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Abstract

We give an exposition of twisted endoscopy through the examples of
GL(2,R) and the unitary group SU(2, 1). The exposition is centred on
the representation-theoretic aspects of the theory. We include detailed
descriptions of L-packets, z-extensions, and correspondences between en-
doscopic groups.

1 Introduction

Anyone espying the Langlands program will quickly encounter the word “en-
doscopy”. One could ponder how this word spread into its mathematical us-
age (p. 19 [Lan83]), but it may be more instructive to go back to an ear-
lier time. Influential early papers use the terms “stable conjugacy” or “L-
indistinguishability” instead ([Lan79a], [Lan79b], [Lan79c]). Stable conjugacy
has to do with conjugacy classes of algebraic groups over a field, sitting in-
side conjugacy classes over an algebraic closure (2.3 [Lab08], [Art97]). L-
indistinguishability has to do with representations of algebraic groups and how
they sit inside L-packets. To say what an L-packet is, or should be, is a sub-
ject of its own. There are many expository works on the subject (III [Bor79],
9 [Kna97], [Kud94], [Mez09] to name a few), but the beginner is likely to find
him/herself at sea without first anchoring the theory to some well worked out
examples. It is best to work things out over the field of the real numbers, where
everything is known ([Lan89], [Kna94]). An excellent extension of this approach
to the theory of endoscopy may be found in [Lab08]. Continuing with this ap-
proach, we work through the representation theory of twisted endoscopy for the
general linear group GL(2,R) and the special unitary group SU(2, 1).

The foundations of twisted endoscopy are given by Kottwitz and Shelstad in
[KS99]. The significance of the theory is manifest in [Art] and nicely described
in 30 [Art05]. Our goal is not to motivate the theory of twisted endoscopy.
Rather, we wish to give someone who is familiar with some basic expository
work (such as [Bor79]) sufficient grounding to begin reading [KS99] and related
representation theoretic works.
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We have made efforts to restrict our examples to the perspective of L-
indistinguishability, ignoring stable conjugacy entirely. This was done in part to
make the exposition concise. It was also done to allow for greater detail in the
discussion of L-packets. For this reason those interested in reading Labesse’s
introductory article ([Lab08]) may wish to consult our examples, especially in
sections dealing with the “dual picture”.

The dual picture in the case of ordinary endoscopy over the real numbers
may be sketched as follows. One begins with a connected reductive algebraic
group G which is defined over R. From this one defines the dual group Ĝ which
is a complex connected reductive algebraic group. The real structure of G is
partially encoded in a Galois action on G. This action is usually extendend
trivially from the Galois group to the Weil group WR = C× ∪C×τ , where

τzτ−1 = z̄, τ2 = −1, z ∈ C×

(9.4 [Bor79]). The resulting semidirect product LG = ĜoWR is called the the
L-group of the group of R-points G(R) (or simply of G). At heart, the dual
picture is a correspondence between irreducible representations of G(R) and
data pertaining to LG. This is known as the real case of the Local Langlands
Correspondence ([Lan89]). It is a correspondence between homomorphisms
ϕ : WR → LG on the one hand, and finite sets of irreducible representations
Πϕ–the L-packets–on the other. The homomorphisms ϕ must satisfy additional
properties, making them admissible homomorphisms. Furthermore, the corre-
spondence only depends on ϕ up to Ĝ-conjugacy, a rule we will use repeatedly
in the sequel.

The image of an admissible homomorphism ϕ : WR → LG might sit inside a
smaller group LH ⊂L G. If this is so, then the resulting admissible homomor-
phism ϕH : WR → LH corresponds to an L-packet ΠϕH of representations of
H(R). One would then expect there to be some relationship between the char-
acters of the representations in ΠϕH and the characters of the representations
in Πϕ. This expectation was formulated as a character identity and proven by
Shelstad in [She82] (see also [She10]). We shall call identities of this kind spectral
transfer, as they may be interpreted to transfer information about characters in
ΠϕH to information about characters in Πϕ. Regarded in this way, it is apt to
call the group H an endoscopic group of G. Indeed, it is a tool used to analyze
Πϕ which arises from looking inside LG.

