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Abstract— We consider LQG games in large population
conditions where the agents have non-uniform dynamics and
are coupled by their individual costs. A state aggregation
technique is developed to obtain a set of decentralized control
laws which possesses an ε-Nash equilibrium property. An
attraction property of the mass is also established. The
methodology and the results contained in this paper illuminate
individual and mass behaviour in such large complex systems.

I. INTRODUCTION

In this paper, we investigate the optimization of large-
scale linear quadratic Gaussian (LQG) control systems
wherein many agents (also to be called players) have
similar dynamics and will evolve independently when state
regulation is not included. To facilitate our exposition the
individual cost based optimization shall be called the dy-
namic LQG game, or simply LQG game. In this framework,
each agent is coupled with the other agents only through its
cost function. We view this to be the characteristic property
of a class of situations which we term (distributed) cost-
coupled control problems. The study of such large-scale
cost-coupled systems is motivated by a variety of scenarios,
for instance, dynamic economic models involving agents
linked via a market, and power control in mobile wireless
communications. In the latter case, different users have
independent power control mechanisms and statistically
independent communication channels, but they interact with
each other via the signal-to-interference ratio (SIR) based
performance measure [7], [9], [6].

For the LQG game we analyze the ε-Nash equilibrium
properties for a decentralized control law by which each
individual optimizes its cost function depending upon the
state of the individual agent and the average state of all other
agents taken together, hereon referred to as “the mass”. In
preceding work [7] we considered the LQG game for a
population of uniform agents and introduced a state aggre-
gation procedure for the design of decentralized control. In
the non-uniform case studied here a given agent only has
exact information on its own dynamics. The information
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concerning other agents is available in a statistical sense as
described by a randomized parametrization for agents’ dy-
namics across the population. Due to the particular structure
of the individual cost, the mass formed by all other agents
impacts any given agent as a nearly deterministic quantity.
In response to any known mass influence, a given individual
will select its localized control strategy to minimize its own
cost. In a practical situation the mass influence cannot be
assumed known a priori. It turns out, however, that this does
not present any difficulty for applying the individual-mass
interplay methodology as described below.

In the noncooperative game setup studied here, an overall
rationality assumption for the population, to be character-
ized further down, implies the potential of achieving a stable
predictable mass behaviour in the following sense: if some
deterministic mass behaviour were to be given, rationality
would require that each agent synthesize its individual cost
based optimal response as a tracking action. Thus the mass
trajectory corresponding to rational behaviour would guide
the agents to collectively generate the trajectory which,
individually, they were assumed to be reacting to in the
first place. Indeed, if a mass trajectory with the above fixed
point property existed, if it were unique, and, furthermore,
if each individual had enough information to compute it,
then rational agents who were assuming all other agents
to be rational would anticipate their collective state of
agreement and select a control policy consistent with that
state. Thus, in the context of this paper, we make the
following rationality assumption: Each agent is rational in
the sense that it both (i) optimizes its own cost function, and
(ii) assumes that all other agents are being simultaneously
rational when evaluating their competitive behaviour. This
justifies and motivates the search for mass trajectories with
the fixed point property.

The central results of this paper consist of the precise
characterization of (1) the Nash equilibrium associated
with the individual cost functions depending on both the
individual and mass behaviour, (2) the consistency (fixed
point property) of the mass trajectory under the Nash
equilibrium inducing individual feedback controls, and (3)
the global attraction property of the mass behaviour in the
function space with respect to policy iterations associated
with such individual optimizing behaviour. This equilibrium
then has the rationality and optimality interpretations but
we underline that these hypotheses are not employed in the
mathematical derivation of the results.

The framework presented in this paper is particularly
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suitable for optimization of large-scale systems where indi-
viduals seek to optimize for their own reward and where
it is effectively impossible to achieve global optimality
through close coordination between all agents. In this con-
text, the methodology of noncooperative games and state
aggregation developed in this paper provides a feasible
approach for building simple (decentralized) optimization
rules which under appropriate conditions lead to stable
population behaviour. Our methodology could potentially
provide effective methods for analyzing complex systems
arising in socio-economic and engineering areas [9].

