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Animal Behavior: Birds

• A group of birds fly with coordination in speed 
and direction (Flocking)



Fish

• Huge number of fish cooperatively move 
(Schooling)

-- Important for search for food or for protection                
from predators

Couzin et.al.
Nature, 2005



Honeybees

• Honeybees select a new home from several candidate 
sites spotted by scout bees 

• What is the mechanism 
for reaching consensus? 
(Visscher, Nature, 2003) 

-- Important for avoiding 
population disintegration



From Birds to Bees: from Flocking/Swarming to 
Consensus

• Each agent has local information about neighboring 
agents

• and there is a key group objective (e.g., achieve 
accurate alignment during motion, or agree on a nest 
site, etc.) 

Such coordination 
amounts to a form of
consensus

Math theory for interpretation?



Applications in Technology

• Examples: a group of autonomous vehicles, or robot 
teams (formation control)

• In such distributed multi-agent control systems –
coordination is critical for safety & the  performance of 
tasks                                              (below: simple robots)                    



Formation of Platoon of Vehicles 

• Equalize velocity of different vehicles
• Maintain spacing
• Increase highway capacity and improve safety



The Consensus Issue

• For multi-agent coordination, it is usually important to maintain 
shared information between agents

• This leads to the key issue of “Agreeing-on-something”. This 
agreement may 

(1) be the objective of operation

(2) or a condition for proceeding to further operation

Hence, in this context, we study consensus problems.



What Is Consensus?

• By consensus seeking, we mean a mechanism whereby 
the agents adjust their individual values of an 
underlying quantity (e.g., a key state value – angle, 
velocity, etc.) so as to converge to a common value

• In general, convergence is a 
primary objective

• The actually reached limit may be 
of secondary importance 

(small fish schooling)



Background: Models with Exact State Info

• Most existing research on consensus problems 
assumes exact state information exchange

• Maintaining certain connectivity (which 
can be relaxed to different forms) 
is crucial for achieving consensus

• The most important analytical tools come from 
the theory of stochastic matrices
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Background: Models with Noisy or 
Inaccurate Measurements

• In a distributed network, it may be impractical to 
have  exact state exchange, for example, due to 

--- receiver noise 
--- quantization, etc. etc. 

• Consensus models with additive noises have 
attracted the interest of many authors 

--- (Ren, Beard and Kingston, ACC’05)
--- (Xiao, Boyd, and Kim, 2007)
--- (Huang and Manton, ACC’07, CDC’07, ACC’08,Preprint’06, 

Preprint’08)
--- More recent works by various authors …

• Related stochastic models for consensus
--- (Tsitsiklis, Bertsekas, and Athens, IEEE TAC’86) stochastic gradient 

based algorithms for distributed function optimization



Definitions

• Definition 1 (weak consensus) The agents are said to 
reach weak consensus if                                         

• Definition 2 (mean square consensus) The agents are 
said to reach m.s. consensus if                                                  
and there exists       such that 

• Definition 3 (strong consensus) The agents are said to 
reach strong consensus if there exists      such that           

with probability one for all    .                        

x∗

limt→∞E|xit − x∗|2 = 0, ∀i ∈ N

E|xit|
2 <∞, ∀i ∈ N , t

limt→∞E|xit − xjt |
2 = 0, ∀i, j.

xit → x∗
x∗

i



Graph Modeling of Networked Agents

• Consider directed graphs (i.e., 
digraphs)  

• Each agent is denoted by a 
node 

• In a digraph, arrow indicates 
neighboring relationship & 
infor. flow (Example -- right 
top, agent 1 is a neighbor of 
agent 2)

• In undirected graph (special 
case), information is 
bidirectional
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Network Topology Modeling

• For our further analysis: we 
assume---

The digraph contains a spanning 
tree (special case: connected 
undirected graphs)

• Implication: information may 
propagate across the network 
from one or more points 

• In a deterministic model with fixed 
topology, Ren et. al. (2005) 
proved  existence of a spanning 
tree is the weakest connectivity 
condition for consensus 
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The Measurement Model

• Each agent knows its own state     exactly, 

• and it has noisy observation of its neighbors’ states, 
i.e.,

where         is additive 
measurement noise.

xit

yikt

yikt = xkt + wikt , t ∈ Z+, k ∈ Ni.

wikt

+

k
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This algorithm is 
essentially a noisy variant 
of equal-neighbor
based algorithms
(see related algorithms: 
Vicsek et. al. PRL’95
Jadbabaie, Lin, Morse’03, etc.) 

