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Abstract— We consider dynamic games in large population
conditions where the agents evolve according to non-uniform
dynamics and are weakly coupled via their individual dynamics
and costs. A state aggregation technique is employed to obtain
a set of decentralized control laws for the individuals which
ensures closed-loop stability and possesses an ε-Nash equilib-
rium property. We then propose a scheme for Nash strategy
adaptation when the agents have unknown parameters. The
issue of transient performance improvement is addressed by
introducing dither signals.

I. INTRODUCTION

In this paper, we study the optimization of large-scale
linear systems wherein many agents are each coupled with
others via the individual dynamics and costs. The study
of such large-scale weakly coupled systems is motivated
by a variety of complex phenomena arising in engineering
and socio-economic settings, for instance, dynamic economic
models involving competing agents [3], [10], [7], and power
control in wireless communications where different users
compete for quality of services [6], [8]. The model studied is
also related to research on swarming, flocking and formation
control of autonomous mobile agents, where each agent has
its individual dynamics in which an average effect by all
others or the surrounding agents acts as a driving term; see,
e.g., [4], [20], [12].

In the literature, within the optimal control context weakly
interconnected systems were studied in [1]. For differential
games with weakly coupled agents, iterative computational
techniques for ε-Nash strategies can be found in [15] for
linear models, and in [19] for nonlinear models. In contrast
to existing work (especially for dynamic LQG games [14]),
our concentration is on games with large populations. We
analyze the ε-Nash equilibrium properties for a control law
by which each individual optimizes using local information
while interacting with the average effect of all agents taken
together, hereon referred to as “the mass”. In preceding
work [6] we considered the LQG game for a population
of uniform agents with only cost coupling and introduced
a state aggregation procedure for the design of decentral-
ized control with an ε-Nash equilibrium property, and this
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methodology is generalized in [7] to a system of non-uniform
agents described by a randomized parametrization for agents’
dynamics across the population.

In this paper we consider the more general model where
the aggregated population effect is incorporated into the
individual dynamics. The resulting dynamic coupling leads
to more complicated mutual impact between the agents than
in [7], and for establishing our equilibrium results, the perfor-
mance estimate heavily relies on the closed-loop behaviour
of the overall system of all dynamically coupled agents.
Based upon the empirical parameter distribution for non-
uniform agents and the interaction between the individual
and mass, we develop state aggregation for the underlying
dynamic models, and our approach differs from the well-
known aggregation techniques based upon time-scales which
lead to a form of hierarchical optimization [18], [16].

Within the noncooperative game setup, an overall ra-
tionality assumption for the large population serves as a
motivating point for our state aggregation, and implies for a
given population effect, each agent tends to apply an optimal
tracking action. The key step is then to construct a mutually
consistent pair of mass effect and individual strategies such
that the latter not only possess optimality with respect to the
former for the individuals but also collectively produce it.

In a further step, we consider adaptive strategy selection
for the agents. As a motivating example, in wireless power
control applications, each agent needs to adjust its power for
its own quality of service satisfaction, and such a process
is accompanied by adaptively estimating its channel states
with the aid of pilot signals [17], [8]. In contrast to clas-
sical adaptive control, this part aims to initiate cooperative
adaptation/learning in large scale systems of random agents
driving by individual incentives. The previously obtained
Nash solution is intended as a target for adaptation using
available measurements. The cost structure with discount
naturally calls for an appropriate parameter adaptation during
the transient phase in order to attain an ideal performance.

In this paper we omit all proofs. For the proof of the main
theorems on asymptotic equilibrium analysis, see [9].

II. THE WEAKLY COUPLED SYSTEMS

We consider an n dimensional linear stochastic system
where the evolution of each state component is described by

dzi = (aizi + biui)dt+αz(n)dt+σidwi, 1 ≤ i ≤ n, t ≥ 0,

(1)
where {wi, 1 ≤ i ≤ n} denotes n independent standard
scalar Wiener processes and z(n) = 1

n

∑n
i=1 zi, α ∈ R.
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Hence, z(n) may be looked at as a nominal driving term
imposed by the population. The initial states zi(0) are mutu-
ally independent and also independent of {wi, 1 ≤ i ≤ n}. In
addition, E|zi(0)|2 < ∞ and bi �= 0. Each state component
shall be referred to as the state of the corresponding agent
(also to be called player).

