents. However, here we simply

driving term imposed by the population. The GaussiaR™0c€ed by presumingas a given function, and the exact
initial conditions z;(0) are mutually independent and areProcedure for deter_ml_nlng th|§ function will be clear after
also independent dfw;, v;, 1 < i < n}. In addition,b # 0. the control synthesis is described.
Each state component shall be referred to as the state ®f The auxiliary output regulation problem
the corresponding individual (also to be called an agent
or a player). We note that the limiting version of equatio
(1) (i.e, asn — o0) may be viewed as a linear controlled
version of the well-known McKean-Vlasov equation for
weakly interacting diffusions [7], [19]. dz? = (az) + bu;)dt + azdt + odw;, t>0, (4)
For simplicity of analysis, in this paper we consider a dy? = c2ddt + adv;, (5)
system of uniform agents in the sense that all agents share o
the same set of paramete(is b, a, o) and (¢, 5) as given Wherez € C[0,00) is given. We denote by’ [0, o0) the
in (1) and (2). set of determlmstlc, bounded and contmuou; functlons on
We investigate the behavior of the agents when theL,Qvoo)' The noise terms have_ thg same statistics as in the
interact with each other through specific coupling term&0del (1)-(2). The cost function is
appearing in their cost functions; this is displayed in the
following set of individual cost functions which shall be
used henceforth in the analysis:

Il. THE WEAKLY COUPLED SYSTEMS

dy; = cz;dt + adv;, 1<i<n, (2)

As a preliminary step for the control design of the multi-
gent system, we first introduce the following auxiliary
Gaussian-Markov model

JO (u;) 2 E/Oo e P(2) — 2% + ru?]dt,  (6)
0

wherez* € ([0, 00).
) 2 E/oc s )+l () Let IT > 0 be the solution t(: the Riccati equation:
o ’ . . _ pIT = 2alT — 2112 4 1. 7

The objective of our work is to design the individual r
control strategies such that each agent’s cost function jg,q denotef; = —a + ﬁH, By = —a + VT 4 p. Itis
optimized in a certain sense utilizing only its local infor-easy to check that, > %r For Kalman filterring, we write
mation, and we will cast the specific optimality criteriaye Riccati equation:
into the Nash equilibrium framework.

In particular, we assume the cost-coupling to be of the ar(t)
following form:

=2aP(t) — AR7'P%(t) + Q, t>0, (8)

" where R = 5% and Q = o2. The initial condition for
v = o) = @(l Z ), P(t) _is taken as the varif';mce ef(p). Let s be a bounded
ni solution for the differential equation

Where@ is a continuous function oR. The linking termy; s = 95 4 s — Tlls 4 allz — 2~ 9)
gives a measure of the average effect generated by the mass dt r

formed by all agents. Here we assume > 0 and unless Remark:lt can be shown that there exists a unique initial
otherwise stated, throughout the papeiis described by conditions(0) leading to a bounded solutiorand that any

the dynamics (1). other initial condition gives an unbounded solution [14].
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In fact, we have the expression [14] is to be constructed using a large population limit; and
S the remaining critical issue is to first determine a tracking
s(t) = eﬁﬂ/ e P27[allz(7) — 2*(7)]dT € Cb[0,00).  reference trajectorg* and thens.
¢ (10) To determines(t) in (12), we use the state aggregation
technique within a population limit as in [13], [14], and
Then it is easy to check that the optimal control law iSptroduce the state aggregation equation system

given by
ds b2 .
dz?) = (az) + bu; + az)dt + P(t)cR™[dy) — c2ldt], PS =" +as — ?HS +allz — 27, (13)
b, . - 2
up == [T + s(2)] - % =az— b7 [z + s(t)] + oz, (14)
B. The local approximate Kalman filtering 2" =®(2), (15)

In the multi-agent system, since each agent's infor;here s € 04[0,00). For givenz and z*, whose bound-

mation is restricted to its own measurement, one cann@lness will be established later, there is a unique initial
directly use the standard Kalman filtering. However, afteg,nqition 5(0) yielding a bounded solutios, and hence

introducing a structural approximation for the mass effecf; ;g unnecessary to specify(0) separately. Here (13)

the state of each agent can be estimated by use of only jigis form the single agent based optimal tracking once
local information, and the associated approximate filtgring, population effect is approximated by the functian

equation may be constructed by the usual Kalman filtering,ation (14) is based on taking expectation in the closed-

for a scalar model. The justification of such an approxXimagp o of (1) with control lawu?, where we approximate™

tion will be given during the closed-loop stability anakysi by z and the expectatiorﬂ?éz is also approximated by the
For agent;, the initial condition for equation (8) is; = samez under the condition of uniform agents.

