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Abstract— We study large population stochastic dynamic
games where each agent receives influences from multi-classes
of agents according to intra- and inter-subpopulation cost
coupling. The NCE principle developed in our previous works
gave decentralized asymptotic Nash strategies; however, its
solubility depends on a conservative fixed point analysis which
does not lead to easy computation of the solution. In this paper
we apply a different algebraic approach via a state space
augmentation, and it is convenient for practical computation
involving first a set of algebraic Riccati equations subject to
consistency constraints and next a set of ordinary differential

equations.

I. INTRODUCTION

Noncooperative games with mean field coupling have

broad backgrounds in economics, social science, biology and

engineering, among others [18], [6], [7], [19] [2], [5], [10].

In stochastic dynamic models, the so-called Nash Certainty

Equivalence (NCE) methodology [10], [15], [16], [11], [12]

provides a conceptually simple approach for decentralized

individual strategy design via decomposing a dynamic game

of very high complexity into a family of much simpler

localized optimal control problems, and this is achieved

by identifying an individual-mass interaction consistency

relationship. Closely related approaches are also developed

by Lasry and Lions for stochastic differential games [20],

[21] , and Weintraub, Benkard, and Van Roy for game models

of many firm industry dynamics [24], [25].

In the work [13], [14], the NCE methodology has been

generalized to models with interaction locality as motivated

by social and economic interactions where the decay of

the mutual influence of agents depends on how they are

physically or socially distanced from each other. For in-

stance, games considering the effect of local interactions

arise in retailing service models [4] and social segregation

phenomena [23]; a common feature of these works is their

investigation of the relationship between microscopic local

behavior of individual agents and the resulting macroscopic

phenomena (also see, e.g., [8], [22], [3]).

In the setting of the NCE methodology with interaction

locality, a model of particular interest considers a popula-

tion consisting of several massive subpopulations so that

the agents mutually interact according to intra- and inter-

subpopulation coupling in their costs. For this class of

models, the NCE approach leads to a set of coupled ordinary

differential equations where some components (i.e., the mean
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trajectories of finite classes of agents) have given initial con-

ditions while the initial conditions of some other components

are only implicitly determined via the growth condition of

the solution (see [13], [14]). A practical difficulty associated

with the NCE equation system there is the computation of

its solution, either analytically or numerically.

In this paper, we apply a new approach which will

significantly facilitate the related computation. This approach

by a state space augmentation was initially developed in

mean field LQG games involving a major player [9] to

handle the difficulty that the mean field of all the minor

agents is inherently random and that there is a lack of

aggregate quantities to capture its evolution. It turns out

that this approach may also be used to circumvent the

computational difficulty encountered by the NCE equation

system obtained in [13], and the basic idea of this approach

resembles the classic internal model principle developed

by Wonham [26] in that by incorporating into an enlarged

system the dynamics of the exogenous signals, which, in the

current setup, amount to the mean field effect, one may apply

standard tools in optimal control to determine the strategies

of individual self-interest seeking agents. The only remaining

issue is the determination of the dynamics of the mean

field and this, in turn, is addressed by imposing appropriate

interaction consistency conditions, following the spirit of the

Nash certainty equivalence theory developed in our previous

works.

The organization of the paper is as follows. The large-

population LQG game with intra- and inter- subpopulation

cost coupling is stated in Section II, and the existing NCE

approach for decentralized strategy design is reviewed. For

developing a computationally efficient scheme, the state

space augmentation method is described in Section III,

and the consistency conditions are specified in Section IV,

leading to a new set of NCE equation system. Section V

presents the asymptotic Nash equilibrium results. Section VI

gives a computational example to show the effectiveness of

the state space augmentation based approach. Section VII

concludes the paper.