The theory of twisted endoscopy enriches the dual picture by including an
R-automorphism θ of G, or a quasicharacter ω of G(R). For the sake of brevity,
we shall ignore twisting by ω. In this twisted dual picture, the only L-packets
Πϕ which are relevant are those which are preserved under composition by
θ. In addition, the only representations π ∈ Πϕ of such an L-packet which
contribute to spectral transfer are those which are equivalent to π ◦ θ. These
θ-stable representations have twisted characters which occur in spectral transfer
identities with characters of ΠϕH ([Mez13]).

We elucidate the twisted dual picture and spectral transfer for GL(2,R) and
SU(2, 1), each being twisted by a variant of the automorphism given by inverse-
transpose. For each of these examples we follow the same template. We begin
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with the definition of the L-group. The non-split structure of SU(2, 1) makes
the L-group noteworthy. With the L-group in place we compute admissible
homomorphisms ϕ. Again in the interest of brevity, we restrict our attention to
discrete admissible homomorphisms. These are the admissible homomorphisms
which correspond to L-packets consisting of discrete series representations.

Given a discrete admissible homomorphism, we turn to finding endoscopic
groups and their accompanying data. We follow the outline given on p. 24
[KS99]. Bearing in mind that ϕ matters only up to Ĝ conjugacy and that we
desire Πϕ ◦ θ = Πϕ, it is sensible to seek s ∈ Ĝ such that

(1) Int(s) ◦ θ̂ ◦ ϕ = ϕ.

Here, Int(s) denotes conjugation by s and θ̂ is an automorphism of LG induced
by θ. (This is the precursor to the “S-groups” of 6.6 [Lab08] or 6 [Art08].) By
virtue of ϕ being discrete, the number of such s is finite modulo the centre of
Ĝ. Each element s yields the dual of an endoscopic group by decreeing Ĥ to
equal the identity component of the fixed-point group

Ĝsθ̂ = {x ∈ Ĝ : sθ̂(x)s−1 = x}.

The Galois action on Ĥ is determined by conjugation of ϕ(WR) on Ĥ. More
specifically, we define the subgroup H = Ĥϕ(WR) ⊆ LG and obtain a split
exact sequence

1→ Ĥ → H→WR → 1.

By choosing a splitting of this sequence, we obtain a Galois action on Ĥ which
extends trivially to ρH : WR → Aut(Ĥ). This fixes the L-group LH = Ĥ oρH
WR and thereby a unique quasisplit endoscopic group H up to isomorphism.

In the case of GL(2,R) we shall see that s is unique modulo the centre of Ĝ,
but is of two kinds depending on the nature of ϕ. This produces two possible
endoscopic groups H(R), namely PGL(2,R) and the unitary group U(1). In
both cases LH is isomorphic to H so that there is an embedding of LH in LG.
We define ϕH : WR → LH so that its composition with this embedding is ϕ.

In the case of SU(2, 1) it turns out that every s as in (1) yields the endo-
scopic group PGL(2,R). However, the L-group of this endoscopic group is not
isomorphic to H. As a result, there is no embedding of the endoscopic L-group
into the L-group of SU(2, 1) and there is no obvious way to define ϕH from ϕ.
This predicament gives us the opportunity to present a substitute for H which is
a z-extension. We continue by defining an associated admissible homomorphism
ϕ1 for the z-extension in place of ϕH .

After specifying the endoscopic data, we describe the L-packets of all groups
concerned. In doing this we follow p. 132 [Lan89]. We express the characters
of the representations in these L-packets as functions on the regular elements
of maximally compact tori. For the representations of GL(2,R) and SU(2, 1)
we also compute the relevant twisted characters as functions on the regular
elements of subtori.
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Spectral transfer is an identity between twisted characters and characters
of endoscopic groups (or their z-extensions). Both types of characters are ex-
pressed on maximally compact tori. In order to achieve the desired identities
then, we require a means of comparison between the maximally compact tori of
the endoscopic groups and the maximally compact tori of GL(2,R) or SU(2, 1).
The means of comparison takes the shape of a map defined from conjugacy
classes of the endoscopic groups to twisted conjugacy classes. This map is com-
puted explicitly in each of the two examples. Since the characters involved are
invariant under (twisted) conjugacy, we compare the twisted character values
of the representations in Πϕ with the character values of the representations in
ΠϕH or Πϕ1

. These comparisons are tantamount to the character identities of
spectral transfer.