Var(z;(0)) and we denote the corresponding solution by The underlying mechanism for devising the control

P;(t). To simplify our analysis below, we first assume allstrategy (12) is that, in the large population limit and for

r; are equal to the same value> 0, and hence the same a given mass effect € C,[0,0), each individual will

function P(¢) is used for all agents. tend to take an optimal tracking action, and in turn, these
The local filter is constructed as follows: individual actions will collectively generatiae same mass
dz; = (aZi + bu; + aZ)dt + P(t)eR™ [dy; — csidt], effectz as described by (14) corresponding to the optimal

(11) tracking based control law. This constitutes the so-called
mutual consistency relationshipetween the individual
wherez, used for approximating(™), is to be determined. and the mass, and this notion is captured mathematically
We shall call this the approximate Kalman filter since arby a fixed point theorem (to be discussed below) which
approximation step involving is introduced here. Note provides the existence of such a trajectarg C;[0, o)
that sincez; is driven by z(™ in its actual model, the and characterizes the resulting pait,s) as the unique
correcting termdy; — cZ;dt is not an innovation process bounded solution to (13)-(15).
(i.e., a Wiener process). Denote the error term Now we have the closed-loop equations fgrand z;
- . after the control law.? is implemented:
Zi =2 — Zj.
2

The approximate Kalman filtering equation may be writtendz; = <a - Z;H> 2idt + P(t) PR~ 2;dt + azdt

in the form )

b 1=
dz; = (a2 + bu; + az)dt + P(t)c2 R Z;dt — s(t)dt + P(t)cR Ladu;, (16)
+ P(t)cR™'5dv;. n n
" dz = [a— PR 5dt + 53 zydt + <3 zdt
Combining (1) and (11) gives the error equation ni4 ni4
dz = [a— P()*R™] Zidt + a2 — 2]dt — azdt + odw; — P(t)cR™'odv;. 17

+ odw; — P(t)cR™'adv;. Letting 2f, = +>7 % and 2, = L3°7 | %, we

C. Feedback and closed-loop dynamics obtain

2 2
By use of the single agent based control law in Sectiongst — (a _ bH) stdt + P(t)2R™'E dt — b—s(t)dt
llI-A, we proceed to formally construct the individual ’ r r

control laws forn agents as follows: i iP(t)cR‘lc‘rdvT (18)
b | vn
up = T [Tz + s(1)] l<ism, (2) gzl = azlat + [a— P(t)c*R™ + o] Zldt — azdt
which henceforth will be adopted by the individual agents + LadwT — LP(t)cR‘lédvT, (19)
with 2; determined by (11). Here the functionin (12) Vn Vn
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wherew! = n=1/23"" w; andvt =n~Y23" v, are Proof. We begin by constructing the deterministic time-
two independent standard Wiener processes. varying ODE system,

Remark.For specifying the mean trajectories &f and b2 N
z!, it suffices to remove the noise terms at the right hand dr _ 1 a— I P(t)CQR_l
side of (18)-(19). 0 dt a a-PH)ER +a
We denote the fundamental solution matrix for the ODE
(22) by ®(t,tp) wheret > tq > 0 and ®(tg,t0) = 1. It

We introduce the following assumptions: can be checked thak(t,ty) is exponentially stable under
(H1) Let P > 0 denote the steady state value of theH1). By use of this fact, we establish tie stability of
solution to the filtering Riccati equation (8). AssumeZ], andz, i.e.,

v i
a — -1 < 0 and the matrix sup B (\2L(t)|2 + |5L(t)|2) <0y 23)

x. (22)

IV. STABLE POPULATION BEHAVIOR

b2 A £20,1<i<n
M|~ 21 P'c¢’R (20)
- a a— PR 1 +a which combined with (17) gives
is strictly stable. O sup Bz (t) < Cs. (24)
t>0,1<i<n

(H2) The function® is Lipschitz continuous ofR with a
Lipschitz constanty > 0, i.e., |[®(y1) — ®(y2)] < The constant€; andC, do not depend om.
Yyr = yo| for all yy,y € R. O By virtual of (24) and (16) we further get
(H3) 5, >0, and‘%‘ 4 O+ where3,, 8, are

computed from the R:Fclcﬁéti equation (7). The constant i EZ(t) < C, (25)
~ is specified in H2). O -
(H4) All agents have mutually independent Gaussian initiglor some constant” > 0 independent ofi. This completes
conditions of zero mean, i.¢2z;(0) = 0. In addition, ~the proof. O
2 _ .
all B; (0,) =r>002 _1' - V. THE ASYMPTOTIC EQUILIBRIUM ANALYSIS
Remark:It is easy to verify thate — PTc?R™! < 0. _ _
Hence for sufficiently smalla/|, the matrixM in (H1) is For the population ofn agents, the agents’ admis-

always stable provided that— b;H < 0 holds. — sible control setlf; ... ,, consists of all feedback con-