II. THE STOCHASTIC DYNAMIC GAME MODEL

In a population of N agents, let the dynamics of the

individual agents be given by

dzi(t) = [Azi(t)+ Bui(t)]dt + DdWi(t), 1 ≤ i ≤ N, t ≥ 0,
(1)

where zi ∈ R
n, ui ∈ R

m is the control input, and {Wi,1 ≤ i ≤
N} denotes N independent n dimensional standard Wiener
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processes. The matrices A, B and D have compatible di-

mensions. The initial states {zi(0),1 ≤ i ≤ N} are mutually

independent and also independent of {Wi,1 ≤ i ≤ N}. In

addition, E|zi(0)|2 < ∞.

In specifying the cost coupling we assign the agents a

“locality” (or “spatial”) parameter α . Note that this locality

parameter may have different interpretations and is not

necessarily restricted to be a physical location, and may hold

in a social interaction context [1]. The locality parameter for

agent i will be denoted by pi.

Let the cost for the ith agent be given by

Ji = E

∫ ∞

0
e−ρt

{
[zi −Φi]

T Q[zi −Φi]+ uT
i Rui

}
dt, (2)

where Φi = γ(∑N
j=1 ω

(N)
pi p j z j + η), η ∈ R

n, and ρ > 0, γ > 0.

The two matrices Q≥ 0, R > 0. The set of weight coefficients

ω
(N)
pi p j

satisfies the condition

ω
(N)
pi p j

≥ 0, ∀i, j,
N

∑
j=1

ω
(N)
pi p j

= 1, ∀i. (3)

For each fixed i, it is seen from (3) that the total weight of

unit is allocated to all the N agents.

A. Interactions with Intra- and Inter-subpopulation Cost

Coupling

In below we adapt the general cost structure (2)-(3) to the

specific situation of modelling the interaction of agents from

K groups or subpopulations within the overall population.

The locality parameter pi indicates which subpopulation

the ith agent belongs to, and the cost interaction for a pair

of agents is determined by either the intra-subpopulation

or the inter-subpopulation coupling parameter, whichever

applicable. Denote Λ , {1, . . . ,K} for the subpopulation

indices and suppose each pi, 1 ≤ i < ∞, takes a value from

Λ. The coupling weight assignment will be constructed by

using the K ×K matrix

ωΛ = (ωi j)K×K (4)

which satisfies ωi j ≥ 0 and ∑K
j=1 ωi j = 1 for each i. Let

∑N
i=1 1(pi=k) = Nk for k ∈ Λ. If pi = k and pi′ = k′, define

ω
(N)
pi pi′

= ωkk′/Nk′ , which ensures the unit total weight condi-

tion ∑N
j=1 ω

(N)
pi p j = 1.

B. Review of the NCE Equation System

Now we give a brief review of the approach in [13], [14].

Denote the algebraic Riccati equation

ρΠ = AT Π + ΠA−ΠBR−1BT Π + Q. (5)

If (5) has a solution Π > 0, define

A1 = A−BR−1BT Π, A2 = A−BR−1BT Π−ρI. (6)

(A1) The pair [A,B] is controllable and the pair [Q1/2,A]
is observable. In addition, A1 defined by (6) is Hurwitz (i.e.,

all its eigenvalues have negative real parts).

(A2) The sequence {pi,1 ≥ 1} has the limiting empirical

distribution limN→∞(1/N)∑N
i=1 1(pi=k) = πk > 0, k ∈ Λ.

The K components in (π1, . . . ,πK) shows the relative

frequency of the agents in each of the K subpopulations.

To simplify the analysis, we assume all agents have the

same initial mean, which is further assumed to be zero. Now

we write the NCE equation system in the form:

ρsκ =
dsκ

dt
+ AT sκ −ΠBR−1BT sκ −Rκ , (7)

dz̄κ

dt
= (A−BR−1BT Π)z̄κ −BR−1BT sκ , (8)

r̄κ(t) = ∑
κ ′∈Λ

ωκκ ′ z̄κ ′(t), (9)

Rκ = γ(r̄κ + η), (10)

where κ ∈Λ, zκ(0)= 0 and sκ(t) is restricted to be a bounded

function on [0,∞) without the necessity of separately spec-

ifying an initial condition sκ (0). The NCE equation system

is derived based on the following idea: The agent with

pi = κ optimally tracks Rκ (i.e., replace Φi by Rκ in (2)),

and the K classes of agents’ closed-loop produces the mean

trajectories z̄κ , which are further used to determine Rκ . Due

to the particular nature of the initial conditions, we will refer

to (7)-(10) as the NCE equation system with mixed initial

conditions. Let Cb([0,∞),Rn) denote the set of n dimensional

continuous and bounded functions on [0,∞). Denote

(Γlζ )(t) = γ

∫ t

0
eA1(t−s)BR−1BT

∫ ∞

s
eAT

2 (τ−s)ζ (τ)dτds.