One must not forget that we are investigating spectral transfer “in minia-
ture”. The examples we work through fall short of the cardinal labour of find-
ing transfer factors ([She]), and it is facile to invert the character identities (6
[Art08], [She08]). Finally, we wish to remark that there is an alternative formal-
ism to twisted endoscopy based on the concept of a twisted space (I.3 [Lab04]).
We encourage the reader to convert our examples into this polished formalism.

2 Twisted endoscopy for GL(2,R)

2.1 The L-group and discrete L-parameters

Let G = GL2. The reader may identify the absolute algebraic group GL2 with
the complex matrix group GL(2,C). The dual group of G is Ĝ = GL2 (6.6.3
[Mez09]). In this example we are taking the real structure of G to be given
so that G(R) is equal to the split group GL(2,R). This implies that the L-
group LG is the direct product Ĝ×WR (1.3 and 2.3 [Bor79]). Now, one of the
defining properties of an admissible homomorphism ϕ : WR → Ĝ×WR is that
its projection onto WR is the identity map (8.2 [Bor79]). Since the product
in the codomain is direct, an admissible homomorphism ϕ is completely deter-
mined by its values in Ĝ. We will therefore abusively abbreviate an admissible
homomorphism to a map ϕ : WR → Ĝ.

Suppose ϕ : WR → Ĝ is such an admissible homomorphism. To get a better
hold on the image of ϕ, let T̂ be the diagonal subgroup of Ĝ = GL2. It is a
maximal torus of Ĝ and all such tori are conjugate to T̂ . Since ϕ(C×) is an
abelian group consisting of semisimple elements (8.2 [Bor79]) and we are only

interested in ϕ up to conjugacy in Ĝ, we may assume that ϕ(C×) is contained

in T̂ . Using the supersolvability of WR, we may extend this inclusion to ϕ(WR)

being contained in the normalizer NĜ(T̂ ) of T̂ (p. 126 [Lab08]). We write this

normalizer as NĜ(T̂ ) = T̂ ∪ w0T̂ , where

w0 =

[
0 −1
1 0

]
.

Let us now assume that ϕ is discrete. By this we mean that the image of
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ϕ is not contained in a proper Levi subgroup of Ĝ (10.3 (3) [Bor79]). As T̂ is
a proper Levi subgroup, this forces ϕ(τ) = w0t for some t ∈ T̂ . In order to
determine ϕ, we must find t ∈ T̂ and the values of ϕ(z) for all z ∈ C×.

Let us begin with the latter. The restriction of ϕ to C× amounts to a
homomorphism of C× into T̂ ∼= C× ×C×. Observe that C× is isomorphic to
the direct product of R and the circle group U(1). Using this observation it is
a simple exercise to show that any homomorphism from C× to itself is of the
form

reia 7→ rseima, r, a ∈ R, r > 0

for some s ∈ C and m ∈ Z. Equivalently, any such homomorphism is of the
form

z 7→ zµz̄ν , z ∈ C×

where µ, ν ∈ C satisfy µ + ν = s and µ − ν = m ∈ Z from above. We may
therefore express the values of ϕ on C× by

ϕ(z) =

[
zµ1 z̄ν1 0

0 zµ2 z̄ν2

]
, z ∈ C×

for appropriate µ1, µ2, ν1, ν2 ∈ C. From the equation

ϕ(z̄) = ϕ(τ)ϕ(z)ϕ(τ)−1 = w0t ϕ(z) (w0t)
−1

one may then deduce that ν1 = µ2, ν2 = µ1 and that µ1 − µ2 = µ1 − ν1 ∈ Z.
From the equation[

(−1)µ1−µ2 0
0 (−1)µ2−µ1

]
= ϕ(−1) = ϕ(τ2) = (w0t)

2

one may deduce that

t =

[
t1 0
0 (−1)µ1−µ2+1 t−1

1

]
for some t1 ∈ C×. After conjugating ϕ by

(2)

[
t
1/2
1 0

0 t
−1/2
1

]

we see that ϕ may be expressed as

ϕ(z) =

[
zµ1 z̄µ2 0

0 zµ2 z̄µ1

]
, z ∈ C×,

where µ1 − µ2 ∈ Z and

ϕ(τ) =

[
0 (−1)µ1−µ2

1 0

]
.