It is worthwhile to note that the large population limit
formulation presented in this paper is relevant to research
in the economic community on (mainly static) models with
a large number or a continuum of agents; see e.g. [5].
However, instead of directly assigning a priori measure in a
continuum space for labelling an infinite number of agents
[5], we induce a probability distribution on a parameter
space via empirical statistics, and furthermore, based on
the induced measure we develop state aggregation for the
underlying dynamic models.

In the paper we omit almost all of the proofs which may
be found in [8].

II. DYNAMICALLY INDEPENDENT AND COST-COUPLED

SYSTEMS

Consider an n dimensional linear stochastic system where
the evolution of each state component is described by

dzi = (aizi + biui)dt + σidwi, 1 ≤ i ≤ n, t ≥ 0, (1)

where {wi, 1 ≤ i ≤ n} denotes n independent standard
scalar Wiener processes. The initial state zi(0) are mutually
independent and are also independent of {wi, 1 ≤ i ≤ n}.
In addition, E|zi(0)|2 < ∞ and bi �= 0. Each state compo-
nent shall be referred to as the state of the corresponding
individual (also to be called an agent or a player).

Evidently, the state of a given individual is not subject
to direct influence from any other individual apart from
possible feedback effects. In this paper we investigate the
behaviour of the agents when they only interact with each
other through coupling terms in their costs; this is displayed
in the following set of individual cost functions which shall
be used henceforth in the analysis:

Ji(ui, vi)
�
= E

∫ ∞

0

e−ρt[(zi − vi)
2 + ru2

i ]dt. (2)

We term this type of model a dynamically independent
and cost-coupled system. For simplicity of analysis we as-
sume in this paper that bi = b > 0, 1 ≤ i ≤ n. In particular
we assume the cost-coupling to be of the following form
for most of our analysis: vi = γ( 1

n

∑n
k �=i zk + η), and

we study the large scale system behaviour in the dynamic
noncooperative game framework where each individual is
linked with others via vi. Evidently the linking term vi gives
a measure of the average effect of the mass formed by all
other agents. Here we assume ρ, r, γ, η > 0, and throughout
the paper zi is described by the dynamics (1).

A. A Production Output Planning Example

The production output adjustment problem is based upon
the early work of Basar and Ho [3] where a quadratic
nonzero-sum game was considered for a static duopoly
model and where it was assumed that the price of the
commodity decreases linearly as the overall production level
of the two firms increases. Here we study a dynamic model
consisting of many players.

Consider n firms Fi, 1 ≤ i ≤ n, supplying the same
product to the market. First, let xi be the production level
of firm Fi and suppose xi is subject to adjustment by the
following model:

dxi = uidt + σidwi, t ≥ 0, (3)

which is a special form of (1). Here ui denotes the action of
increasing or decreasing the production level xi, and σidwi

denotes uncertainty in the change of xi.
Second, by generalizing the affine linear price model of

[3] to the case of many players, we assume the price of the
product is given by

p = η − γ(
1

n

n∑
i=1

xi), (4)

where η, γ > 0. In (4) the overall production level Q
�
=∑n

i=1 xi is scaled by 1
n

. A justification for doing so is
that this may be used to model the situation when an
increasing number of firms distributed over different areas
join together to serve an increasing number of consumers.
1
n

∑n
i=1 xi measures the average production level in an

expanding market. Thus this is a useful paradigm in an
increasingly globalized market. Following [3], γ may be
interpreted as the “slope of the demand curve”. In fact, (4)
may be regarded as a simplified form of a more general
price model introduced by Lambson in a large market [10].