We investigate the behaviour of the agents when they
interact with each other through specific coupling terms
appearing in their individual costs:

Ji(ui, vi)
�
= E

∫ ∞

0

e−ρt[(zi − vi)
2 + ru2

i ]dt. (2)

For simplicity of analysis we assume in this paper that

bi = b > 0, 1 ≤ i ≤ n.

In particular we assume the cost-coupling to be of the
following form:

vi = Φ(z(n)) = Φ(
1

n

n∑
k=1

zk),

where Φ is a continuous function on R. The linking term vi

gives a measure of the average effect of the mass formed by
all agents in this type of group tracking problem. Here we
assume ρ, r > 0 and unless otherwise stated, throughout the
paper zi is described by the dynamics (1).

III. THE PRELIMINARY LINEAR TRACKING PROBLEM

In the tracking analysis, we begin by replacing the average
driving term z(n) in (1) by a deterministic function f . This
suggests we introduce the auxiliary dynamics

dẑi = aiẑidt + buidt + αfdt + σidwi, (3)

where f is bounded and continuous on [0,∞). For distinc-
tion, the state variable ẑi is used in (3), and all other terms
are specified in a similar manner as in (1).

For large n, we intend to approximate vi = Φ( 1
n

∑n
k=1 zk)

by a deterministic continuous function z∗ defined on [0,∞).
For a given z∗ without being related to f above, we construct
the individual cost associated with (3) as follows:

J0
i (ui, z

∗) = E

∫ ∞

0

e−ρt{[ẑi − z∗]2 + ru2
i }dt. (4)

We consider bounded z∗. For minimizing J0
i , the admissi-

ble control set is Ui
�
= {ui|ui adapted to σ(ẑi(0), wi(s), s ≤

t), and E
∫ ∞
0

e−ρt(ẑ2
i + u2

i )dt < ∞}. Define Cb[0,∞)
�
=

{x ∈ C[0,∞), |x|∞ < ∞}, where |x|∞ = supt≥0 |x(t)|,
for x ∈ C[0,∞). With the norm | · |∞, Cb[0,∞) is a Banach
space.

Let Πi > 0 be the solution to the algebraic Riccati
equation

ρΠi = 2aiΠi − b2

r
Π2

i + 1. (5)

It is easy to verify that −ai + b2Πi

r
+ ρ

2 > 0. Denote

β1 = −ai +
b2

r
Πi, β2 = −ai +

b2

r
Πi + ρ >

ρ

2
. (6)

Proposition 1: Assume (i) E|ẑi(0)|2 < ∞ and f, z∗ ∈
Cb[0,∞); (ii) Πi > 0 is the solution to (5) and β1 = −ai +
b2

r
Πi > 0; and (iii) si ∈ Cb[0,∞) and q ∈ Cb[0,∞) satisfy

ρsi =
dsi

dt
+ aisi − b2

r
Πisi + αΠif − z∗, (7)

ρq =
dq

dt
− b2

r
s2

i + (z∗)2 + 2αfsi + σ2
i Πi. (8)

Then the control law

ûi = − b

r
(Πiẑi + si) (9)

minimizes J0
i (ui, z

∗) for all ui ∈ Ui, and the optimal cost
is J0

i (ûi, z
∗) = ΠiEẑ2

i (0) + 2s(0)Eẑi(0) + q(0).
Proposition 2: Under the assumptions of Proposition 1,

there exists a unique initial condition si(0) ∈ R such that the
associated solution si to (7) is bounded, i.e., si ∈ Cb[0,∞).
And moreover, for the obtained si ∈ Cb[0,∞), there is
a unique initial condition q(0) ∈ R for (8) such that the
solution q ∈ Cb[0,∞).

In fact, the unique initial condition for si is given by
si(0) = − ∫ ∞

0
e−β2τ [z∗(τ) − αΠif(τ)]dτ which yields

si(t) = eβ2t

∫ ∞

t

e−β2τ [αΠif(τ) − z∗(τ)]dτ ∈ Cb[0,∞).

and any other initial condition yields an unbounded solution.

IV. COMPETITIVE BEHAVIOUR AND CONTINUUM MASS

BEHAVIOUR

In the weakly coupled situation with individual costs, each
agent is assumed to be rational in the sense that it both
optimizes its own cost and its strategy is based upon the
assumption that the other agents are rational. In other words
each agent believes (i.e., has as a hypothesis in the derivation
of its strategy) the other agents are optimizers.