(11)

Under (A1) it may be shown that Γl is a bounded linear

operator from Cb([0,∞),Rn) to Cb([0,∞),Rn). Denote by

‖Γl‖ the norm of the operator Γl . By adapting the result

in [13], [14], we obtain the following theorem.

Theorem 1: Assume (A1) holds. If ‖Γl‖ < 1, the equa-

tion system (7)-(10) has a unique bounded solution

(sκ(·), z̄κ (·), r̄κ (·)), κ ∈ Λ.

Provided that (7)-(10) has a solution, we may construct

the decentralized control laws for the N agents:

ûi = −R−1BT (Πzi + spi
), 1 ≤ i ≤ N,

where spi
is given by (7)-(10) via the substitution κ = pi

in sκ . Under mild conditions, we may further establish an

ε-Nash equilibrium property for this set of control laws.

III. STATE SPACE AUGMENTATION

For the approach described in Section II, the verification

of the gain condition ‖Γl‖ < 1 and the computation of the

solution for the NCE equation system are quite challenging

when multiple classes of agents are involved. To overcome

this difficulty, here we develop a different approach.

To simplify the analysis, we assume all agents have zero

initial mean, i.e., Ezi(0) = 0. Suppose agent i is within the

kth subpopulation. Let yκ be the mean process of an agent in

the κ th subpopulation. Denote y = [yT
1 , . . . ,yT

K ]T . We consider

the following control problem for agent i interacting with an

infinite population consisting of K classes of agents:

dzi(t) = [Azi(t)+ Bui(t)]dt + DdWi(t), (12)

dy(t) = Ay(t)dt + m(t)dt, (13)
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with the cost

Ji = E

∫ ∞

0
e−ρt [zi −Φk]

T Q[zi −Φk]+ uT
i Rui]dt, (14)

where Φk = γ(∑K
κ=1 ωkκ yκ + η). The initial condition of y

is taken as y(0) = 0 due to the zero initial mean assump-

tion for the individual agents. Since agent i is in the kth

subpopulation, the coupling term Φk is associated with an

index k. Equation (13) is used to model the aggregate effect

of the K classes of agents. The constant coefficient A and

the function m on [0,∞) will be determined later on by

imposing a consistency relationship. We may write m by its

components

m(t) =




m1(t)

...

mK(t)



 ,

where each mk is n dimensional. The motivation for propos-

ing the structure (13) is as follows. By starting with a large

but finite population Nash game model, one can formally

obtain a linear full state based feedback for the individual

agents where each control ui possesses constant coefficients

for the individual states (z1, . . . ,zN) together with a time

varying offset term due to the constant reference term η
in the cost (see (2)). After a heuristic limiting argument

one may obtain (13) for approximating the aggregate effects,

respectively, generated by the K classes of agents. A more

detailed illustration of such a procedure is given in [9] in

a model with a major player and a large number of minor

players. However, we stress that one may be saved from a

difficult rigorous derivation of (13) through full state based

feedback and, instead, the feasibility of introducing (13)

may be addressed by the interaction consistency argument

developed in the subsequent analysis.

Let In be the n×n identity matrix. Denote

A =

[
A 0

0 A

]
, B =

[
B

0nK×m

]
, M =

[
0n×1

m

]
, (15)

Hk = γ[ωk1In, . . . , ωkKIn], 1 ≤ k ≤ K, (16)

Qk = [In,−Hk]
T Q[In,−Hk], (17)

ηk = [In,−Hk]
T Qη . (18)

In the following derivation, we assume the solvability

of the LQG problem (12)-(14) by first presuming that A

and m have been given and the related conditions for these

calculations will be formalized later.

