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Animal Behavior: Birds

* A group of birds fly with coordination in speed
and direction (Flocking)




Fish

 Huge number of fish cooperatively move
(Schooling)

-- Important for search for food or for protection
from predators

Couzin et.al.
Nature, 2005




Honeybees

« Honeybees select a new home from several candidate
sites spotted by scout bees

e What is the mechanism
for reaching consensus?
(Visscher, Nature, 2003)

-- Important for avoiding
population disintegration




From Birds to Bees: from Flocking/Swarming to
Consensus

 Each agent has local information about neighboring
agents

« and there is a key group objective (e.g., achieve
accurate alignment during motion, or agree on a nest

site, etc.)

Such coordination
amounts to a form of
consensus

Math theory for interpretation?




Applications in Technology

« Examples: a group of autonomous vehicles, or robot
teams (formation control)

* In such distributed multi-agent control systems —
coordination is critical for safety & the performance of
tasks (below: simple robots)




Formation of Platoon of Vehicles

« Equalize velocity of different vehicles
e Maintain spacing
* Increase highway capacity and improve safety




The Consensus Issue

For multi-agent coordination, it is usually important to maintain
shared information between agents

This leads to the key issue of “Agreeing-on-something”. This
agreement may

(1) be the objective of operation

(2) or a condition for proceeding to further operation

Hence, in this context, we study consensus problems.



What Is Consensus?

* By consensus seeking, we mean a mechanism whereby
the agents adjust their individual values of an
underlying quantity (e.g., a key state value — angle,
velocity, etc.) so as to converge to a common value

BN \ \-; N \ SN N
« In general, convergence is a AL IR

primary objective

N,

« The actually reached limit may be |
of secondary importance

(small fish schooling)




Background: Models with Exact State Info

e Most existing research on consensus problems
assumes exact state information exchange

D

e Maintaining certain connectivity (which 2
can be relaxed to different forms)
IS crucial for achieving consensus
® @ ®

 The most important analytical tools come from
the theory of stochastic matrices




Background: Models with Noisy or
Inaccurate Measurements

In a distributed network, it may be impractical to %

have exact state exchange, for example, due to
--- receiver noise

--- quantization, etc. etc.

Consensus models with additive noises have
attracted the interest of many authors

--- (Ren, Beard and Kingston, ACC’05)

--- (Xiao, Boyd, and Kim, 2007)

--- (Huang and Manton, ACC’07, CDC’07, ACC’08,Preprint’06,
Preprint’08)

--- More recent works by various authors ...

Related stochastic models for consensus

--- (Tsitsiklis, Bertsekas, and Athens, IEEE TAC’'86) stochastic gradient
based algorithms for distributed function optimization



Definitions

 Definition 1 (weak consensus) The agents are said to
reach weak consensus if

lims oo Elx; — 3| =0, Vi, j.

o Definition 2 (mean sguare Consensusg The agents are
said to reach m.s. consensus If E|xy]* < oo, Vie N, t
and there exists x* such that

limy oo Elzt —2*|* =0, Vi e N

o Definition 3 (strong consensus) The agents are said to
reach strong consensus If there exists such that

r! — x* with probability one for all 7.



Graph Modeling of Networked Agents

Consider directed graphs (i.e., “
digraphs) G = (N, €)

Each agent is denoted by a
node

In a digraph, arrow indicates
neighboring relationship & @‘ 1 “

infor. flow (Example -- right
top, agent 1 is a neighbor of

agent 2) @\

In undirected graph (special

case), information is
bidirectional




Network Topology Modeling

For our further analysis: we
assume---

The digraph contains a spanning
tree (special case: connected
undirected graphs)

Implication: information may
propagate across the network
from one or more points

In a deterministic model with fixed
topology, Ren et. al. (2005)
proved existence of a spanning
tree is the weakest connectivity
condition for consensus




The Measurement Model

« Each agent knows its own state x! exactly,

- and it has noisy observation 3 of its neighbors’ states,
.e.,

yik = g + wik, teZt, keN,.

where wi* is additive

measurement noise. @xt /w%k



If Fixed Coefficients Are Used In Averaging:
What Happens?

s d et
5654—1 — ?(mg +yt32 + y;i°)
Lii1 = 5(% + yy?)

This algorithm is

essentially a noisy variant

of equal-neighbor

based algorithms

(see related algorithms:
Vicsek et. al. PRL'95
Jadbabaie, Lin, Morse’03, etc.)

