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Abstract— We study large population stochastic dynamic
games with agent specific cost coupling where each agent assigns
nonuniform weights to other agents to indicate locality related
interactions. The Nash Certainty Equivalence (Mean Field)
methodology is generalized to this framework to give decen-
tralized individual strategies. The key step is the specification
of a family of consistent individual controls which depend upon
each agent’s state and upon the aggregate effect of the other
agents as locally received by that agent. This methodology has
close connections with the mean field models studied by Lasry
and Lions (2006, 2007) and the notion of oblivious equilibrium
proposed by Weintraub, Benkard, and Van Roy (2005, 2007)
via a mean field approximation.

I. INTRODUCTION

For noncooperative games with mean field coupling, the
Nash Certainty Equivalence (NCE) methodology developed
in our past work [11], [14], [15], [12], [13] provides an
effective analytical tool for obtaining decentralized individual
strategies. The key idea of this methodology is to specify
a certain consistency relationship between the individual
strategies and the mass effect (i.e., the overall effect of the
population on a given agent) within the population limit,
and each decision-maker can ignore the fine details of the
behavior of any other individual player by only focusing on
the overall impact of the population. This procedure leads
to decentralized strategies for the individual players in a
large but finite population. For this class of game problems,
a closely related approach has recently been independently
developed by Lasry and Lions [19], [20], while for models of
many firm industry dynamics, Weintraub, Benkard, and Van
Roy proposed the notion of oblivious equilibrium by use of
a mean field approximation [24], [25]. For the analysis of
mean field models in the setting of mathematical physics,
see [7], [23]. To see the rich economic backgrounds of
noncooperative games with many players, the reader is
referred to [17], [9], [8], [18] and references therein.

Although mean field models in their usual uniform aggre-
gation form have a broad scope of application [3], [6], [18],
[20], [11], they may be unable to capture structural properties
in certain problems. For instance, in a vaccination mean field
model, each person assesses his or her infection risk and as
a rough approximation may simply refer to the vaccination
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coverage of the overall population [3], [6], but in reality, the
different sub-populations around the respective individuals
may differently impact each person. It is obvious that an
individual’s close friends, colleagues (or classmates) have a
much higher immediate influence than those more distant
in a social and physical sense. A similar situation arises in
economic models. In a crowded business area, a service unit
(such as a retail store, restaurant) and its nearby neighbors
may strongly interact while the level of such interactions
decreases with distance.

It is worthwhile briefly reviewing the extent to which
game theory has dealt with the issue of locality. Blume
[5] considered strategic interactions on lattice models as
motivated by retailing services. Schelling [22] presented a
simple line topology to examine social segregation phenom-
ena when each agent attempts to move to a more favorable
location. Despite the fact they involve very different contexts,
a common feature of the above works is their investigation
of the relationship between microscopic local behavior of
individual agents and the resulting macroscopic phenomena
(also see, e.g., [10], [21], [4]).

Motivated by these problems, we present here a general-
ized mean field version of the Nash Certainty Equivalence
theory of our previous work (see [11], [14], [15], [16], [12])
which now takes into account the possibility of the local
nature of agent interactions. Our approach still relies on
identifying a certain consistency relationship between each
individual and the mass effect but the latter may now be
specific to individual agents.

The organization of the paper is as follows. The individual
dynamics and costs are introduced in Section II where the
uniform aggregate cost coupling [11], [12] is also briefly
reviewed for comparison purposes. Section III presents the
equilibrium analysis for the set of control laws calculated
via the NCE equation system, and we also identify some
novel features for such locality based interactions by showing
an interaction radii collapse effect when the population size
increases in a lattice locality model. In Section IV, we
extend the NCE equation system and the equilibrium analysis
to models with different sub-populations where the cost
involves inter- and intra-group coupling. Finally, Section V
concludes the paper.

II. THE STOCHASTIC DYNAMIC GAME MODEL

In a population of N agents, consider the dynamics for an
individual agent

dzi(t) = (azi(t)+bui(t))dt +σdWi(t), 1≤ i≤ N, t ≥ 0,



where b 6= 0 and {Wi,1 ≤ i ≤ N} denotes N independent
standard Wiener processes. The initial states {zi(0),1 ≤
i ≤ N} are mutually independent and also independent of
{Wi,1≤ i≤ N}. In addition, E|zi(0)|2 < ∞. Denote the state
configuration z = (z1, · · · ,zN), and the population average
state z(N) = (1/N)∑N

i=1 zi.