Define the function class: Cρ/2([0,∞),Rl) = { f | f ∈

C([0,∞),Rl) and there exists ρ ′ < ρ such that

supt≥0 | f (t)|e
−(ρ ′/2)t < ∞}. The constant ρ ′ is allowed

to change with f .

We introduce the algebraic Riccati equation

ρPk = PkA+A
T Pk −PkBR−1

B
T Pk + Qk, (19)

and the ordinary differential equation

ρsk =
dsk

dt
+(AT −PBR−1

B
T )sk + PkM−ηk, (20)

where the initial condition sk(0) is implicitly determined by

the growth condition sk ∈Cρ/2([0,∞),Rn(K+1)).
The optimal control law for the LQG problem (12)-(14)

is given as

ûi = −R−1
B

T [Pk(z
T
i ,yT )T + sk]. (21)

After substituting (21) into (12), the closed-loop dynamics

for agent i takes the form

dzi = {Azi −BR−1
B

T [Pk(z
T
i ,yT )T + sk]}dt + DdWi, (22)

where y is determined by (13).

IV. THE NEW NCE EQUATION SYSTEM

A. The Consistency Condition

We introduce the following matrix partition

Pk =

[
Pk,11 Pk,12

Pk,21 Pk,22

]
,

where Pk,11 and Pk,22 are, respectively, n× n and nK × nK

submatrices.

Now from (22) we obtain

dzi =[(A−BR−1BT Pk,11)zi −BR−1BT Pk,12y]dt

−BR−1
B

T skdt + DdWi. (23)

After averaging with (23) for all agents within the kth

subpopulation, we obtain

dyk =[(A−BR−1BT Pk,11)yk −BR−1BT Pk,12y]dt

−BR−1
B

T skdt, 1 ≤ k ≤ K. (24)

Notice that in obtaining (24) the diffusion term in (23) has

been averaged out. In fact, we may also interpret yk as the

mean process of zi with pi = k.

Now we impose the fundamental consistency condition

that the equation system determined by (24) be the same as

(13). Define

ek = [0n×n, . . . , In, . . . ,0n×n] ∈ R
n×nK ,

where only the kth block is nonzero, being equal to an

identity matrix. We further write (24) in the form

dyk =[(A−BR−1BT Pk,11)ek −BR−1BT Pk,12]ydt

−BR−1
B

T skdt. (25)

Denote

A =




A1

...

AK



 , (26)

where each Ak contains n rows. Now the consistency condi-

tion translates into

Ak = (A−BR−1BT Pk,11)ek −BR−1BT Pk,12, (27)

mk = −BR−1
B

T sk, (28)

for 1 ≤ k ≤ K.
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By combining (19) with (27), we introduce the following

algebraic equation system:






ρPk = PkA+A
T Pk −PkBR−1

B
T Pk + Qk,

Ak = (A−BR−1BT Pk,11)ek −BR−1BT Pk,12,
k = 1, . . . ,K,

(29)

which will be called the consistency constrained algebraic

Riccati equation system.

By combining (20) with (28), we introduce the following

ordinary differential equation system:






ρsk = dsk
dt

+(AT −PBR−1
B

T )sk + PkM−ηk,
mk(t) = −BR−1

B
T sk,

k = 1, . . . ,K,

(30)

which will be called the consistency constrained ordinary

differential equation system.

We will call (29) and (30) combined together the NCE

equation system.

Denote

M1 =




A−BR−1BT P1,11

. . .

A−BR−1BT PK,11



 ,

M2 =




BR−1BT P1,12

...

BR−1BT PK,12



 .

Then we may write the condition (27) in the compact form:

A = M1 −M2. (31)

When the condition (28) is imposed, (20) may be rewritten

by expressing M in terms of (s1, . . . ,sK). This leads to a

linear ordinary differential equation for (s1, . . . ,sK) as shown

below. Let Âk = A−BR−1
B

T Pk −ρI. Denote

Γ1 = −




Â1

. . .