The integer µ1−µ2 must be non-zero. Otherwise the image of ϕ is contained in
an abelian subgroup of semisimple elements and so must belong to a maximal
torus, which is a proper Levi subgroup of Ĝ.
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Lastly, after possibly conjugating ϕ with

(3)

[
0 (−1)µ1−µ2

1 0

]
we may assume that µ1 − µ2 is a positive integer. The reader might wish to
compare our results with 3.2 [Lab08], where our µ1 − µ2 is denoted by n and
our µ1 + µ2 is denoted by s.

2.2 Endoscopic data

Let θ be the outer automorphism of G given by composing inverse-transpose
and conjugation by w0, that is

θ(x) = w0(x−1)ᵀw−10 , x ∈ G.

Conjugation by w0 is included in the definition of θ so that it preserves the
familiar upper-triangular Borel subgroup of G. The automorphism θ induces
an automorphism θ̂ on the dual group Ĝ = GL2 which acts in the same fashion
(1.2 [KS99]).

We wish to compute s ∈ GL2 as in (1) for the discrete parameter ϕ : WR →
GL2 computed in section 2.1. To this end we compute

(4) θ̂

([
zµ1 z̄µ2 0

0 zµ2 z̄µ1

])
=

[
z−µ2 z̄−µ1 0

0 z−µ1 z̄−µ2

]
, z ∈ C×

and

(5) θ̂

([
0 (−1)µ1−µ2

1 0

])
=

[
0 −1

(−1)µ1−µ2+1 0

]
.

If s satisfies (1) then equation (4) and µ1 6= µ2 imply that s ∈ T̂ and µ1 = −µ2.
Equation (5) then implies that

s ∈
[

1 0
0 (−1)2µ1+1

]
ZĜ.

It is evident that s exists if and only if µ1 = −µ2. The centre ZĜ will be
irrelevant in computing endoscopic groups as these come about by taking the
centralizer of s. We may therefore identify s with one of two matrices. In the
case that 2µ1 is odd we say that µ1 is a half-integer and s may be identified
with the identity matrix in GL2. Otherwise, we say that µ1 is an integer, and
the set s may be identified with

(6)

[
1 0
0 −1

]
∈ GL2.

We separate the computation of endoscopic data into these two cases.
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2.2.1 The case where µ1 is a half-integer

In this case ϕ simplifies to

ϕ(z) =

[
(z/z̄)µ1 0

0 (z/z̄)−µ1

]
, z ∈ C×,(7)

ϕ(τ) =

[
0 (−1)2µ1

1 0

]
=

[
0 −1
1 0

]
.

and s ∈ GL2 is the identity matrix.
The dual group Ĥ is equal to the identity component of the fixed point

subgroup GLθ̂2 = SL2, which is connected. Clearly, the image of ϕ is contained
in SL2 so that the group H = SL2ϕ(WR) = SL2. We should exercise some
caution here, because our abusive identification of the codomain of ϕ with GL2.
The extended Galois action ρH : WR → Aut(Ĥ) only makes sense if we revert to
the codomain being the direct product GL2×WR in which case H = SL2×WR.
By definition, the automorphism ρH(τ) acts on SL2 by conjugation with an
element (x, τ) ∈ H which preserves a Borel subgroup and a set of positive root
vectors (2.3 [Bor79]). Conjugation by (1, τ) is trivial and the only x ∈ SL2

which preserve a Borel subgroup and the root vectors are x = ±I. Thus, ρH(τ)
and ρH itself are trivial. From this it follows that the L-group LH is equal to
the direct product SL2×WR, H = PGL2 (6.6.4 [Mez09]) and H(R) is the split
form PGL(2,R). We define ξH : H → LH to be the identity map.

2.2.2 The case where µ1 is an integer

In the case at hand

ϕ(z) =

[
(z/z̄)µ1 0

0 (z/z̄)−µ1

]
, z ∈ C×,(8)

ϕ(τ) =

[
0 (−1)2µ1

1 0

]
=

[
0 1
1 0

]
.

The dual group Ĥ of the desired endoscopic group is given by the identity

component of the fixed-point subgroup {x ∈ Ĝ : x = sθ̂(x)s−1} where s is equal
to (6). Elementary computations reveal that the fixed-point subgroup is the
semidirect product {[

x 0
0 x−1

]
: x ∈ C×

}
o
{[

0 1
1 0

]}
whose identity component is the rank one torus

Ĥ =

{[
x 0
0 x−1

]
: x ∈ C×

}
∼= GL1.