Before analyzing it solution, it is of interest to notelrols (u1,‘~ ©Un) a_dapted to ther-algebraa(y,»(_r),r =
that the state aggregation equation system (13)-(15) is bt = ¢ = n) (i.e., eachu,(?) is a functional of
affected by the partial observation situation; in otherdepr (£>¥1(7):-,ya(7)),7 < ) such that a unique strong
the case of full information will still yield the same setSelution to the closed-loop system of theagents exists
of equations: see [14], [15] for details. Then using th@" [0,00). Here we only have a very general requirement
method in [14], [15] to the current special case of uniforn{o" the control such that it depends on the measurements
agents, we may eliminatein (14) and derive a fixed point (¥i:1 <@ < n) and is allowed to depend on all available
equation forz, for which we can establish the existencd?@st history as long as a solution is well defined. With the
and uniqueness of a bounded solution un@ée) — (H4). coupling in dynamics, each agent’'s admissible control set
Accordingly, a unique bounded solution to (13)-(15) can b@'@y be affected by the strategies taken by other agents.
obtained. The following theorem is a direct consequence IS iS Very similar to the social equilibrium scer,1ar|o'[2]
the existence theorem in [14] for a system of non-uniforn?Y IMPosing additional constraints on individuals’ chaice
agents and perfect observations, which itself is proven f Strategies; such a notion dates back to the early work [9]
a fixed point argument. and is widely used for the analysis of Nash equilibrium in
Theorem 1: [14]Under {2)-(H4), the state aggrega- the economics literature. In our setting, the implicit con-
tion equation system (13)-(15) admits a unique bounde%traims (in the sense that theagents’ joint strategy space
solution z € C[0, 00) ands € C5[0, 50). - Ui,..n does not decompose into the Cartesian product of
Theorem 2:Under {H2)-(H4) and the control strategies " individual strategy sets) on each agent’s control serve
0 for all agents, the closed-loop system for thegents only to ensure the existence of a well-defined solution
aamits a unique strong solution. for the closed-loop system. We use ; to denote the
Proof. This follows by verifying the Lipschitz condition vector of individual strategies obtained by deleting in

for the closed-loop system when allagents apply the set (41:*"* »un). Then the vectolus, - ,ug,- -, u,) may
e g PPy be equivalently denoted dsy, u_y). For a fixedu_g, we

of control laws(u{, -+ ,u2). o . o ;
Theorem 3:Under (H1)-(H4), there exists a constat induce the projection df; ... ,, to its kth component as the
such that setUy|u_, = {uk|(ug,u_r) € U,... n}. Note thatldy|,_,
is not restricted to be decentralized singeis allowed to
sup  E[Z{t)+ 7)) <C (21) depend ony;, i # k, which actually leads to a stronger
t20,1<i<n characterization for the decentralized control law anadyz
where(C is independent of the popu|ation sine in this section. In this Setup we give the definition.
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Definition 4: A set of controls(uz)}_, € Uy,... ,, forn  wherezf(0) = 0 and ] (0) = L 3" | 2;(0). Hence this
players is called an-Nash equilibriumwith respect to the gives
costsJi,1 < k < n, if there existse > 0 such that for

5 5 2
any fixed1 < i < n, we have E|zl(t) — Bl (1)
1
Jz(ul,u_l) < L(U;,U_l) + ¢, (26) = O(E)—i_
t
when any alternative contraf, € U4;|,,_, is applied by the O(l/ H‘I>11(t,7) - @12(t,r)]P(r)cR*15]2 dr)
ith player. O n Jo
Note that the costs/y, 1 < k < n, appearing in 1/t 5
Definition 4 are deterministic quantities in the functional + O(ﬁ/o [@12(t, 7)o | dr).
form of a set of individual feedback control laws dependin%\ dit foll that
on the system outputy;, - - , ). nd it follows tha
. g . i 1
F_or obtalmng a desired pgrformance_esumate, the fol supE|2};(t) _ E,%L(t)\z —0(%). (28)
lowing lemma is useful. Notice that for independent ran- >0 n

dom variables, it is usually easy to derive magnitud
estimate of this type. When there exists dependence, t
estimate is less obvious. In the following we will get the T P |
estimate by use of the stability property for the closedsloo igﬁ’ Elz,(8) - Bz (?)] _O(n)’ (29)
system. .