ÂK



 ,

Λ =




BR−1

B
T

. . .

BR−1
B

T



 .

Denote Pk = [Pk,1,Pk,2], where Pk,1 is the first n columns of

Pk, and

Γ2 =




P1,2Λ

...

PK,2Λ



 .

Denote Γ = Γ1 + Γ2 and

s∗ =




s1

...

sK



 , η∗ =




η1
...

ηK



 .

After some elementary matrix calculation, we may show

that (30) is equivalent to the equation

ds∗

dt
= Γs∗ + η∗, (32)

where the initial condition s∗(0) is to be determined. So now

the consistency condition (28) has been incorporated into

(32).

B. Consistent Solutions

Definition 2: The set of constant matrices (A,Pκ ,κ =
1, . . . ,K) is said to be a consistent solution to (29) if

Pκ ≥ 0, ∀κ ,

A−BR−1
B

T Pκ − (ρ/2)I is Hurwitz, ∀κ , (33)

and (29) is satisfied. If, furthermore,

A−BR−1
B

T Pκ is Hurwitz, ∀κ , (34)

we say (A,Pκ ,κ = 1, . . . ,K) is a stabilizing consistent solu-

tion to (29).

Definition 3: Suppose (A,Pκ ,κ = 1, . . . ,K) is a consistent

solution to (29), and the matrices (Pκ ,κ = 1, . . . ,K) are

further used to define the equation system (30). The set of 2K

vector functions (sκ ,mκ ,κ = 1, . . . ,K) is called a consistent

solution to (30) if the two conditions hold:

(i) both sκ and mκ belong to the class Cρ/2([0,∞),Rn(K+1))
for each κ ;

(ii) (30) is satisfied.

Definition 4: If (A,Pκ ,κ = 1, . . . ,K) and (sκ ,mκ ,κ =
1, . . . ,K) are, respectively, a consistent solution to (29) and

(30), we call (A,Pκ ,sκ ,mκ ,κ = 1, . . . ,K) a solution to the

NCE equation system (29)-(30).

Theorem 5: Suppose (29) admits a consistent solution.

Then we have:

(i) The equation system (30) always has a consistent

solution.

(ii) If the real parts of all eigenvalues of Γ are at

least ρ/2, (32) has a unique solution s∗ in the class

Cρ/2([0,∞),RnK(K+1)), which in fact is bounded.

Proof: (i) Since (30) is equivalent to (32), it suffices

to find a solution in Cρ/2([0,∞),RnK(K+1)) for (32). If

necessary, we may apply a nonsingular linear transformation

to change Γ into two diagonal blocks Γa and Γb, where

all eigenvalues of Γa have real parts less than ρ/2, and

all eigenvalues of Γb have real parts at least equal to ρ/2.

Without loss of generality, we may assume

ds∗

dt
=

[
Γa

Γb

]
s∗ + η∗. (35)

Let the components of s∗ (resp., η∗) associated with Γa and

Γb be denoted, respectively, by sa and sb (resp., ηa and ηb).

Then we may take any initial condition sa(0) for sa. Using

the relation

sb(t) = eΓbtsb(0)+
∫ t

0
eΓb(t−τ)ηbdτ,
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it may be further shown that

sb(0) = −

∫ ∞

0
e−Γbτ ηbdτ (36)

is the only initial condition for sb to generate a solution for

s∗ in Cρ/2([0,∞),RnK(K+1)); in fact the resulting solution

sb(t) =
∫ ∞

t
e(t−τ)Γb ηbdτ

is bounded, further implying the required growth rate of s∗.

Let the dimension of sb be db. For any other initial condition,

we may show that the corresponding solution sb will not be

in the class Cρ/2([0,∞),Rdb). Finally, a consistent solution

to (30) may be obtained from s∗.

(ii) This part follows from the proof of (i).

By Theorem 5 we see the remarkable fact that the solu-

bility of the state space augmentation based NCE equation

system is completely reduced to the analysis of the algebraic

Riccati equation system with constrains, and no solvability

of coupled ODE systems with mixed initial conditions will

be involved as in [13], [14].

