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(1) Distributed optimization in multi-agent stochastic systems:

Introduction and Motivation

There has been a rapidly increasing research interest in the analysis and optimization of large-scale
dynamical systems involving multiple agents, which arise in a variety of areas including commu-
nication networks, economics and social science, biological systems, among others. The great
complexity of these systems — in the form of high dimensionality, uncertainty, and complicated
interaction among different constituent parts — results in significant limitation in human under-
standing in the behavior of their agents and that of the overall system, and this hinders further
efforts in optimization of system performance as measured by various means. Until nowadays,
large-scale system modelling and optimization remains an area with major challenging problems.

In this research we are particularly interested in an important class of large-scale stochastic systems
where each agent interacts with all other agents via coupling in their individual dynamics and costs.
A remarkable feature is that for a given agent, any other single agent only produces a negligible im-
pact while the overall population’s effect on it is significant. This kind of individual-mass interacting
systems, taking their specific forms, arise in different areas ranging from (oligopoly) economic mod-
els where each agent competes with the mass of all others over a market, network resource allocation
such as power control in cellular networks and Internet traffic control, to biological systems where
individual animals compete for food and reproduction opportunities [18, 7, 6, 1, 14, 21, 19]. A sys-
tematic investigation of systems with such individual-mass interactions will provide useful insights
for understanding many complex phenomena related to human activities, engineering applications
and the natural environment, and may extend the application horizon of systems and control theory.

Fundamental Limitation of Traditional Approaches

In view of the self-interest seeking behavior of the agents, it is natural to approach the optimization
problem in a game theoretic framework [3, 8]. Specifically, under the stochastic dynamic evolution
of individual agent’s state, one might attempt to find a solution via existing noncooperative dy-
namic game theory. However, under large population conditions, this leads to prohibitively high
complexity for analysis and computation, even for linear models. Furthermore, under this opti-
mization framework, the resulting solution, if computable at all, is centralized and unrealistic for
implementation since each agent needs to know the states of all other agents. The limitation of the
existing approach motivates us for the search of an efficient optimization paradigm.

The New Paradigm for Large Population Stochastic Dynamic Games:
Breaking Curse of Dimensionality, and Research Advance

Starting with a linear-quadratic-Gaussian (LQG) game model with cost coupling, my Ph.D. thesis
work initiated a general methodology via state aggregation for analyzing the individual and mass
behavior in large-scale systems within a decentralized game theoretic framework. In this individual-
mass interacting model, utilizing the full system state for a given individual’s strategy optimization
is not only a very demanding task, but also unlikely to generate considerable additional benefit
compared to an appropriately constructed decentralized strategy.

Thus, we take a fundamentally different approach based on characterizing an individual-mass con-
sistency relationship within the large-population limit. By doing this we only need to introduce two
objects including a “representative” agent and the mass effect, which forms the basis for overcoming
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the dimensionality difficulty. The crucial step here is to use state aggregation to extract the popu-
lation influence into a deterministic trajectory (mass effect) against which each agent optimizes its
strategy. The individual strategies are determined so that they are each an optimal response to the
underlying mass effect and they also collectively produce the same mass effect. We call this design
scheme the Nash Certainty Equivalence Principle, which leads to decentralized e-Nash strategies
where the offset € goes to zero as the population size increases. Our analysis reveals under mild
conditions a stable population behavior resulting from localized self optimizing agents.

In a series of papers [15, 13, 12, 11, 10, 9], this methodology is substantially extended to more
general models with features such as both cost and dynamic coupling, nonuniform agents, noisy
state measurements, and certain nonlinearities. Remarkably, our recent work discovered an intimate
connection between our optimization approach and statistical mechanics for interacting particle
systems, as illuminated by the celebrated McKean-Vlasov equation and its controlled version [9, 5,
2,4, 17, 16, 20, 22]. As the basis for this connection, the models in these areas share the common
feature — the system behavior at the macroscopic level is largely governed by the interaction
between an individual and the mass of all others.

The Nash certainty equivalence based methodology may be extended to more general nonlinear
stochastic systems. Our initial analysis indicates that the overall distributed optimization problem
may be decomposed into a standard low dimensional stochastic control problem to be solved along
an “optimal” population distribution process and a Fokker-Planck equation for the population
distribution evolution [9]. As an analytic tool, the Fokker-Planck equation has a dual role for
describing the population behavior and also the statistical property of a “representative” agent.
The subsequent analysis relies on combining the state aggregation procedure, stochastic analysis
and fixed point techniques. In the end, this leads to the construction of localized control strategies
for the agents.

This research is of importance for dealing with complexity in dynamic optimization of large-scale
systems and has methodological implications in many complex systems arising in the socio-economic
and engineering areas and evolutionary biology. The generalization of our methodology to other
modelling situations reflecting practical system features will be investigated in the future.
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