Combined with the rationality assumption, the specific
structure of the driving term z(n) and linking term vi =
Φ(z(n)) will be employed in the approximation developed
below. However, we stress that the rationality notion is
only used to construct the aggregation procedure, and the
main theorems in the paper will be based solely upon their
mathematical assumptions.

A. State aggregation via large population limit

Assume f ∈ Cb[0,∞) is given for approximation of z(n),
and si ∈ Cb[0,∞) is a solution to (7) computed with z∗ =
Φ(f). For the ith agent, after applying the control law (9),
the closed-loop equation is approximated by

dzi = (ai − b2

r
Πi)zidt − b2

r
sidt + αfdt + σidwi, (10)

where f replaces z(n) in (1). We have

dzi

dt
= (ai − b2

r
Πi)zi − b2

r
si + αf, (11)

where zi(t) = Ezi(t) and the initial condition is zi|t=0 =
Ezi(0). We further define the population average of means

(simply called population mean) as z(n) �
= 1

n

∑n
i=1 zi.
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Since we wish to have f ≈ 1
n

∑n
k=1 zk, for large n it is

plausible to express

f = z(n), z∗(t) = Φ(z(n)(t)). (12)

In our analysis below, the large population limit is em-
ployed to determine the effect of the mass of the population
on any given individual. Specifically, our interest is in the
case when ai, i ≥ 1, is “adequately randomized” in the sense
that the population exhibits certain statistical properties.
Within this setup, we assume that the sequence {ai, i ≥ 1},
has an empirical distribution function F (a).

For the sequence {ai, i ≥ 1}, we define the empirical
distribution associated with the first n agents

Fn(x) =

∑n
i=1 1(ai<x)

n
, x ∈ R.

(H1) There exists a distribution function F on R such that
Fn → F weakly as n → ∞, i.e., limn→∞ Fn(x) = F (x) if
F is continuous at x ∈ R.

(H1’) There exists a distribution function F on R

such that Fn → F uniformly as n → ∞, i.e.,
limn→∞ supx∈R

|Fn(x) − F (x)| = 0.
Remark. Obviously (H1’) implies (H1). See [7] for an in-

terpretation of the assumptions in terms of random sampling
of {ai, i ≥ 1} from an underlying distribution.

For the Riccati equation (5), when the coefficient a is used
in place of ai, we denote the corresponding solution by Πa.
Accordingly, we express β1(a) and β2(a) when a and Πa

are substituted into (6). We have

Πa = ( b2

r
)−1

[
a − ρ

2 +
√

(a − ρ
2 )2 + b2

r

]
,

β1(a) = −ρ
2 +

√
(a − ρ

2 )2 + b2

r
, (13)

β2(a) = ρ
2 +

√
(a − ρ

2 )2 + b2

r
. (14)

To simplify the aggregation procedure we assume zero
mean for initial conditions of all agents, i.e., Ezi(0) = 0,
i ≥ 1. The above analysis suggests we consider the large
population limit and introduce the equation system:

ρsa =
dsa

dt
+ asa − b2

r
Πasa + αΠaz − z∗, (15)

dza

dt
= (a − b2

r
Πa)za − b2

r
sa + αz, (16)

z =

∫
A

zadF (a), (17)

z∗ = Φ(z). (18)

In the above, each individual differential equation is in-
dexed by the parameter a. For the same reasons as in Propo-
sition 2, here it is unnecessary to specify the initial condition
sa(0) for sa derived from optimal tracking. Equation (16)
with za|t=0 = 0 is based upon (11). Also, in contrast to
the arithmetic average for computing z(n) appearing in (12),
(17) is derived by use of the empirical distribution function
F (a) for the parameters ai ∈ A, i ≥ 1, with the range space
A. With a little abuse of terminology, we shall refer to either
z, or in some cases Φ(z), as the mass trajectory.

(H2) The function Φ is Lipschitz continuous on R with
a Lipschitz constant γ > 0, i.e., |Φ(y1) − Φ(y2)| ≤
γ|y1 − y2| for all y1, y2 ∈ R.