Lemma 5: Assume K1)-(H4) hold. Under the optimal and the Lemma follows readily from (28) and (29). O

tracking based control laws?, 1 < i < n, we have For estfabllshlng the main result given by The_o_rem 7,
the following Lemma 6 is instrumental and quantifies the

'iemilarly, we obtain

n 2 n 2 impact generated by a given agent’s strategy deviation
supE |n~' Y (4 — E4)| +supE|n~'> (% — EZ)|  provided that a prior bound is known for its performance
=0 i=1 =0 i=1 when other agents stick to their optimal tracking based
= O(n™"), strategies. Define

which further impliessup,~o E [n=! S0 (z; — Ez)]” = n

0 (n ). B I(u;,u?;) = E/OOC e ! lz* = <I>(l sz)l dt,

Proof. From (18) and (19), we get "= (uiyu ;)
. . b . . o 1 — ’
d(zf — E2}) = (a - H) (2} — E2})dt 100, u°,) = E/ et (=S zp) dt,
T 0 n = (W00 )
+ P(t)R™Y(Z] — Ez)dt sl
1 _ where the state trajectories inside the integral are geetera
P(t)cR™Gdvt : i -
+ n (t)eR™"adv', by the associated control strategies, atidas the tracking
Azl — E3) = (2 — B3l)dt reference trajectory, is determined by the state agg@uati
n n/ o e » , equation system (13)-(15).
+[a—P(t)*R™ +a] (2] — BZ])dt Lemma 6:Assume H1)-(H4) for the system ofn
n L odwt — ip(t)chla_dv]‘. agents. Leti be fixed andu; € U;,0 . be a control such
Vn Vn that J; (u;, u® ;) < C, for a fixedC > 0 independent of:,

As in proving Theorem 3, lefb(¢,7) denote the fun- Where all other agents take the contrafl j # i. Then
damental solution matrix to the ODE (22), which can bdhere exist<'; independent of: such that

shown to be uniformly exponentially stable, i.e, there &xis o )
a constantC' > 0 and0 < 6 < 1 such that for0 < 7 < ¢, /0 e PE(z +up)dt < Ch.
[t 7)|| < CO' . (27)  And moreover, for the above fixex
We write (¢, 7) as a2 x 2 matrix to get 1
ite B{1,7) as &2 x 2 mairx (o g (i) — 10,02 = OC). (30)
O(t,7) = (Pi;(t, 7)) j1- -
Then it follows that By making use of Theorem 3, we can find a constant
. 0 0 X
St BETY(8) =By; (£ 0)2T (0) + B 1o (£, 0)3 (0 C' independent ofn such thatJ;(u?,u?,) < C, which
(% Zn)(®) 11( )2(0) 12(£,0)2,(0) hence ensures that the constaht> 0 used in Lemma 6
+ —— | [®11(t,7) — B1o(t, 7)|P(T)cR '5dvi €xists. The lemma can be proven by use of the closed-
Vv Jo loop system of then agents, and the main step is to
show [° e P EZ2|(,, o )dt < oo when J;(u;,u’;) < C

1 ¢ N
+ %/0 <I>12(t,7')adw; holds.

2729



Now we are in a position to state the central result ofio] G. M. Erickson. Differential game models of advertsingnmeti-

this

(12).
Theorem 7:Supposefl1)-(H4) hold for the system of [12]
n agents. Then the set of feedback strategies given by
(uf, - -
n — oQ.
Proof. Based on Lemmas 5 and 6, this theorem can be

paper. Let the individual control law? be given by

,ul) is ane-Nash equilibrium, where — 0 as

n

proven by a similar method as in [12], [13], [14]. The

details are omitted here. O

Recall that when specifying the-Nash equilibrium in
Definition 4, the admissible control set for theagents
depends on centralized information. In conjunction with

this definition, the implication of Theorem 7 is that, in a9l
large but finite population, the decentralized observation
dependent control is almost as good as global history in-
formation based controls; any deviating agecannot take

essential advantage of others by utilizing full informatio

of the system outputs, provided that all other agents stigk7]
to their optimal (output) tracking based control laws, .

the

filtering based on the anticipation of the collective effec
of all agents, and then of an optimal tracking base
control law. It is shown that the resulting set of individual[24]
control laws leads to stable population behavior and has

VI. CONCLUSION

19

In this paper we investigate distributed decision-making[g :
in a system of uniform agents coupled by their Iineaf2
dynamics and individual costs, where each agent has noisy
measurements of its own state. We propose a decentralized
control synthesis in which each agent utilizes its localP1]
information for its control strategies. The key steps inpy;

control design consist of local approximate Kalman

an asymptotic Nash equilibrium property.
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