A. The NCE Principle with Mean Field Cost Coupling

We begin by giving a brief review of our previous mod-
eling of cost coupling. The cost function is given as

J0
i = E

∫ ∞

0
e−ρt

{
[zi−Φi(z(N))]2 + ru2

i

}
(t)dt, (1)

where ρ > 0 is a discount factor, Φi = γ(z(N) + η), z(N) =
(1/n)∑N

i=1 zi, γ > 0, r > 0 and η is a constant. It should
be noted that for this mean field coupling of the uniform
aggregation form, Φi does not distinguish the ordering of
the entries z j, 1≤ j ≤ N, within z.

Let Πa > 0 be the solution to the algebraic Riccati
equation:

ρΠ = 2aΠ− b2

r
Π2 +1. (2)

Denote

β1 =−a+
b2

r
Πa, β2 =−a+

b2

r
Πa +ρ.

To simplify the aggregation procedure we assume zero
initial mean for all agents, i.e., Ezi(0) = 0, i ≥ 1. Also, we
assume we are in the uniform case where all agents have
the same dynamic parameter a in their dynamics. The NCE
consistency requirement leads to the equation system:

ρsa =
dsa

dt
+asa− b2

r
Πasa− z∗, (3)

dz̄a

dt
= (a− b2

r
Πa)z̄a− b2

r
sa, (4)

z∗ = γ(z̄a +η), (5)

where z̄a(0) = 0 corresponds to the zero initial mean as-
sumption. See [11], [12], [14] for details on the construction
of this equation system in an LQG context. In fact, the
NCE equation system may take a more general form where
a varies across the population and possesses an empirical
distribution; see [12].

Under some mild assumptions, the equation system (3)-(5)
admits a unique bounded solution (sa(·), z̄a(·)). The function
sa(t) is uniquely determined by its boundedness condition
and it is unnecessary to state the initial condition sa(0)
separately. In fact, z̄a(t) and sa(t) may be given in an explicit
form (see [14]). Let u0

i denote the control law

u0
i =−b

r
(Πazi + sa), (6)

which may be interpreted as the optimal tracking control
law with respect to z∗ in place of Φi(z(N)) in (1). It has been
shown that the set of control laws {u0

i , 1≤ i≤ N} results in
an ε-Nash equilibrium where the offset ε → 0 when N →∞.
The formal definition of an ε-Nash equilibrium will be given
in Section III; also see [2].

B. The NCE Principle with Agent Specific Cost Interactions

We now generalize the basic NCE equation system to
the case of agent specific cost coupling. To this end, we
assign each agent with a “locality” (or “spatial”) index rather
than just use an integer i to label its state variable zi. The
dynamic parameter a and the locality parameter α are
completely independent of one another, and for simplicity,
in the initial case discussed in this paper, explicit mention
of a is suppressed. Note that this locality index may have
different interpretations and is not necessarily restricted to be
a physical location. For instance, it may be used to measure
to what extent the player in question is distanced from other
players, and it may be used in a social interaction context
[1]. We assume agent i within the N agents is assigned the
locality parameter pi.

Let the cost for the ith agent be given by

Ji = E
∫ ∞

0
e−ρt {[zi− Φ̃i]2 + ru2

i
}

dt, (7)

where Φ̃i = γ(∑N
j=1 ω(N)

pi p j z j +η) and ρ > 0, γ > 0, r > 0. The

set of weight coefficients ω(N)
pi p j satisfies the condition

ω(N)
pi p j ≥ 0, ∀i, j,

N

∑
j=1

ω(N)
pi p j = 1, ∀i. (8)

For each fixed i, it is seen from (8) that the total weight of
unit is allocated to all the N agents. In order to simplify the
notation, the summation in (8) includes the index i itself.
Whether or not this self-weight is included has no impact on
our asymptotic analysis when N → ∞.