We assume that firm Fi adjusts its production level xi

by referring to the current price. Indeed, an increasing price
calls for more supplies of the product to consumers and a
decreasing price for less. We seek a production level which
is approximately in proportion to the price that the current
market provides, i.e., xi ≈ βp = β[η − γ( 1

n

∑n
i=1 xi)],

where β > 0 is a constant; based upon this requirement we

introduce a penalty term {xi − β[η − γ( 1
n

∑n
i=1 xi)]}2 �

=
(xi − v0

i )2. On the other hand, in the adjustment of xi,
the control ui corresponds to actions of shutting down or
restarting production lines, or even the construction of new
ones; these may further lead to hiring or laying off workers
[4]. Each of these actions will incur certain costs to the
firm; for simplicity we denote the instantaneous cost of the
adjustment by ru2

i , where r > 0. We now write the infinite
horizon discounted cost for firm Fi as follows:

Jx
i (ui, v

0
i ) = E

∫ ∞

0

e−ρt[(xi − v0
i )2 + ru2

i ]dt, (5)

where ρ > 0 and the superscript in Jx
i indicates the

associated dynamics (3). Due to the penalty on the change
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rate ui, this situation may be regarded as falling into the
framework of smooth planning [4]. Here obviously v0

1 =
· · · = v0

n. Notice that v0
i = β[η − γ( 1

n

∑n
i=1 xi)] in this

example and vi = γ( 1
n

∑n
k �=i zk + η) in the generic case

(2) share the common feature of averaging over a mass.
In this production planning example, each firm has its

independent individual dynamics and all the firms interact
with each other through the market in which they seek to
optimize their individual costs. This gives rise to what is
termed here a cost-coupled situation (see e.g. [10], [2]).

III. THE PRELIMINARY LINEAR TRACKING PROBLEM

To begin with, for large n, assume z∗−i

�
= γ( 1

n

∑n
k �=i zk +

η) in Section II is approximated by a deterministic contin-
uous function z∗ defined on [0,∞). For a given z∗, we
construct the individual cost for the i-th player as follows:

Ji(ui, z
∗) = E

∫ ∞

0

e−ρt{[zi − z∗]2 + ru2
i }ds. (6)

Here we shall consider the general tracking problem with
bounded z∗. For minimization of Ji, the admissible control
set is taken as Ui

�
= {ui|ui adapted to σ(zi(0), wi(s), s ≤

t), and E
∫ ∞
0

e−ρt(z2
i + u2

i )dt < ∞}. Define

Cb[0,∞)
�
= {x ∈ C[0,∞), |x|∞ < ∞},

where |x|∞ = supt≥0 |x(t)|, for x ∈ C[0,∞). Under the
norm | · |∞, Cb[0,∞) is a Banach space [11]. Let Πi be the
positive solution to the algebraic Riccati equation

ρΠi = 2aiΠi −
b2

r
Π2

i + 1. (7)

It is easy to verify that −ai + b2Πi

r
+ ρ

2 > 0. Denote

β1 = −ai +
b2

r
Πi, β2 = −ai +

b2

r
Πi + ρ. (8)

Clearly, β2 > ρ
2 .

Proposition 3.1: Assume (i) E|zi(0)|2 < ∞ and z∗ ∈
Cb[0,∞); (ii) Πi > 0 is the solution to (7) and β1 = −ai +
b2

r
Πi > 0; and (iii) si ∈ Cb[0,∞) is determined by

ρsi =
dsi

dt
+ aisi −

b2

r
Πisi − z∗. (9)

Then the control law ûi = − b
r
(Πizi + si) minimizes

Ji(ui, z
∗), for all ui ∈ Ui.

Proposition 3.2: Suppose assumptions (i)-(iii) in Propo-
sition 3.1 hold and q ∈ Cb[0,∞) satisfies

ρq =
dq

dt
− b2

r
s2

i + (z∗)2 + σ2
i Πi. (10)

Then the cost for the control law ûi is given by Ji(ûi, z
∗) =

ΠiEz2
i (0) + 2s(0)Ezi(0) + q(0).

Remark: In Proposition 3.1, assumption (ii) means that
the resulting closed-loop system has a stable pole.

Remark: si in Proposition 3.1 may be uniquely deter-
mined by only utilizing its boundedness, and it is unnec-
essary to specify the initial condition for (9) separately.