Measurement noise causes divergence.
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Stochastic Approximation

* We use the averaging rule (convex combination):
CE%_H — (1 — Cl,tbm)il37£ + Qy ZkEN} bikygk, t > 0
b;r > 0 if and only if k € N
bii = > e, bik

» The state of a node remains the same if it has no
neighbors. (This happens in leader following)



Stochastic Approximation

e The algorithm in vector form:
Lt+1 = Lt -+ atht -+ Clt’lIJt
where B has zero row sum.

[ b1y b1z -+ bin
ba1  —baa -+ oy
B =
| bnl bn2 T _bnn |

where
bij =0 if j ¢ N; U {i}.

* B is unstable and may be viewed as the generator of a
continuous time Markov chain.



Main Assumptions

* (A1) The measurement noises are independent random variables
with zero mean, and independent of initial states.

The noise and initial states have bounded second order moment.
 (A2) The digraph contains a spanning tree.

« (A3) The positive step size sequence {a;,t > 0}satisfies:

Z;}io azz < 0, Zio a; = 00

Remark: The independence noise sequence assumption may be relaxed
(for instance, a sequence of martingale differences for noise vectors)



lllustration with a Two-agent Model

First, under (Al)-(A2) for noise and step size, it is relatively easy to

show (a.s. and m.s.) convergence of the mid-point
2 = 3 (xf +27) = 2*

Next it suffices to show (a.s. and m.s.) convergence of the state gap

ftzib‘%—fv%

We have &1 = (1 —2a4)& 4+ agvy, t2>0

where v = w%2 — wt21



The Diagram for State Gap

& = xp — a7

&t

(41
a“.’t»@gi» Unit delay
Noise

1 —2a; <—

Decay Rate

« Key idea: show benefits of reducing noise
outweigh the disadvantage of reducing stability



State Gap as Noise Summation

Denote a; = 2a; and

= 1-a)(1—a-1) (1 —ars1)ax
for [ > k>T, - Wesetllg i = ag.
The state gap satisfies

§er1= (1—ag)(1—as—1) - (1—an)én
+11: 1 vy

—

To prove vanishing gap: Show II; ; or related terms sufficiently small




Convergence Analysis

 Mean square convergence

o Sample path convergence



How to Prove M.S. Convergence?

e Use stochastic Lyapunov analysis to show all
Individual states attract to each other in mean

square

* Next, show the individual states actually go to
the same limit.



The Lyapunov Function

o Let §S»*xn De the set of symmetric matrices and
denote
D={D e S"":D >0, Null(D) =span{l,}}

« Lemma. Under (A2) and given D e Dpthe
Degenerate Lyapunov Eqn: QB + BYQ = —D
has a unique solution
Q < D.
 The idea Is to show the energy function v(t) = Exf Qz,
will decay to zero.



Energy Decay and Weak Consensus

 Theorem (weak consensus). Under (Al)-(A3),
(1) There exist ¢; > 0,¢y > 0, and a large 7. > osuch that

V(t+1) < (1—ascr+a?c)V(t) + O(a?)
(i) Consequently lim;_, o, V(t) = 0, which implies
lim; oo E|xt — xF|? =0, Vi, k.
Stay in span{l,,}'

Remark: Here it is not clear yet whether they will
converge to the same limit. (so, need an extra step!)



Mean Square Consensus

« Lemma. There is a unique probability measure 7T
such that7! B = 0. Further

7TTQ3t_|_1 — 7TTQ3t -+ a,t7TT’U~Jt
and 71 z,converges in m.s.

This Lemma combined with  lim;_, o, E|z¢ — xf]Q = 0, V1, k.

Theorem. (Al)-(A3) ensures Mean Square
consensus (Huang and Manton, ACC’07,08)



Simulations

e Averaging with fixed
weights, noise var=0.01

1500 2000 2500

iterates

5 individual trajectories

0 500 1000

3(

Q2

« Stochastic Approx. with
decreasing step size

6

55}
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Further Extension to Leader Following

* For leader following, the stochastic Lyapunov analysis is
applicable to establish mean square convergence of all
other agents’ states to that of the leader (i.e., 4 below).

4.5 T T T T T 4.5 T
4 4

3.5 b 3.51
3 i

. Left use direct averaging Right: use stochastic approx.

2 €



Sample Path Behavior

 What Is the group behavior along sample
paths?