We take a representative agent and let its locality parame-
ter be denoted by α which takes a value from a compact
interval [α,α]. The state process of this agent may be
denoted by zα(t), and we denote its mean trajectory by
zα(t) = Ezα(t), where t ≥ 0. For illustration, suppose agent
i has pi = α; then zi(t) may be identified as zα(t).

For the agent associated with the parameter α (this agent
may be referred to as an α-agent), let its limiting weight
allocation for α ′ ∈ [α,α] be described by a probability
distribution Fα(α ′) when the number N of agents goes to
infinity. Thus, Fα(α ′) is intended to reflect the following
approximation within a large population:

N

∑
j=1,p j∈[c,c′]

ω(N)
pi p j ≈

∫

α ′∈[c,c′]
dFpi(α

′),

for any [c,c′]⊂ [α,α] such that c,c′ are continuity points of
Fpi(·). Later on we will specify related conditions.

(A1) Fα(α ′): [α,α] × R → [0,1] satisfies: i) Fα(·)
is a probability distribution function for each fixed α ,∫

α ′∈[α ,α] dFα(α ′) = 1; ii)
∫

α ′∈B dFα(α ′) is a measurable
function of α for each Borel subset B of R; iii) Fα ′′(·)
converges to Fα(·) weakly when α ′′→ α , where α and α ′′
are in [α,α].

(A2) The constant β1 > 0 and (γb2)/(rβ1β2) < 1.



For the given α-agent, it faces the aggregate effect of other
agents described by

r̄α(t) =
∫

α ′∈[α ,α]
zα ′(t)dFα(α ′),

which is intended to approximate ∑N
j=1 ω(N)

pi p j z j in the popu-
lation limit.

Now, based on the individual and weighted mass inter-
action consistency relationship, we can derive the following
new Nash Certainty Equivalence (Mean Field) (NCE) equa-
tion system

ρsα =
dsα
dt

+asα − b2

r
Πasα −Rα , (9)

dz̄α
dt

= (a− b2

r
Πa)z̄α − b2

r
sα , (10)

r̄α(t) =
∫

α ′∈[α ,α]
zα ′(t)dFα(α ′), (11)

Rα = γ(r̄α +η). (12)

The interesting observation is that when the distribution
function Fα(·) does not change with α , the equation system
(9)-(12) reduces to (3)-(5) with standard mean-field coupling
without differentiation between neighbors. This holds since
in this case r̄α and hence Rα are both independent of α (see
Acknowledgements).

The system (9)-(12) is constructed such that an α-agent
makes optimal tracking of the local mass effect Rα which, in
turn, depends on locality related coupling. Equation (10) is
obtained by taking expectation of the closed-loop equation
of the α-agent. A consistent solution to the NCE equation
system consists of a parameterized triple (sα(·), z̄α(·), r̄α(·))
where α ∈ [α ,α]. Each entry in the triple (sα(·), z̄α(·), r̄α(·))
will be viewed as a function from [α,α]×R+ to R.

Let I = [α,α]. Define the function class: Cb[I ×R+] =
{ f (α , t)| f ∈C[I×R+], | f |, supα,t | f (α, t)|< ∞}. The two
expressions f (α, t) and fα(t) will be used interchangeably.

For each α , if r̄α is given, we may solve a unique bounded
sα from (9) to obtain:

sα(t) =−eβ2t
∫ ∞

t
e−β2τ Rα(τ)dτ

=−eβ2t
∫ ∞

t
e−β2τ γ(r̄α(τ)+η)dτ.

We also write r̄α(t) = r̄(α , t). Next,

z̄α ′(t) =
b2

r

∫ t

0
e−β1(t−s)eβ2s

∫ ∞

s
e−β2τ γ(r̄α ′(τ)+η)dτds

, (Γ0r̄α ′)(t)

where Γ0 is viewed as an operator acting on bounded
continuous functions on [0,∞). Finally,

(Γr̄)(α, t) ,
∫

α ′
(Γ0r̄α ′)(t)dFα(α ′).

Note that for a general function f (α, t) ∈Cb[I×R+], Γ0 fα
and Γ f are defined in an obvious manner.