Similarly, after si ∈ Cb[0,∞) is obtained, q in Proposition
3.2 can be uniquely determined from its boundedness.

Proposition 3.3: Under the assumptions of Proposition
3.1, there exists a unique initial condition si(0) ∈ R such
that the associated solution si to (9) is in Cb[0,∞). And
moreover, for the obtained si ∈ Cb[0,∞), there is a unique
q(0) ∈ R for (10) such that the solution q ∈ Cb[0,∞).

Proof: Consider (9) with initial condition si(0) which
leads to si(t) = si(0)eβ2t + eβ2t

∫ t

0
e−β2τz∗(τ)dτ . Since

β2 > 0 always holds, the integral
∫ ∞
0

e−β2τz∗(τ)dτ exists
and is finite. We take si(0) = −

∫ ∞
0

e−β2τz∗(τ)dτ which
yields si(t) = −eβ2t

∫ ∞
t

e−β2τz∗(τ)dτ ∈ Cb[0,∞), and it
is easily verified that any initial condition other than si(0)
yields an unbounded solution. Similarly, a unique q(0) in
(10) may be determined to give q ∈ Cb[0,∞).

IV. COMPETITIVE BEHAVIOUR AND CONTINUUM MASS

BEHAVIOUR

In the cost coupled situation with individual costs each
agent is assumed to be rational in the sense that it both
optimizes its own cost and its strategy is based upon the
assumption that the other agents are rational. In other
words each agent believes (i.e., has as a hypothesis in the
derivation of its strategy) the other agents are optimizers.

Then under the rationality assumption it is possible to
approximate the linking term vi by a purely deterministic
process z∗, and if a deterministic tracking control law is
employed by the i-th agent, its optimality loss is negligible
in large population conditions. Hence, over the large popu-
lation, all agents would tend to adopt such a tracking based
control strategy if an approximating z∗ were to be given.

However, we stress that the rationality notion is only
used to construct the aggregation procedure, and the main
theorems in the paper will be based solely upon their
mathematical assumptions.

A. State Aggregation

Assume z∗ ∈ Cb[0,∞) is given for approximation of the
mass effect, and si ∈ Cb[0,∞) is a solution to (9). For the
i-th agent, after applying the optimal tracking based control
law ûi in Proposition 3.1, the closed-loop equation is

dzi = (ai −
b2

r
Πi)zidt − b2

r
sidt + σidwi. (11)

Denoting zi(t) = Ezi(t) and taking expectation on both
sides of (11) yields

dzi

dt
= (ai −

b2

r
Πi)zi −

b2

r
si, (12)

where the initial condition is zi|t=0 = Ezi(0).
We further define the population average of means (sim-

ply called population mean) as z(n) �
= 1

n

∑n
i=1 zi. Note

that in the case all agents have i.i.d. dynamics the evolution
of z(n) is simply expressed using the dynamics of any zi

combined with the initial condition z(n)|t=0 [7].
So far, the individual reaction is determined in a straight-

forward manner if a mass effect z∗ is given a priori.
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Here one naturally comes up with the important question:
how is z∗ chosen to approximate the overall influence of
all other players on the given player, and in what way
does it capture the dynamic behaviour of the collection of
many individuals? Since we wish to have z∗(t) ≈ z∗−i =
γ( 1

n

∑n
k �=i zk + η), for large n it is reasonable to express

z∗ in terms of the population mean z(n) as

z∗(t) = γ(z(n)(t) + η). (13)

After introducing such an equality relation, a dynamic
interaction is built up between the individual and the mass:
by averaging over the individual mean trajectories, the
mass effect z∗ is constructed, in response to which the
individuals, in turn, optimize their own objectives.