Measurement noise causes divergence. 1 2 3
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noise variance =0.01

deterministic model

If Fixed Coefficients Are Used in Averaging: 
What Happens? 






x1t+1 =
1
2(x

1
t + y12t )

x2t+1 =
1
3(x

2
t + y21t + y23t )

x3t+1 =
1
2(x

3
t + y32t )



Stochastic Approximation

• We use the averaging rule (convex combination):

• The state of a node remains the same if it has no 
neighbors. (This happens in leader following)

xit+1 = (1− atbii)x
i
t + at

∑
k∈Ni

biky
ik
t , t ≥ 0

bik > 0 if and only if k ∈ Ni

bii =
∑

k∈Ni
bik



Stochastic Approximation

• The algorithm in vector form:

where     has zero row sum.

where 

• is unstable and may be viewed as the generator of a 
continuous time Markov chain. 

xt+1 = xt + atBxt + atw̃t
B

bij = 0 if j /∈ Ni ∪ {i}.

B

B =






−b11 b12 · · · b1n
b21 −b22 · · · b2n
...

...
bn1 bn2 · · · −bnn








Main Assumptions

• (A1) The measurement noises are independent random variables 
with zero mean, and independent of initial states. 
The noise and initial states have bounded second order moment.                                     

• (A2) The digraph contains a spanning tree. 

• (A3) The positive step size sequence satisfies:  

Remark: The independence noise sequence assumption may be relaxed 
(for instance, a sequence of martingale differences  for noise vectors)   

{at, t ≥ 0}
∑∞

i=0 a
2
i <∞,

∑∞

i=0 ai =∞



Illustration with a Two-agent Model

• First, under (A1)-(A2) for noise and step size, it is relatively easy to 
show (a.s. and m.s.) convergence of the mid-point

• Next it suffices to show (a.s. and m.s.) convergence of the state gap

• We have

where 

ξt = x1t − x2t

zt =
1
2 (x

1
t + x2t )→ z∗

ξt+1 = (1− 2at)ξt + atvt, t ≥ 0

vt = w12t − w21t



The Diagram for State Gap

• Key idea: show benefits of reducing noise   
outweigh the disadvantage of reducing stability

ξt = x1t − x2t

Unit delay+
Noise

Decay Rate

atvt

1 − 2at

ξt+1 ξt



State Gap as Noise Summation

• Denote                  and 

for                      . We set                    . 

• The state gap satisfies

• To prove vanishing gap: Show        or related terms sufficiently small      

Πl,k = (1− āl)(1− āl−1) · · · (1− āk+1)ak

āt = 2at

l > k ≥ T1 Πk,k = ak

Πt,k

ξt+1 = (1− āt)(1− āt−1) · · · (1− āT1)ξT1
+Πt,T1vT1
...

+Πt,t−1vt−1
+Πt,tvt



Convergence Analysis

• Mean square convergence

• Sample path convergence



How to Prove M.S. Convergence?

• Use stochastic Lyapunov analysis to show all 
individual states attract to each other in mean 
square

• Next, show the individual states actually go to 
the same limit.



The Lyapunov Function

• Let            be the set of symmetric matrices and 
denote 

• Lemma. Under (A2) and given         , the  

has a unique solution 

• The idea is to show the energy function
will decay to zero.

V (t) = ExTt Qxt

Sn×n

D = {D ∈ Sn×n : D ≥ 0, Null(D) = span{1n}}

Degenerate Lyapunov Eqn: QB +BTQ = −D

Q ∈ D.

D ∈ D



Energy Decay and Weak Consensus

• Theorem (weak consensus). Under (A1)-(A3), 
(i) There exist            ,          , and a large         such that

(ii) Consequently                            , which implies 

Stay in                    !
Remark:  Here it is not clear yet whether they will 
converge to the same limit.   (so, need an extra step!)

c1 > 0 c2 > 0 Tc > 0

V (t+ 1) ≤ (1− atc1 + a2t c2)V (t) + O(a2t )

limt→∞ V (t) = 0

limt→∞ E|xit − xkt |
2 = 0, ∀i, k.

span{1n}



Mean  Square Consensus

• Lemma. There is a unique probability measure      
such that                . Further

and        converges in m.s. 

This Lemma combined with

Theorem. (A1)-(A3) ensures Mean Square 
consensus (Huang and Manton, ACC’07,08)

πTxt+1 = πTxt + atπ
T w̃t

π
πTB = 0

πTxt

limt→∞ E|xit − xkt |
2 = 0, ∀i, k.

⇓



Simulations

• Averaging with fixed 
weights, noise var=0.01

5 individual trajectories

• Stochastic Approx. with
decreasing step size

5 individual trajectories
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Further Extension to Leader Following

• For leader following, the stochastic Lyapunov analysis is 
applicable to establish mean square convergence of all 
other agents’ states to that of the leader (i.e., 4 below). 