In order to solve the NCE equation system (9)-(12), a key
step is to find a fixed point r̄ in a suitable function space for
the operator recursion corresponding to the equation

(Γr̄)(α, t) = r̄(α, t). (13)

Lemma 1: Under (A1), Γ is a mapping from Cb[I×R+]
to Cb[I×R+].

Proof: See appendix.
Theorem 2: Under (A1)-(A2), there exists a unique

bounded solution (sα(·), z̄α(·),rα(·)) to the NCE equation
system (9)-(12).

Proof: By Lemma 1, we see that Γ is a linear operator
from Cb[I×R+] to itself, and Cb[I×R+] is a Banach space
under the norm | f |= supα,t | f (α, t)|.

We take f1, f2 ∈ Cb[I×R+]. By straightforward calcula-
tion, we obtain the estimates

|Γ f1−Γ f2| ≤ γb2

rβ1β2
| f1− f2|.

By (A2) it follows that Γ is a contraction. So there is a
unique solution r̄ ∈Cb[I×R+] satisfying equation (13). Once
the above r̄(= r̄α(t)) is obtained, it is straightforward to
get the other two entries in the triple (sα(t), z̄α(t), r̄α(t)).
Uniqueness of the solution can be easily verified by using
uniqueness of the fixed point to equation (13).

III. THE EQUILIBRIUM ANALYSIS

For equilibrium analysis, we need the assumptions:
(A3) The weight allocation satisfies the condition

εω
N , sup

1≤i≤N

N

∑
j=1
|ω(N)

pi p j |2 → 0,

as N → ∞.
(A4) For each pi, the empirical distribution

F(N)
pi (x) = ∑

p j<x
ω(N)

pi p j , x ∈ R,

is associated with a distribution function Fpi(x) (specified in
(A1)) such that for any δ > 0, there exists a compact subset
DN

pi
of I = [α,α] with Lebesgue measure meas(DN

pi
) < δ , and

limN→∞ sup1≤i≤N supx∈I\DN
pi
|F(N)

pi (x)−Fpi(x)|= 0.
Remark: Roughly, the last part of (A4) implies that

|F(N)
pi (x)− Fpi(x)| tends to zero with a speed independent

of pi on I excluding a small subset DN
pi

(which may depend
on pi,N). Notice that (A4) is satisfied if ω(N)

pi p j = 1/N.
Example 1: Let pi, 1 ≤ i ≤ N, denote N locations, con-

secutively and uniformly spaced from left to right, on the
interval [0,1] where p1 = 0 and pN = 1. Take ω(N)

pi pi = 0 for
each i and

ω(N)
pi p j = | j− i|−λ /ci, 1≤ i 6= j ≤ N, (14)

where λ ∈ [0,1] and ci = ∑N
j=1, j 6=i | j− i|−λ is the normalizing

factor.
With such a choice of λ in Example 1, (A3) can be

verified by elementary calculations. The mean field model of
the uniform aggregation form corresponds to taking λ = 0



for which case the weight assignment does not distinguish
locations. If λ = 1, we can also show that (A4) is satisfied
and in this case Fpi(x) = 1 if x > pi, Fpi(x) = 0 if x≤ pi.

We have the key approximation lemma.
Lemma 3: Assume (A4) holds. For any given bounded

and continuous function g(α) on R, we have

lim
N→∞

sup
1≤i≤N

|
∫ ∞

−∞
g(α)dF(N)

pi (α)−
∫ ∞

−∞
g(α)dFpi(α)|= 0.

Proof: See appendix.

A. Discussion on the “Interaction Radii Collapse” Effect

It appears that by use of the simple weight allocation
model (14) some very intriguing phenomena may be shown
to be possible. We fix p1 = 0. By simple calculation we
can see that the associated function Fp1 (as a weak limit)
will have very different nature. When λ = 1, Fp1 is just a
Heaviside function with a unit jump at x = 0. If we go back to
the NCE equation system, it means in the limit model, only
the agents in an infinitesimally small neighborhood matter
for the agent in question. Consequently and surprisingly, we
can retrieve the usual NCE equation. When λ ∈ [0,1), we can
show that Fp1 is a continuous function connecting (0,0) and
(1,1) via its graph. This means the effect of agents in a large
range can be registered by this limit distribution function Fp1
and then utilized in the NCE equation system.