Our analysis below will be based upon the observation
that the large population limit may be employed to deter-
mine the effect of the mass of the population on any given
individual, and that the population limit is characterized by
an empirical distribution for parametrization of individual
dynamics, which is assumed to exist. Specifically, our inter-
est is in the case when ai, i ≥ 1, is “adequately randomized”
in the sense that the population exhibits certain statistical
properties. In this context, the association of the value ai,
i ≥ 1 and the specific index i plays no essential role, and
the more important fact is the frequency of occurrence of
ai on different segments in the range space of the sequence
ai, i ≥ 1.

Within this setup, we assume that the sequence ai, i ≥
1, has an empirical distribution function F (a) for which
a more detailed specification will be stated in Section V.
For the Riccati equation (7), when the coefficient a is used
in place of ai, denote the corresponding solution by Πa.
Accordingly, we express β1(a) and β2(a) when a and Πa

are substituted into (8). Straightforward calculation gives

Πa = ( b2

r
)−1

[
a − ρ

2 +
√

(a − ρ
2 )2 + b2

r

]
,

β1(a) = −ρ
2 +

√
(a − ρ

2 )2 + b2

r
, (14)

β2(a) = ρ
2 +

√
(a − ρ

2 )2 + b2

r
. (15)

Example 4.1: a = 1, b = 1, σ = 0.3, ρ = 0.5, γ = 0.6,
r = 0.1, η = 0.25. We get Π = 0.4, β1 = 3, β2 = 3.5.

To simplify the aggregation procedure we assume zero
mean for initial conditions of all agents, i.e., Ezi(0) =
0, i ≥ 1. The above analysis suggests we introduce the
equation system:

ρsa =
dsa

dt
+ asa − b2

r
Πasa − z∗, (16)

dza

dt
= (a − b2

r
Πa)za − b2

r
sa, (17)

z =

∫
A

zadF (a), (18)

z∗ = γ(z + η). (19)

In the above, each individual equation is indexed by the
parameter a. For the same reasons as noted in Proposition
3.3, here it is unnecessary to specify the initial condition
for sa. (17) with za|t=0 = 0 is based upon (12). Hence
za is regarded as the expectation given the parameter a in
the individual dynamics. Also, in contrast to the arithmetic
average for z(n) in (13), (18) is derived using an empirical
distribution function F (a) is for the sequence of parameters
ai ∈ A, i ≥ 1, with the range space A. (19) is the large
population limit form for the equality relation (13).

Remark: In the more general case with non-zero Ezi(0),
we may introduce a joint empirical distribution Fa,z for the
two dimensional sequence {(ai, Ezi(0)), i ≥ 1}. Then the
function in (17) is to be labelled by both the dynamic param-
eter a and an associated initial condition, and furthermore,
the integration in (18) is computed with respect to Fa,z . In
this paper we only consider the case of zero mean Ezi(0)
in order to avoid notational complication.

(H1) β1(a) > 0 for a ∈ A and
∫
A

M
β1(a)β2(a)dF (a) <

1, where M = b2γ
r

and β1(a), β2(a) are defined by
(14)-(15). Here A is an interval containing all ai, i ≥
1 and F (a) is the empirical distribution function for
{ai, i ≥ 1}, which is assumed to exist.

(H2) All agents have zero mean initial condition, i.e.
Ezi(0) = 0, i ≥ 1.

Proposition 4.2: If b2 > rρ2

4 , then β1(a) > 0 for all
a ∈ (−∞,∞).

Remark: Under (H1), we have −β2(a) < −β1(a) <

0 where −β1(a) is the stable pole of the closed-loop
system for the agent with parameter a. |β1(a)| measures
the stability margin. The ratio M

β1(a)β2(a) = b2γ
rβ1(a)[β1(a)+ρ)]

depends on the stability margin and γ.
The following procedure is used to illustrate the inter-

action between the individual and the mass. First, given
z∗ ∈ Cb[0,∞), Proposition 3.3 implies that equation (16)
leads to the bounded solution

sa(t) = −eβ2(a)t

∫ ∞

t

e−β2(a)τz∗(τ)dτ
�
= T1z

∗. (20)

By use of (20) and (17), we compute the individual mean
trajectory za, which combined with (18)-(19) leads to

z∗(t) =
γb2

r

∫
A

∫ t

0

∫ ∞

s

e−β1(a)(t−s)eβ2(a)se−β2(a)τ

× z∗(τ)dτdsdF (a) + γη
�
= (T z∗)(t). (21)

Lemma 4.3: Under (H1), we have T x ∈ Cb[0,∞), for
any x ∈ Cb[0,∞).