From the point of view of numerical solutions, the state

space augmentation based approach also exhibits its ad-

vantage. Once a numerical solution to (29) can be found,

one may further perform eigenvalue check for the ma-

trix Γ in (32), and find a solution s∗ from the class

Cρ/2([0,∞),RnK(K+1)). Thus, the calculation of the indi-

vidual strategies may be performed solely by an algebraic

approach which has low computational complexity.

V. THE EQUILIBRIUM ANALYSIS

Within the context of a population of N agents, for

any 1 ≤ j ≤ N, the jth agent’s admissible control set

U j consists of all feedback controls u j adapted to the

σ -algebra σ(zi(τ),τ ≤ t,1 ≤ i ≤ N) (i.e., u j(t) is a function

of (t,z1(t), . . . ,zN(t))) such that a unique strong solution to

the closed-loop system of the N agents exists on [0,∞). Note

that U j itself is not restricted to be decentralized. Denote

u−i = (u1, . . . ,ui−1,ui+1, . . . ,uN). To indicate the dependence

of Ji on ui and u−i, we write it in the form Ji(ui,u−i).
Definition 6: A set of controls u j ∈ U j,1 ≤ j ≤ N, for N

players is called an ε-Nash equilibrium with respect to the

costs J j,1 ≤ j ≤ N, where ε ≥ 0, if for any 1 ≤ i ≤ N,

Ji(ui,u−i) ≤ Ji(u
′
i,u−i)+ ε,

when any alternative u′i ∈ Ui is applied by the ith player.

Theorem 7: Assume (i) (A2) holds, Ezi(0) = 0 for all i,

and supi≥1 E|zi(0)|2 < ∞; (ii) (A,Pk,sk,mk,k = 1, . . . ,K) is a

solution to the NCE equation system (29)-(30); (iii) each pair

[Q
1/2

k ,A− (ρ/2)I], k ∈ Λ, is detectable for A and Qk defined

by (15)-(17). Then for the N agents, the set of control laws

ui = −R−1
B

T [Ppi
(zT

i ,yT )T + spi
], 1 ≤ i ≤ N (37)

is an ε-Nash equilibrium, where ε → 0 as N → ∞. Here the

matrix Ppi
and function spi

are obtained from (29)-(30) via

the substitution of k = pi in Pk and sk, and y is given by (13).

Proof: (Sketch) The proof uses a typical mean field

approximation argument as in [11], [15], [9]. The basic steps

are as follows. Consider agent i0 with pi0 = k. Suppose all

other agents’ strategies are given by (37) and ui0 is replaced

by u′i0 attempting for improving Ji0 . For sufficiently large N,

∑N
j=1 ω

(N)
pi0

p j z j may be tightly approximated by ∑κ∈Λ ωkκ yκ .

Next, the optimization of Ji0 may be approximated by an

optimal tracking problem with respect to a deterministic

reference trajectory Φk as in Ji given by (14). Hence, the

cost for agent i0 cannot be considerably reduced and the

ε-Nash equilibrium result may be obtained.

In (37), since y may be calculated off-line as a determin-

istic function of t, ui is in the admissible control set Ui.

VI. NUMERICAL COMPUTATION

We consider a model with two subpopulations. The coef-

ficients in the dynamics (1) are given by

A =

[
1 1

1 0

]
, B =

[
1

1

]
, D = I2. (38)

The parameters in the cost (2) are given by

Q =

[
2 0

0 1

]
, η =

[
5

4

]
, ρ = 2, R = 1, γ = 0.4, (39)

and the cost coupling parameters are given by the matrix

ωΛ =

[
0.6 0.4
0.2 0.8

]
,

where ωΛ has been specified in (4). Since there are two

subpopulations, the index set Λ = {1,2}.

We apply the following algorithm:

Step 1. Take A = 0 for A in (19) to obtain two matrix

solutions P1 and P2.

Step 2. Update A by (27). Go back to Step 1.