If we revert again to the codomain of ϕ being GL2 ×WR then

ϕ(τ) =

([
0 1
1 0

]
, τ

)
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and
H = Ĥϕ(WR) ⊂ GL2 ×WR.

The automorphism ρH(τ) acts on Ĥ by conjugation with ϕ(τ). This action is
inversion on Ĥ and implies that H ∼= GL1 is a rank one torus such that H(R) is
isomorphic to U(1) (9.4 [Bor79]). One may verify that there is an isomorphism
ξH : H → LH satisfying ξH(ϕ(τ)) = (I, τ) and ξH(h) = (h, 1) for all h ∈ Ĥ.

2.3 Spectral data

We continue with the assumption that ϕ : WR → GL2 is a discrete admissi-
ble homomorphism as in section 2.2. From the isomorphism ξH : H → LH
we obtain an admissible homomorphism ϕH = ξH ◦ ϕ for H. The Langlands
Correspondence prescribes L-packets Πϕ and ΠϕH to ϕ and ϕH respectively.

The homomorphism ϕ is parameterized by positive µ1 ∈ 1
2Z. When µ1 is a

half-integer the group H(R) is equal to PGL(2,R), and when µ1 is an integer
H(R) equals U(1). We compute the L-packets Πϕ and ΠϕH , beginning with Πϕ

and separating the remaining computations of ΠϕH into the half-integral and
integral cases.

2.3.1 L-packets of GL(2,R)

The admissible homomorphism ϕ is completely determined by the positive ele-
ment µ1 ∈ 1

2Z. Our first task is to trace the path from this element to a distri-
bution character of a representation in Πϕ as argued on page 132 [Lan89]. The
crux of this argument is the pioneering work of Harish-Chandra, which attaches
to every (dominant and analytically integral) weight of a maximally compact
torus of GL(2,R) a distribution character of an essentially square-integrable
representation of GL(2,R) (Theorem 9.20 [Kna86]).

In order to apply this work we must identify µ1 with a weight of some
maximally compact torus. Let S be the maximal torus of GL2 defined over R
such that S(R) is equal to the set of elements of the form

(9)

[
cos(a) sin(a)
− sin(a) cos(a)

] [
eb 0

0 eb

]
, a, b ∈ R.

The group S(R) is a maximally compact R-torus in GL(2,R). We need some
way of getting a weight of this torus from µ1, or equivalently, from ϕ. Since the
image of ϕ is attached to T̂ , one might expect to get a weight of S by associating
S with T . The dual group Ŝ is isomorphic to the diagonal subgroup T̂ , as both
are complex rank two tori. This isomorphism does not detect the real structure
of S or T though, and these real structures are different. The real structures of
S and T are encoded in their L-groups. As a result, the L-group LS = S oWR

is not isomorphic to LT = T̂ ×WR. In fact LS is isomorphic to T̂ oϕ(WR) (cf.
9.4 [Bor79]). The trick then, is to identify LS with T̂ oϕ(WR). In making this
identification, the cocharacter group X∗(Ŝ) = Hom(GL1, Ŝ) is identified with
X∗(T̂ ). By definition, the character group X∗(S) = Hom(S,GL1) is equal to
X∗(Ŝ) and so may also be identified with X∗(T̂ ) = X∗(T ).
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Taking these identifications into consideration, let us forget about S for a
moment. The cocharacters in X∗(T̂ ) are of the form

(10) z 7→
[
zm1 0

0 zm2

]
, z ∈ C×,

where m1 and m2 are integers. Extending X∗(T̂ ) to X∗(T̂ )⊗C has the effect of
allowing m1 and m2 to belong to C. The element µ1 ∈ 1

2Z characterizing ϕ is

assigned to the element in X∗(T̂ )⊗C given by m1 = µ1− (1/2) and m2 = −m1

(−1/2 should be thought of as the half-sum of the positive root(s)). The weights

of T lie in X∗(T )⊗C = X∗(T̂ )⊗C. Langlands shows that

z 7→
[
zµ1−1/2 0

0 z−µ1+1/2

]
, z ∈ C×

corresponds to a (analytically integral) weight of S(R).
To say what this weight of S(R) is, let us first give its values on T . Since

every element of T may be written as a product

(11)