Theorem 4.4: Under (H1), the map T : Cb[0,∞) →
Cb[0,∞) has a unique fixed point which is uniformly
Lipschitz continuous on [0,∞).

Proof: We only show there exists a unique fixed point.
By Lemma 4.3, T is a map from the Banach space Cb[0,∞)
to itself. For any x, y ∈ Cb[0,∞) we have

|(T x − T y)(t)| ≤ |x − y|∞
∫
A

M

β1(a)β2(a)
dF (a). (22)
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Then from (H1) it follows that T is a contraction and
therefore has a unique fixed point z∗ ∈ Cb[0,∞).

Theorem 4.5: Under (H1)-(H2), the equation system
(16)-(19) admits a unique bounded solution.

B. The Virtual Agent, Policy Iteration and Attraction to
Mass Behaviour

We proceed to investigate certain asymptotic properties
on the interaction between the individual and the mass, and
the formulation shall be interpreted in the large population
limit (i.e., an infinite population) context. Assume each
agent is assigned a cost according to (6), i.e.,

Ji(ui, z
∗) = E

∫ ∞

0

e−ρt{[zi − z∗]2 + ru2
i }ds, i ≥ 1. (23)

We now introduce a so-called virtual agent to represent the
mass effect and use z∗ ∈ Cb[0,∞) to describe the behaviour
of the virtual agent. Here the virtual agent acts as a passive
player in the sense that z∗ appears as an exogenous function
of time to be tracked by the agents.

Then after each selection of the set of individual control
laws, a new z∗ will be induced as specified below; subse-
quently, the individual shall consider its optimal policy (over
the whole time horizon) to respond to this updated z∗. Thus,
the interplay between a given individual and the virtual
agent representing the mass may be described as a sequence
of virtual plays which may be employed by the individual
as a calculation device to learn the mass behaviour. In the
following policy iteration analysis in function spaces, we
take the virtual agent as a passive leader and the individual
agents as active followers.

Now, we describe the iterative update of an agent’s policy
from its policy space. For a fixed iteration number k ≥ 0,
suppose that there is a priori z∗(k) ∈ Cb[0,∞). Then by
Proposition 3.1 the optimal control for the i-th agent using
the cost (23) with respect to z∗(k) is given as u

(k+1)
i =

− b
r
(Πizi + s

(k+1)
i ) where s

(k+1)
i ∈ Cb[0,∞) is given by

ρs
(k+1)
i =

ds
(k+1)
i

dt
+ ais

(k+1)
i − b2

r
Πis

(k+1)
i − z∗(k).

By Proposition 3.3, the unique solution s
(k+1)
i ∈

Cb[0,∞) may be represented by s
(k+1)
i =

−eβ2t
∫ ∞

t
e−β2τz∗(k)(τ)dτ .

Subsequently, the control laws {u(k+1)
i , i ≥ 1} produce

a mass trajectory z(k+1) =
∫
A z

(k+1)
a dF (a), where

dz
(k+1)
a

dt
= −β1(a)z(k+1)

a − b2

r
s(k+1)

a , (24)

with initial condition z
(k+1)
a |t=0 = 0 by (H2). Then the

virtual agent’s state (as a function) z∗ corresponding to
u

(k+1)
i is determined as z∗(k+1) = γ(z(k+1) + η). From

the above and using the operator introduced in (21), we
get the recursion for z∗(k) as z∗(k+1) = T z∗(k), where
z∗(k+1)|t=0 = γ(z(k+1)|t=0 + η) = γη for all k.