(H3) For all a ∈ A, β1(a) > 0, and
∫
A[ |α|

β1(a) +
b2(γ+|α|Πa)
rβ1(a)β2(a) ]dF (a) < 1, where β1(a), β2(a) are defined

by (13)-(14), A is a measurable subset of R and contains
{ai, i ≥ 1}, and F (a) is the empirical distribution
function for {ai, i ≥ 1}. The constant γ > 0 is specified
in (H2)

(H4) All agents have mutually independent initial condi-
tions of zero mean, i.e. Ezi(0) = 0, i ≥ 1. In addition,
supi≥1[σ

2
i + Ez2

i (0)] < ∞.

Remark. Under (H3), we have −β2(a) < −β1(a) < 0
where −β1(a) is the stable pole of the closed-loop system
for the agent with parameter a. To avoid triviality for the
linking term, we assume γ > 0 in (H2).

Given z ∈ Cb[0,∞), Proposition 2 implies
that (15) has the bounded solution sa(t) =

eβ2(a)t
∫ ∞

t
e−β2(a)τ [αΠaz(τ) − Φ(z(τ))]dτ

�
= (Γ1z)(t).

Then under (H4), equations (16) and (17) give the fixed
point equation below:

z(t) =

∫
A

∫ t

0

e−β1(a)(t−s)

[
αz(s) +

b2

r
eβ2(a)s

×
[ ∫ ∞

s

e−β2(a)τ [Φ(z(τ)) − αΠaz(τ)]dτ
]]

dsdF (a)

�
=(Γz)(t).

Theorem 3: Under (H2)-(H3), the map Γ is from
Cb[0,∞) to Cb[0,∞), and has a unique fixed point which
is uniformly Lipschitz continuous on [0,∞).

Theorem 4: Under (H2)-(H4), the equation system (15)-
(18) admits a unique bounded solution.

B. The diagram for the individual and mass interaction

The state aggregation procedure is illustrated in Fig. 1
based on the individual and mass interaction within a large
population limit, where S−1 denotes the integrator. The
reader should be cautioned that the involved signals are not
fed through each block in real time since for each t > 0,
sa(t) is computed using the overall trajectory z on [0,∞).
Such a diagram is more appropriately described by the so-
called virtual play. The key assumption (H3) is used to
ensure that the “loop gain” for the interconnected operators
is less than one, as indicated in the proof of Theorem 3 [9].

In the virtual play, we introduce a virtual agent (rep-
resenting the mass effect) and describe its behaviour by
z ∈ Cb[0,∞). The virtual agent acts as a passive player in
the sense that z appears as an exogenous function of time and
Φ(z) is to be tracked by the agents. Then after each selection
of the set of individual control laws, a new z will be induced;
subsequently, the individual shall consider its optimal policy
(over the whole time horizon) to respond to this updated z.
Thus, the interplay between a given individual and the virtual
agent may be described as a sequence of virtual plays which
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may be employed by the individual as a calculation device
to eventually learn the mass behaviour.

By the iterative adjustments of the individual strategies in
response to the virtual agent, we induce the mass behaviour
by a sequence of functions z(k) = Γz(k−1) = Γkz(0).
Then we can show by Theorem 3 that under (H2)-(H4),
limk→∞ z(k) = z for any z(0) ∈ Cb[0,∞), where z is
determined by (15)-(18) [9].

It is of interest to note that the virtual play described here
has a resemblance in spirit to the so-called tâtonnement in
economic theory which was first proposed by Walras in 1874
and formalized in a modern version in terms of ordinary
differential equations by Samuelson in 1947 (for relevant
literature, the reader is referred to [13] (pp. 620-626) and
references therein)1.

C. Explicit solution with uniform agents

For a system of uniform agents (i.e., ai ≡ a) with Φ(z) =
γ̂(z +η), a solution to the state aggregation equation system
may be explicitly calculated. In this case, (17) is no longer
required. Since z coincides with za, we simply specify it by
(16). The equation system (15)-(18) specializes to

ρsa =
dsa

dt
+ asa − b2

r
Πasa + αΠaz − z∗, (19)

dz

dt
= (a − b2

r
Πa)z + αz − b2

r
sa, (20)

z∗ = Φ(z) = γ̂(z + η). (21)

Here we shall compute a solution with a general initial
condition z(0) for (20), which is not necessarily zero. Write
a set of steady state equations as follows⎧⎨

⎩
β2(a)sa(∞) − αΠaz(∞) + z∗(∞) = 0

− b2

r
sa(∞) + (α − β1(a))z(∞) = 0

γ̂z(∞) − z∗(∞) = −γ̂η.