The above iterates are terminated when a prescribed preci-

sion has been reached in solving the consistency constrained

Riccati equation system (29). In general, the initial choice for

A should be carefully done so that the standard conditions for

the solvability of the algebraic Riccati equation are ensured,

and as long as such solvability conditions hold during each

step, the iteration may be repeated. The convergence proof

of the above procedure is an interesting issue, but is beyond

the scope of the present work. Instead, we only examine the

convergence behavior numerically.

For solving (29), we run the above algorithm for 20 iterates

to obtain P1, P2 and A as displayed by (40)-(42). It can be

checked that each equation in (29) holds with an error below

10−14. The eigenvalues of Γ are given as

2.57230253242457±0.48070909418077i
2.68103785278419±0.38081117340856i
2.57100702022159±0.22850065102118i
2.57717691998667±0.24343703885405i
2.68367413806908±0.28640416034497i
2.68305932883450±0.28643422379263i,

where i is the imaginary unit. Thus −Γ+(ρ/2)I is Hurwitz

and hence the condition in Theorem 5-(ii) is satisfied.
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P1 =





1.28768066344495 0.36396239307458 −0.15515799172644 0.00250859772040 −0.10850057039275 −0.00067801115477

0.36396239307458 0.49502915405475 0.00250859772040 −0.06571491538809 −0.00067801115477 −0.04491525210407

−0.15515799172644 0.00250859772040 0.03236235594210 −0.00286774478030 0.02230361429789 −0.00158711992106

0.00250859772040 −0.06571491538809 −0.00286774478030 0.01470525882948 −0.00158711992106 0.00994983522524

−0.10850057039275 −0.00067801115477 0.02230361429789 −0.00158711992106 0.01541359759328 −0.00081378950036

−0.00067801115477 −0.04491525210407 −0.00158711992106 0.00994983522524 −0.00081378950036 0.00674407673699



 (40)

P2 =





1.28768066344495 0.36396239307458 −0.05425028519638 −0.00033900557739 −0.20940827692282 0.00216959214301

0.36396239307458 0.49502915405476 −0.00033900557739 −0.02245762605204 0.00216959214301 −0.08817254144012

−0.05425028519638 −0.00033900557739 0.00385339939832 −0.00020344737509 0.01500520654726 −0.00099700733562

−0.00033900557739 −0.02245762605204 −0.00020344737509 0.00168601918425 −0.00099700733562 0.00666093679687

−0.20940827692282 0.00216959214301 0.01500520654726 −0.00099700733562 0.05851936963831 −0.00465831207645

0.00216959214301 −0.08817254144012 −0.00099700733562 0.00666093679687 −0.00465831207645 0.02634111323897



 (41)

A =




−0.49899366251348 0.20421477053836 0.10917858154753 0.04559326325885
−0.49899366251348 −0.79578522946164 0.10917858154753 0.04559326325885

0.05458929077376 0.02279663162942 −0.44440437173972 0.22701140216778
0.05458929077376 0.02279663162942 −0.44440437173972 −0.77298859783222



 . (42)

VII. CONCLUSION

In this paper we consider a class of LQG games with mas-

sive subpopulations where the agents interact with each other

according to intra- and inter-subpopulation cost coupling. To

obtain computationally efficient decentralized control design,

a state space augmentation approach is applied and our previ-

ous NCE methodology is extended to this augmented model.

The advantage of this approach is that the computation of

the solution reduces to solving some algebraic equations,

and also, the existence of a solution to the associated NCE

equation system reduces to the solvability of purely algebraic

equations. A numerical example is used to illustrate the

effectiveness of this approach. For future work, it would

be of interest to establish an equivalence relationship of the

solution determined by the previous approach [13], [14] and

the solution based on the state space augmentation approach.
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[16] M. Huang, R. P. Malhamé, and P. E. Caines. Nash certainty equiva-
lence in large population stochastic dynamic games: connections with
the physics of interacting particle systems. Proc. 45th IEEE CDC

Conf., San Diego, CA, pp. 4921-4926, Dec. 2006
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