By the iterative adjustments of the individual strategies in
response to the virtual agent, we induce the mass behaviour
by a sequence of functions z∗(k) = T z∗(k−1) = T kz∗(0).
Now we establish that as the population grows, a statistical
mass equilibrium exists and it is globally attracting.

Proposition 4.6: Under (H1)-(H2), limk→∞ z∗(k) = z∗

for any z∗(0) ∈ Cb[0,∞), where z∗ ∈ Cb[0,∞) is given by
(16)-(19).

C. Explicit solution with uniform agents

In the special case of uniform agents, F (a) in (H1)
degenerates to point mass. Omitting the subscript a for the
functions involved, then (16)-(19) specializes to

ρs =
ds

dt
+ as − b2

r
Πas − z∗, (25)

dz

dt
= (a − b2

r
Πa)z − b2

r
s, (26)

z∗ = γ(z + η). (27)

Here we shall take a general initial condition z(0) which
is not necessarily zero. Setting the derivatives in (25)-(27)
to zero, we write a set of linear algebraic equations which
under (H1) has a unique solution (s∞, z∞, z∗∞) [7].

Proposition 4.7: Under (H1), the unique bounded solu-
tion (z, s) in (25)-(26), is given by z(t) = z∞ + (z(0) −
z∞)eλ1t, s(t) = s∞ + γ

β2−λ1

(z∞ − z(0))eλ1t, where λ1 =
ρ−

√
ρ2+4(β1β2−M)

2 < 0, β1 = −a+ b2

r
Π, β2 = −a+ b2

r
Π+ρ

and β1β2 − M > 0.

V. THE DECENTRALIZED ε-NASH EQUILIBRIUM

Let Ji(ui, vi(u1, · · · , ui−1, · · · , ui+1, · · · , un)) denote
the individual cost with respect to the linking term vi =
γ( 1

n

∑n
k �=i zk(uk) + η) for the i-th player when the k-th

player takes control uk, 1 ≤ k ≤ n.

Ji(ui, vi(u
0
1, · · · , u0

i−1, u
0
i+1 · · · , u0

n))

�
=E

∫ ∞

0

e−ρt{[zi(ui) − γ(
1

n

n∑
k �=i

zk(u0
k) + η)]2 + ru2

i }dt,

where zk(u0
k) = zk(u0

k(z∗, zk)). Here we use u0
i to denote

the optimal tracking based control law,

u0
i = − b

r
(Πizi + si), (28)

where si and the associated z∗ are derived from (16)-(19).
It should be noted that in the following asymptotic analysis
the control law u0

i for the i-th agent among a population of
n agents is constructed using the limit empirical distribution
F (a) involved in (18).

Within the context of a population of n agents, for any
1 ≤ k ≤ n, the k-th agent’s admissible control set Uk

consists of all uk adapted to the σ-algebra σ(zi(s), s ≤
t, 1 ≤ i ≤ n). In this setup we give the definition.

Definition 5.1: A set of controls uk ∈ Uk, 1 ≤ k ≤ n,
for n players is called an ε-Nash equilibrium with respect
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to the costs Jk, 1 ≤ k ≤ n, if there exists ε ≥ 0 such that
for any fixed 1 ≤ i ≤ n, we have

Ji(ui, vi(u1, · · · , ui−1, ui+1 · · · , un))

≤Ji(u
′
i, vi(u1, · · · , ui−1, ui+1, · · · , un)) + ε, (29)

when any alternative u′
i ∈ Uk is applied by the i-th player.

If ε = 0 in (29), then Definition 5.1 specializes to the usual
Nash equilibrium [1].

Remark: The admissible control set Uk is not decentral-
ized since the k-th agent has perfect information on other
agents’ states. In effect, such admissible control sets lead to
a stronger qualification of the ε-Nash equilibrium property
for the decentralized control analyzed in this section.

For the sequence {ai, i ≥ 1} we define the empirical
distribution associated with the first n agents

Fn(x) =

∑n
i=1 1(ai≤x)

n
, x ∈ R. (30)

(H3) There exits a distribution function F on R such that
Fn → F weakly as n → ∞, i. e., limn→∞ Fn(x) = F (x)
whenever F is continuous at x ∈ R.