(22)

Proposition 5: Under (H2)-(H3), there is a unique solu-
tion (sa(∞), z(∞), z∗(∞)) to (22), and the unique bounded

1In price tâtonnement, given an initial non-equilibrium price, the eco-
nomic agents will each dynamically adjust its price in a trial and error
process where the ensemble of all excess demands is assumed to be
announced to all agents by a certain central planner. Such a process is
continuously carried out in fictional time and is said to possess tâtonnement
stability if it converges to an (Walrasian) equilibrium price.

α

1
−b /r +

2

S
−1

−β  (  )a1

−
z sa −

za

I

Integration w.r.t a  in Λ

Γ

Γ2

Fig. 1. The loop for individual and mass interaction.

solution (z, sa) in (19)-(20) is given by

z(t) = z(∞) + (z(0) − z(∞))eλ1t,

sa(t) = sa(∞) +
γ̂ − αΠa

β2(a) − λ1
(z(∞) − z(0))eλ1t,

where λ1 =
ρ+α−

√
(ρ+α)2+4Θ

2 < 0 and Θ
�
= β2(a)(β1(a)−

α) + b2

r
(αΠa − γ̂) > 0.

V. THE DECENTRALIZED ε-NASH EQUILIBRIUM

We continue to consider the system of n agents and rewrite
the dynamics in Section II as follows:

dzi = (aizi + bui)dt + αz(n)dt + σidwi, 1 ≤ i ≤ n, t ≥ 0.

For the individual cost given by (2), to indicate its depen-
dence on ui and the set of controls of all other agents,
we write it as Ji(ui, u−i) where u−i denotes the row
(u1, · · · , un) with ui deleted, so that

Ji(ui, u−i)
�
= E

∫ ∞

0

e−ρt{[zi − Φ(
1

n

n∑
k=1

zk)]2 + ru2
i }dt.

(23)

The admissible control set for each agent will be specified
later. Let u0

i denote the optimal tracking based control law,

u0
i = − b

r
(Πizi + si), (24)

where si is derived from (15)-(18) by matching ai to a, and
si implicitly depends on z therein. It should be emphasized
that in the following asymptotic analysis the control law
u0

i for the ith agent among a population of n agents is
constructed using the limit empirical distribution F (a).

For the performance analysis of this section, we need to
restrict {ai, i ≥ 1} to be bounded.

(H5) The set A in (H3) is the union of a finite number of
disjoint compact intervals and ε̂ > 0 is a constant such that
β1(a) ≥ ε̂ for all a ∈ A .

Notice that under the positivity assumption of β1(a) in
(H3), the compactness of A and continuity of β1(a) ensure
that ε̂ specified above always exists.

Concerning notation in this section, we make the important
convention as follows. za, given by (16), denotes the indi-
vidual mean computed in the large population limit context,
and z

(n)
a stands for the mean of the agents with ai = a

in a population of n agents and it is computed using the
closed-loop dynamics associated with the control laws u0

i ,
1 ≤ i ≤ n. Also, each of sa, z and z∗ is computed using
(15)-(18) for the large population limit.

A. Stability guarantees for closed-loop systems

In order to analyze the closed-loop behaviour when u0
i is

applied by the ith agent, we define the diagonal matrix

Bn = Diag
( − β1(ai)

)
n×n

and denote by 1n×n the n×n matrix with each entry being
one, i.e., 1n×n = e(n) × eT (n), where eT (n) = [1, · · · , 1].
Let Bn = Bn+α

n
1n×n. Hence Bn is a real symmetric matrix
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which has n real eigenvalues. We introduce the following
property related to closed-loop stability when the control
laws u0

i , 1 ≤ i ≤ n, are applied.
(P1) There exist µ∗ < 0 and integer N0 > 0 such that for

all n ≥ N0, Bn ≤ µ∗In.
In the case α ≤ 0 and infi≥1 β1(ai) = β∗ > 0, it is easy

to verify (P1). We give a sufficient condition to ensure (P1)
for the case α > 0.

Proposition 6: Assume (i) α > 0, (ii) β1(ai) ≥ β∗ >

0 for i ≥ 1, and (iii) there exists N0 > 0 such that
supn≥N0

1
n

∑n
i=1

α
β1(ai)

< 1. Then (P1) holds for all n ≥
N0.