•

• Left: use direct averaging    Right: use stochastic approx.  
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Sample Path Behavior 

• What is the group behavior along sample 
paths?

• In fact, this can be characterized by 
sample path convergence



Sample Path Convergence

• Theorem 1. Under (A1)-(A3), the 
Stochastic Approx. (SA) algorithm ensures 
strong consensus (i.e. sample path 
convergence).

• Remark: for strong consensus, the second order 
moment condition for the noise may be relaxed



Sample Path Analysis via Change of 
Coordinates

• By choosing a suitable change of coordinates 
the consensus algorithm may 

be decomposed into the form (Huang & Manton, ACC’08)

All eigenvalues of         have negative real parts
Thus, we only need to deal with a random walk and a 
stable linear SA model

B̃n−1

{
z1t+1 = z1t + atv

1
t

z
(n−1)
t+1 = (I + atB̃n−1)z

(n−1)
t + atv

(n−1)
t

zt = [z1t , z
(n−1)
t ]T = Φ−1xt,



Alternative Proving Tool: Double Array Analysis

• Theorem (Teicher,1985). Let                   be i.i.d. 
r.v.’s with zero mean and variance    and 

a double array of constants. 
Assume  

(i)                 

(ii)                                        
(iii)     

Then

{w,wt, t ≥}

{aki, 1 ≤ i ≤ lk ↑ ∞, k ≥ 1}

limk→∞

∑lk
i=1 akiwi = 0, a.s.



Performance?



Performance Analysis

• Due to consensus, denote the limit of the state 
vector by 

• Convergence rate --- Roughly, how small is                            
the error term                        when     is large?

x∞ = [x1∞, · · · , xn∞]T = x1∞1n

xt − x∞ t



Performance (w/ spanning tree model)

• How fast to reach consensus?(charctrzd by asy. normal.)

• Take step size                  . Denote
• Then under quite standard conditions for noise & coeffic. 

matrix, we show  consensus and furthermore:

where        depends on future noises &        is linear in 

• (H.&M., ACC’08; H. CDC’08 sub) so error decays by rate



Illustration of Asymptotic Normality

• Left bottom   ---
• Right bottom ---
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Additional Uncertainty Factors

• Random communication link failures

• Quantization effects



Random Link Failures

• The stochastic algorithm may still be 
applied for the randomly varying topology.

• In this case, the coefficient matrix in the 
consensus algorithm is given as a 
sequence of random matrices       with 
mean 

Bt
B



Random Link Failures (ctn)

• The consensus algorithm

• This algorithm may be viewed as the standard one (with 
fixed topology) subject to unbiased perturbations. 

• In particular, for i.i.d. link failures with additive 
measurement noise, a perturbed Lyapunov analysis may 
be applied to establish convergence (Huang and Manton, 
ACC’08, and Preprint (submitted to IEEE, June’07))

xt+1 = xt + atBtxt + at“noise“

= xt + atBxt + at(Bt − B)xt + at“noise“



Quantized Data---How to Achieve 
Convergence?



Probabilistic Quantization (PQ)

• Suppose the state      is between two 
quantization levels 

• The idea of PQ is to produce a 
randomized output        at the quantizer
such that it takes the lower and upper level 
with probability                                                

respectively

xit
rk < rk+1

Qi(t)

pk = (rk+1 − xit)/(rk+1 − rk), pk+1 = 1− pk



Probabilistic Quantization (PQ)

• This approach has been successfully applied 
for: 

• sensor network signal processing (Xiao, Cui, Luo, and 

Goldsmith, 2006), and 

• consensus models (Aysal, Coates and Rabbat, 2007)



PQ Combined with SA 

• In PQ, we may view and quantization error as an additive 
uncorrelated noise. 

• In the consensus algorithm, a decreasing step size may be further 
used to damp out the noise. Convergence results may be proved. 
(Huang, Dey, Nair, and Manton, CDC’08 submitted) 

• Left: deterministic quantization;   Right: PQ
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Concluding Remarks
• Stochastic consensus 

and convergence

• The key is a decreasing step size for 
cautious learning

• Stochastic Lyapunov analysis is useful

• Many application opportunities in sensor network 
signal processing (see, e.g. S. Boyd, J. Hespanha) – networked estim. 
Prob., sensornet time synchronization, sensornet localization etc. etc. etc.

Many practical modeling scenarios  -- high order (inertia) models and 
asynchronous algorithms, approximate average consensus, etc. etc. 