So, λ can be interpreted as some kind of critical parameter.

B. Properties of the NCE Based Control Laws

Within the context of a population of N agents, for
any 1 ≤ k ≤ N, the kth agent’s admissible control set
Uk consists of all feedback controls uk adapted to the
σ -algebra σ(zi(τ),τ ≤ t,1≤ i≤ N) (i.e., uk(t) is a function
of (t,z1(t), · · · ,zN(t))) such that a unique strong solution to
the closed-loop system of the N agents exists on [0,∞). Note
that Uk itself is not restricted to be decentralized. Denote
u−i = (u1, · · · ,ui−1,ui+1, · · · ,uN).

Definition 4: A set of controls uk ∈Uk,1≤ k ≤ N, for N
players is called an ε-Nash equilibrium with respect to the
costs Jk,1≤ k≤ N, where ε ≥ 0, if for any i, 1≤ i≤ N, we
have

Ji(ui,u−i)≤ Ji(u′i,u−i)+ ε,

when any alternative u′i ∈Ui is applied by the ith player.
Theorem 5: Under (A1)-(A4), given any ε > 0, there

exists Nε such that for all N ≥Nε , the set of control strategies
{ûi,1≤ i≤ N} is an ε-Nash equilibrium where

ûi =−b
r
(Πazi + spi)

and spi is given by (9)-(12) via the substitution α = pi in sα .
Proof: Let z̄α be given by (9)-(12). Denote

R(N)
pi (t) = γ[

N

∑
j=1

ω(N)
pi p j z̄p j(t)+η ],

∆(N)
i (t) = γ

N

∑
j=1

ω(N)
pi p j(z̄p j − z j).

We first write the individual cost in the form

Ji(ui) = E
∫ ∞

0
e−ρt{[(zi−R(N)

pi )+∆(N)
j )]2 + ru2

i }(t)dt.

Suppose all the N agents apply the controls ûi, 1≤ i≤ N.
Then it is straightforward to find a constant Ĉ such that

sup
N

sup
1≤i≤N

E
∫ ∞

0
e−ρt(ẑ2

i + û2
i )(t)dt ≤ Ĉ,

and Ji(ûi, û−i) ≤ Ĉ, where we denote the state process
associated with ûi by ẑi and û−i = (û1, · · · , ûi−1, ûi+1, · · · , ûN).

In the below, when we consider alternative strategies for
agent i, we may restrict that ui satisfies

E
∫ ∞

0
e−ρt |zi−Φ(z(N))|2dt ≤ Ĉ, E

∫ ∞

0
e−ρtu2

i dt ≤ Ĉ/r.

(15)

This restriction causes no loss of generality since, otherwise,
ui will generate a cost higher than Ji(ûi, û−i). Based on (15),
we may further show that E

∫ ∞
0 e−ρt |zi|2dt ≤ Ĉ1 for some

Ĉ1 < ∞ independent of N.
By using (A1) to show that z̄α(t) has equicontinuity in α

(w.r.t. all t), we can apply Lemma 3 to check that

lim
N→∞

sup
pi,t
|R(N)

pi (t)−Rpi(t)|= 0. (16)

Also, for all ui satisfying the prior bound (15), we use (A3)
to show the convergence relation

lim
N→∞

sup
ui,t,i

E|∆(N)
i (t)|2 = 0, (17)

when all other agents’ strategies are given by û−i.
Finally, for ui satisfying (15), by use of (16)-(17) it is

straightforward to show that

Ji(ui, û−i)≥ Ji(ûi, û−i)− εN (18)

where 0 ≤ εN = o(1). By the choice of Ĉ, we see that (18)
is automatically true when ui does not satisfy (15). This
completes the proof.