 In fact, this can be characterized by
sample path convergence



Sample Path Convergence

« Theorem 1. Under (Al)-(A3), the
Stochastic Approx. (SA) algorithm ensures
strong consensus (I.e. sample path
convergence).

 Remark: for strong consensus, the second order
moment condition for the noise may be relaxed



Sample Path Analysis via Change of
Coordinates

e By choosing a suitable change of coordinates
2 = |24, Zgn 1)] = &~ 'x4, the consensus algorithm may
be decomposed into the form (Huang & Manton, ACC’08)
2 =2+ aw}
L0 S gt s

All eigenvalues of B _,have negative real parts

Thus, we only need to deal with a random walk and a
stable linear SA model



Alternative Proving Tool: Double Array Analysis

e Theorem (Teicher,1985). Let {w,w,,¢t >} be l.i.d.
r.v.’s with zero mean and variance @ and
{ari,1 <0 <1 T oo,k > 1}a double array of constants.

Assume
(i) Maxi<i<y lakilhi = O(1/logk),where O < h; 1

h;, = O(il/9)for some § € [1, 2]

() y22 Pllwl > hi} < oo
11
(i hifi L, and Sk Jag2h2 7% = o(1/ log k),

[ _
Then Sy lagi?hi 0 = O(1/1og )

: I



Performance?



Performance Analysis

e Due to consensus, denote the limit of the state
vector by

Too = [, 22 |T =2l 1,

e Convergence rate --- Roughly, how small is
the errorterm Iy — Lo When ¢ is large?



Performance (w/ spanning tree model)

 How fast to reach consensus?(charctrzd by asy. normal.)

« Take step sizeat = a/t. Denote Tt = [fl?‘tl» T aiU?]T
 Then under quite standard conditions for noise & coeffic.
matrix, we show consensus and furthermore:

e,a e,b
xt:azclx)ln—l—a:t’ + x;’
where z;°“ depends on future noises & z&% is linear in ¢

d d
Vizp® S N(0,Qa),  VizP' S N(0,Qp)

(H.&M., ACC'08; H. CDC’08 sub) SO error decays by rate \ﬁ



lllustration of Asymptotic Normality

e Left bottom --- Lt
 Right bottom --- tl/%gab

tttttttt



Additional Uncertainty Factors

e Random communication link failures

e Quantization effects



Random Link Failures

* The stochastic algorithm may still be
applied for the randomly varying topology.

 In this case, the coefficient matrix in the
consensus algorithm is given as a
sequence of random matrices B; with
mean B



Random Link Failures (ctn)

 The consensus algorithm
Lt4+1 =— Tt -+ CLtBtiEt -+ Q¢ “noise
= X+ + atﬁxt -+ Cl,t(Bt — F)xt -+ Q¢ “noise*

e This algorithm may be viewed as the standard one (with
fixed topology) subject to unbiased perturbations.

* In particular, for i.i.d. link failures with additive
measurement noise, a perturbed Lyapunov analysis may

be applied to establish convergence (Huang and Manton,
ACC’08, and Preprint (submitted to IEEE, June’07))



Quantized Data---How to Achieve
Convergence?



Probabilistic Quantization (PQ)

« Suppose the state =} is between two
guantization levels 7 < re+1

 The idea of PQ Is to produce a
randomized output i) at the quantizer
such that it takes the lower and upper level
with probability

Pk = ("“k+1 — f’/’i)/("“kﬂ — Tk)a Pr+1 = 1 — px

respectively



Probabilistic Quantization (PQ)

This approach has been successfully applied
for:

sensor network signal processing (Xiao, Cui, Luo, and
Goldsmith, 2006), and

consensus models (Aysal, Coates and Rabbat, 2007)
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PQ Combined with SA

In PQ, we may view and quantization error as an additive
uncorrelated noise.

In the consensus algorithm, a decreasing step size may be further
used to damp out the noise. Convergence results may be proved.
(Huang, Dey, Nair, and Manton, CDC’08 submitted)

Left: deterministic quantization; Right: PQ
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Concluding Remarks

Stochastic consensus
and convergence

The key is a decreasing step size for
cautious learning

Stochastic Lyapunov analysis is useful

Many application opportunities in sensor network

signal processing (see, e.g. S. Boyd, J. Hespanha) — networked estim.
Prob., sensornet time synchronization, sensornet localization etc. etc. etc.

Many practical modeling scenarios -- high order (inertia) models and
asynchronous algorithms, approximate average consensus, etc. etc.