Lemma 7: (H1)-(H3) and (H5) imply (P1).
To prove Lemma 7, it suffices to verify condition (iii) in

Proposition 6 for the case α > 0.
Lemma 8: Assuming (H1)-(H5), we have the estimate

sup
t≥0

E[
n∑

i=1

(zi − Ezi)(t)]
2 = O(n),

where the set of states zi, 1 ≤ i ≤ n, corresponds to the
control laws u0

i , 1 ≤ i ≤ n, given by (24).

B. The asymptotic equilibrium analysis

Within the context of a population of n agents, for any
1 ≤ k ≤ n, the kth agent’s admissible control set Uk

consists of all feedback controls uk adapted to the σ-algebra
σ(zi(τ), τ ≤ t, 1 ≤ i ≤ n) (i.e., uk(t) is a function of
(t, z1(t), · · · , zn(t))) such that a unique strong solution to
the closed-loop system of the n agents exists on [0,∞). Note
that Uk itself is not restricted to be decentralized.

Definition 9: A set of controls uk ∈ Uk, 1 ≤ k ≤ n, for n

players is called an ε-Nash equilibrium with respect to the
costs Jk, 1 ≤ k ≤ n, if there exists ε ≥ 0 such that for any
fixed 1 ≤ i ≤ n, we have

Ji(ui, u−i) ≤ Ji(u
′
i, u−i) + ε,

when any alternative u′
i ∈ Ui is applied by the i-th player.

Now for t ≥ 0, we define

εn(t) = |
∫
A

za(t)dFn(a) −
∫
A

za(t)dF (a)|, (25)

ε′n(t) = |
∫
A

za(t)dFn(a) −
∫
A

z(n)
a (t)dFn(a)|. (26)

Proposition 10: Under (H1)-(H5), we have

lim
n→∞

εn
�
= lim

n→∞
sup
t≥0

εn(t) = 0,

lim
n→∞

ε′n
�
= lim

n→∞
sup
t≥0

ε′n(t) = 0,

where εn(t) and ε′n(t) are defined by (25)-(26).
In Theorems 11 and 12, u0

i is given by (24); and z∗ is
computed using (15)-(18) for the large population limit.

Theorem 11: Under (H1)-(H5), we have

|Ji(u
0
i , u

0
−i) − J0

i (u0
i , z

∗)| = O(εn + ε′n +
1√
n

),

as n → ∞, where J0
i (u0

i , z
∗) is the cost introduced in section

III w.r.t. z∗ and f = z, Ji(u
0
i , u

0
−i) is determined by (23).

Theorem 12: Under (H1)-(H5), the set of controls u0
i , 1 ≤

i ≤ n, for the n players is an ε-Nash equilibrium with respect
to the costs Ji(ui, u−i), 1 ≤ i ≤ n, i.e.,

Ji(u
0
i , u

0
−i) − ε ≤ inf

ui

Ji(ui, u
0
−i) ≤ Ji(u

0
i , u

0
−i)

where 0 < ε = O(εn + ε′n + 1√
n
) (hence ε → 0) as n →

∞, and ui ∈ Ui is any alternative control depending on
(t, z1, · · · , zn).

In proving Theorem 12, we need to consider the control
perturbation of a given agent. When the control laws change
from (u0

i , u
0
−i) to (ui, u

0
−i) for the n agents, a change will

accordingly take place for each of the n state components
since zk, k �= i, is coupled with 1

n
zi even if u0

−i remains
the same. This makes the performance estimate significantly
more difficult than in [6], [7]; see [9] for proof details.

VI. STRATEGY ADAPTATION WITH UNKNOWN

INDIVIDUAL PARAMETERS

In this section we formulate a paradigm for strategy
adaptation when the agents have unknown parameters in their
dynamics. For simplicity, we assume all agents are described
by the same set of parameters with a unity coefficient for both
the control and the noise, and the cost coupling is given by
the linear function Φ(z) = γ̂(z+η) as in Section IV-C. Then
the individual dynamics reduce to

dzi = azidt + uidt + αz(n)dt + dwi, (27)

where a and α need to be estimated.
We assume the parameters a and α are contained in the

compact intervals I1 = [a, a] with a prior distribution µ1, and
I2 = [α, α] with a prior distribution µ2, respectively. Thus
µ1(I1) = 1 and µ2(I2) = 1. Notice that each of the two true
parameters is a fixed constant. Furthermore, we assume for
any (a, α) ∈ I1 × I2, assumption (H3) holds with respect to
the dirac measure (for F ) at a.