IV. COST COUPLING WITH HETEROGENOUS
SUB-POPULATIONS

In this section, we adapt the general cost structure (7)
to model the interaction of agents from K groups within
the population. The locality parameter pi indicates which
group the ith agent belongs to, and the cost interaction for
a pair of agents is determined by either the inter-group or
the intra-group coupling parameters. Suppose there is a finite
set Θ , {θ 1, · · · ,θ K} (of distinct elements) such that each
pi, 1 ≤ i < ∞, takes values from Θ. The coupling weight
assignment will be constructed by using the K×K matrix

ωΘ = (ωθ iθ j)K×K

which satisfies ωθ iθ j ≥ 0 and ∑K
j=1 ωθ iθ j = 1 for each i.

Denote
N

∑
i=1

1(pi=θ k) = Nk, 1≤ k ≤ K.



If pi = θ k and pi′ = θ k′ , then we define ω(N)
pi pi′ = ωθ kθ k′ /Nk′ ,

which ensures the unit total weight condition

N

∑
j=1

ω(N)
pi p j = 1. (19)

(A5) The sequence {pi,1 ≥ 1} has the limit empirical
distribution

lim
N→∞

(1/N)
N

∑
i=1

1(pi=θ k) = πθ k

where θ k ∈Θ.
The probability vector (πθ 1 , · · · ,πθ K ) shows the relative

frequency of each of the K groups.
Now the NCE equation system takes the form:

ρsθ =
dsθ
dt

+asθ − b2

r
Πasθ −Rθ , (20)

dz̄θ
dt

= (a− b2

r
Πa)z̄θ − b2

r
sθ , (21)

r̄θ (t) = ∑
θ ′∈Θ

πθ ′ωθθ ′ z̄θ ′(t), (22)

Rθ = γ(r̄θ +η). (23)

where θ ∈ Θ and, again, sθ (t) is restricted to be a bounded
function without the necessity of separately specifying an
initial condition sθ (0).

Theorem 6: If the two conditions (i) ∑θ ′∈Θ πθ ′ωθθ ′ = 1,
(ii) γb2/(rβ1β2) < 1 hold, the equation system (20)-(23) has
a unique bounded solution (sθ k(·), z̄θ k(·), r̄θ k(·)), 1≤ k ≤ K.

Proof: The theorem may be proved using a fixed point
argument.

Theorem 7: Under (A5) and the assumptions of Theorem
6, given any ε > 0, there exists Nε such that for all N ≥ Nε ,
the set of control strategies {ûi,1 ≤ i ≤ N} is an ε-Nash
equilibrium where

ûi =−b
r
(Πazi + spi)

and spi is given by (20)-(23) via the substitution θ = pi in
sθ .

Proof: The proof is similar to that of Theorem 5.

V. CONCLUSION

In this paper we generalize our previous Nash Certainty
Equivalence methodology with uniform coupling to models
with locality interactions. We show that under reasonable
decay rates for the interaction strength, a consistency rela-
tionship between individual strategies and local deterministic
mass effects can still be specified, and this procedure leads to
decentralized Nash strategies for the individual players. We
also discuss how the weight allocation in the cost coupling
affects the spatial spreading ability of interactions in the
population limit, and we illustrate a novel interaction radii
collapse phenomenon when the weight decay approaches a
critical rate.

APPENDIX

Proof of Lemma 1. Given fα(t) ∈Cb[I×R+], we have

(Γ0 fα)(t) =
b2

r

∫ t

0
e−β1(t−s)eβ2s

∫ ∞

s
e−β2τ γ( fα(τ)+η)dτds.

By the boundedness of fα(t), there exists C < ∞ such that

sup
α,t
|(Γ0 fα)(t)| ≤C sup

α ,t

∫ t

0
e−β1(t−s)eβ2s

∫ ∞

s
e−β2τ dτds

≤C/(β1β2).

Subsequently,

sup
α,t
|(Γ f )(α, t)| ≤ sup

α ,t

∫

α ′
|(Γ0 fα ′)(t)|dFα(α ′)

≤C/(β1β2)sup
α,t

∫

α ′
dFα(α ′)

= C/(β1β2).

Now we prove the continuity of Γ f . We note the relation:

(Γ0 fα)(t) =
b2

r

∫ t

0
e−β1(t−s)eβ2s

∫ ∞

s
e−β2τ γ( fα(τ)+η)dτds

=
b2γ

r
e−β1t

∫ t

0
eβ1s

∫ ∞

s
e−β2(τ−s) fα(τ)dτds

+
γb2η
rβ1β2

(1− e−β1t).