(H3’) There exists a distribution function F such that
limn→∞ supx∈R

|Fn(x) → F (x)| = 0.
Remark: Obviously (H3’) implies (H3). If the sequence

a∞
1

�
= {ai, i ≥ 1} is sufficiently “randomized” such that

a∞
1 is generated by independent observations on the same

underlying distribution function F , then with probability
one (H3’) holds by Glivenko – Cantelli theorem [8].

Given the distribution function F and z∗ ∈ Cb[0,∞),
from (16)-(17) it is seen that both sa and za may be
explicitly expressed as a function of a ∈ A.

(H4) There exists a closed interval A such that (i)
{ai, i ≥ 1} ⊂ A with

∫
A dF (a) = 1, and (ii)

supa∈A |za|∞ < ∞, and (iii) lima′→a supt |za(t) −
za′(t)| = 0 with a vanishing rate depending only on |a−a′|,
for a, a′ ∈ A. In addition, supi≥1[σ

2
i + Ez2

i (0)] < ∞.
Proposition 5.2: Assume (H1) holds and in addition,

there exists ε̂ > 0 such that β1(a) ≥ ε̂ for all a ∈ A.
Then za(t) satisfies conditions (ii) and (iii) in (H4).

Now we define

εn(t) = |
∫
A

za(t)dFn(a) −
∫
A

za(t)dF (a)|, t ≥ 0. (31)

Lemma 5.3: Under (H3)-(H4), we have limn→∞ εn
�
=

limn→∞ supt≥0 εn(t) = 0, where εn(t) is given by (31).
Lemma 5.4: Under (H1)-(H4), for z∗ determined by

(16)-(19), we have

E

∫ ∞

0

e−ρt[z∗ − γ(
1

n

n∑
k �=i

zk(u0
k) + η)]2dt = O(ε2n +

γ2

n
),

|Ji(u
0
i , γ(

1

n

n∑
k �=i

zk(u0
k) + η)) − Ji(u

0
i , z

∗)| = O(εn +
γ√
n

),

where εn is given in Lemma 5.3 and the state zk(u0
k), k �= i,

is generated by the control law u0
k given by (28).

Theorem 5.5: Under (H1)-(H4), the set of controls
u0

i , 1 ≤ i ≤ n, for the n players is an ε-Nash equilibrium
with respect to the costs Ji(ui, γ( 1

n

∑n
k �=i zi(uk)+η)), i.e.,

Ji(u
0
i , γ( 1

n

∑n
k �=i zi(u

0
k) + η)) − ε

≤ infui
Ji(ui, γ( 1

n

∑n
k �=i zi(u

0
k) + η))

≤ Ji(u
0
i , γ( 1

n

∑n
k �=i zi(u

0
k) + η))

where 0 < ε = O(εn + γ√
n
) with εn given in Lemma 5.3,

u0
k is the control law (28) for the k-th player, and ui is any

alternative control which depends on (t, z1, · · · , zn).

VI. CONCLUDING REMARKS

Within the state aggregation framework, in the case an
individual has inaccurate statistics on the dynamics over
the competing population, it will naturally optimize with
respect to an incorrectly calculated mass trajectory. Then
the interesting issue concerns (i) the offset between its
predicted mass effect and the observed one, and (ii) the
offset between its actually attained cost and the expected
cost as calculated by the deviant individual. The magnitude
of the offset between the predicated mass effect and the
actual one is of importance in that it may lead the individual
to detect its statistical inaccuracy. On the other hand, a
continuous dependence of these offsets on the statistical
inaccuracy is useful to show robustness of the decentralized
control design based on aggregation. The analysis is given
in [8] for an isolated agents with inaccurate estimate of the
density p(a) associated with the distribution F (a).

Further generalization of the methodology to nonlin-
ear stochastic models and the investigation of statistical
mechanics methods for such cost-coupled systems are of
interest.
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