Our underlying assumption is that each agent can measure
its own state and the population average z(n).

A. The parameter estimation

Letting θ = [a, α]T , ψt = [zi, z
(n)]T (t) , we write the

dynamics (27) in the form

dzi = θT ψtdt + uidt + dwi. (28)

Let the ith agent’s estimate be denoted by θ̂i(t) =
[âi, α̂i]

T (t) which is computed by the continuous time re-
cursive least squares algorithm as follows:

dθ̂i(t) = Ψt[dzi(t) − θ̂i(t)
T ψtdt], (29)

dΨt = −Ψtψtψ
T
t Ψtdt, (30)

where Ψ0 > 0. In fact Ψt = (
∫ t

0
ψsψsds+Ψ−1

0 )−1 for t ≥ 0.
We fix ā ∈ I1 and ᾱ ∈ I2. The initial condition is taken as
θ̂i(0) = [ā, ᾱ]T for all i.

It should be noted that although all agents share the same
true parameter θ, the estimates θ̂i(t), 1 ≤ i ≤ n, in general
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differ from each other since each agent combines its own
state with the population average z(n) to get the estimate.

Since (âi(t), α̂i(t)) is not necessarily in the set I1 × I2,
we carry out the modification:

â∗
i (t) =

{
âi(t) if âi(t) ∈ I1

ā otherwise,

α̂∗
i (t) =

{
α̂i(t) if α̂i(t) ∈ I2

ᾱ otherwise.

We denote θ̂∗i (t) = [â∗
i (t), α̂

∗
i (t)]

T .

B. The certainty equivalence control law

Now, at time t the ith agent solves the Riccati equation
(5) and the state aggregation equation system (19)-(21) (for

uniform agents) using θ̂∗i (t) obtained by itself to get Π∗
i

�
=

Π(â∗
i (t)) and s∗i (t)

�
= s(t, â∗

i (t), α̂
∗
i (t)). Here s∗i (t) denotes

the value of the function sa(·) at time t when the pair
(a, α) is substituted by (â∗

i (t), α̂
∗
i (t)). We write the certainty

equivalence control law

ui = −1

r
(Π∗

i zi + s∗i ), (31)

where we have b = 1. In future work, it is of interest to
analyze the asymptotic property of the parameter estimates
obtained by all agents.

C. Transient performance and dither signal selection

We note that under the discounted cost and the associated
Nash strategy adaptation, it is generally inadequate to con-
sider only attaining asymptotic consistency for the agents’
parameter estimates due to the memory effect of the cost. For
the transient phase, from the localized optimal tracking point
of view, in order to have efficient reaction to the population
average, it is necessary to have good parameter estimates
at the early stage so that all of the agents can collectively
maintain good prediction of the mass effect.

For improving the transient estimation, it is potentially
useful to consider introducing an appropriately diminishing
dither signal for each agent. This is effective for producing
excitation for improving parameter convergence [2], [11].
However, on the other hand it also tends to incur a higher
control energy. These may be termed as the dual effect. The
interesting issue is to seek a certain trade-off for the above
two effects.

Now based on (31) we may formally write the following
modified adaptive control law

ui(t) = −1

r
(Π∗

i zi + s∗i ) + εk[Wi(t) − Wi(k∆)]

for t ∈ [k∆, (k + 1)∆), where Wi(t) is a standard Wiener
process independent of {wi, zi(0), 1 ≤ i ≤ n} and is
called the dither signal. Wi, 1 ≤ i ≤ n, are also mutually
independent of each other. ∆ > 0 is a selected step size,
and εk > 0, k ≥ 0, is a vanishing sequence. We may call
{εk, k ≥ 0} the dither profile which needs to be designed
for transient performance optimization.

We note that for the special case of agents with only
cost-coupling, i.e., α = 0, it is easy to establish parameter

estimation convergence under very mild conditions, and the
dither signal is inessential for convergence insurance. In this
case, the role of dither signal largely lies in affecting transient
behaviour, and a practical approach is then to optimize
the dither profile on a finite window employing the prior
distribution information for (a, α). Such a profile selection
is essentially related to optimization in function spaces [5].
After a dither profile is computed off-line, one can run
adaptive control for the agents. The associated computation
methods will be investigated in future work.
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