Define

G0(α, t) =
∫ t

0
eβ1s

∫ ∞

s
e−β2(τ−s) fα(τ)dτds,

G(α, t) =
∫

α ′

∫ t

0
eβ1s

∫ ∞

s
e−β2(τ−s) fα ′(τ)dτdsdFα(α ′).

Now it suffices to show the continuity of G(α, t) with
respect to (α, t). Letting (α, t) be fixed, we pick (α1, t1) in
a neighborhood of (α, t). Then

|G(α1, t1)−G(α, t)| ≤ |G(α1, t1)−G(α1, t)|
+ |G(α1, t)−G(α , t)|.

We have

|G(α1, t1)−G(α1, t)|
≤

∫

α ′

∣∣∣∣
∫ t1

t
eβ1s

∫ ∞

s
e−β2(τ−s) fα ′(τ)dτds

∣∣∣∣dFα1(α
′)

≤
∫

α ′
C|eβ1t1 − eβ1t |dFα1(α

′)

=C|eβ1t1 − eβ1t |, (A.1)

where we may take C = (supα,t | fα(t)|)/(β1β2).
We have

|G(α1, t)−G(α, t)|
≤

∣∣∣∣
∫

α ′
G0(α ′, t)dFα1(α

′)−
∫

α ′
G0(α ′, t)dFα(α ′)

∣∣∣∣ .

For each fixed t, supα ′ |G(α ′, t)| < ∞ and by elementary
estimates we can show that G0(α ′, t) is a continuous function
of α ′. Hence it follows from (A1) that

lim
α1→α

|G(α1, t)−G(α, t)|= 0. (A.2)



Finally, the continuity of G(α, t) follows from (A.1) and
(A.2). The lemma follows.

Proof of Lemma 3: It suffices to prove

sup
1≤i≤N

|
∫ B

A
g(α)dF(N)

pi (α)−
∫ B

A
g(α)dFpi(α)| → 0,

as N → ∞, where −∞ < A < α < α < B < ∞. Then clearly,
after replacing I = [α,α] by IAB = [A,B], we still have

lim
N→∞

sup
1≤i≤N

sup
x∈IAB\DN

pi

|F(N)
pi (x)−Fpi(x)|= 0. (A.3)

Let ε > 0 be any given constant. Since g is bounded and
continuous, it is uniformly continuous on [A,B] and hence
there exists δ > 0 such that |g(x)−g(x′)| ≤ ε if |x−x′| ≤ δ ,
x,x′ ∈ [A,B]. Note that (A.3) holds for appropriately chosen
DN

pi
satisfying meas(DN

pi
) < δ . Let A = x1 < x2 < · · ·< xl+1 =

B be a partition of [A,B] such that each xk is a continuity
point of Fpi and belongs to IAB\DN

pi
and that max1≤k≤l |xk+1−

xk| ≤ δ . We may ensure l ≤ 2(B−A)/δ .
By straightforward calculation we can show that

∆N ,
∫ B

A
g(α)dF(N)

pi (α)−
∫ B

A
g(α)dFpi(α)

=
l

∑
k=1

{∫ xk+1

xk

[g(α)−g(xk)]dF(N)
pi (α)

+
∫ xk+1

xk

[g(xk)−g(α)]dFpi(α)

+g(xk)[F
(N)
pi (xk+1)−F(N)

pi (xk)−Fpi(xk+1)+Fpi(xk)]
}
.

Denoting Cg = supx |g(x)|, hence

|∆N | ≤ 2ε +Cg

l

∑
k=1

2|F(N)
pi (xk)−Fpi(xk)|.

On the other hand, for the above fixed pair of (ε, l), there
exists Nε,l > 0 depending on (ε, l) such that

sup
1≤i≤N

sup
x∈IAB\DN

pi

|F(N)
pi (x)−Fpi(x)| ≤ ε/(2lCg +1)

when N ≥ Nε,l . Therefore, for all N ≥ Nε,l , we have

|∆N | ≤ 3ε.

By the arbitrariness of ε , the lemma follows.
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