[
x 0
0 x−1

] [
y 0
0 y

]
, x, y ∈ C×,

it suffices to say what the value of this weight is on each of these two factors.
On the first factor the value is xm1(x−1)−m1 = x2µ1−1, and on the second factor
the value is ym1y−m1 = 1 (cf. Lemma 3.2.11 [Spr98]). To pass from T to S(R)
we identify the first (resp. second) factor in (11) with the complexification of
the first (resp. second) factor in (9) (cf. the Cayley transform in section 2.4.1).
Under this identification we obtain the weight of S(R) which maps an element
in (9) to ei(2µ1−1)a (page 131 and Lemma 2.8 [Lan89]).

It is clear from (9) that S(R)SL(2,R) = ZSL(2,R). This is a subgroup of
GL(2,R) of index two. One applies Harish-Chandra’s theory by first associating
the above weight of S(R) to an essentially square integrable representation π+

µ1

of ZSL(2,R). The value of the distribution character of π+
µ1

on regular elements
of the form (9) is

(12) −e
i(2µ1−1)a

1− e−2ia
= − e2iµ1a

eia − e−ia

(page 134 [Lan89]), and these values uniquely determine the representation
(Theorem 12.6 [Kna86]). Finally, the representation πµ1

of GL(2,R) obtained
from π+

µ1
by induction is irreducible. Its distribution character on regular ele-

ments of the form (9) has values

(13) −e
2iµ1a − e−2iµ1a

eia − e−ia
.

This is a representation in Πϕ prescribed by ϕ.
It is also the only representation in Πϕ. To explain why, we must return to

our isomorphism of T̂ o ϕ(WR) with LS. This isomorphism is not unique. In-
deed, composition of this isomorphism with an inner automorphism normalizing
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T̂ yields another isomorphism. In particular, composition by the action of the
Weyl group of T̂ yields isomorphisms. This action of the Weyl group may be ac-
counted for by fixing the isomorphism as we have done and acting on ϕ instead.
For example one could act on ϕ by the inner automorphism of the non-trivial
Weyl group representative given in (3). The reader might find it worthwhile
to repeat the steps we have taken on the resulting admissible homomorphism.
Is so doing one verifies that the roles of µ1and µ2 are reversed. In turn we
have that µ2 − µ1 is a negative integer, and Harish-Chandra’s theory attaches
a representation π−µ1

of ZSL(2,R) to this the negative number µ2 = −µ1 ∈ 1
2Z.

The character values on regular elements of (9) are

(14) −e
i(2µ2+1)a

1− e2ia
=

e−2iµ1a

eia − e−ia
.

However, upon induction to GL(2,R) one again recovers (13) and therefore
the same representation πµ1

. This independence of Weyl group action is a
special property of GL(2,R). In general, these Weyl group actions do produce
inequivalent representations which comprise the L-packet (7.1 [Lab08]).

The reader familiar with the theory of discrete series representations of
semisimple groups may wish to compare our notation with familiar sources.
The representation π+

µ1
is trivial on the identity component of the central group

Z and is therefore readily identified with a discrete series representation of
SL(2,R) which is usually denoted by either D+

2µ1+1 (II.5 [Kna86]) or D+
2µ1

(4.2
[Lab08]). The representation π−µ1

may similarly be identified with the discrete

series representation denoted by D−2µ1+1 or D−2µ1
.

2.3.2 L-packets of H(R) when µ1 is a half-integer

We are assuming that µ1 is a half-integer so that H(R) = PGL(2,R). The
admissible homomorphism ϕH is identical to ϕ in (7) save for its codomain,
which may be identified with the subgroup Ĥ = SL2 of GL2.

Only minor changes are required in section 2.3.1 to obtain ΠϕH , although
there are some conceptual differences worth highlighting. Setting Z = ZG(R)
equal to the centre of GL(2,R), the maximal torus of PGL2 may be taken to
be SH = S/ZG. Its group of real points is

SH(R) =

{[
cos(a) sin(a)
− sin(a) cos(a)

]
Z, a ∈ R

}
.

We wish to pass from the parameter µ1 ∈ 1
2Z to a character of SH(R). As

before, we may think of µ1 as an element in X∗(T̂ )⊗C. Actually, this element

is fixed under Int(s)θ̂, which is equal to θ̂ on T̂ . Consequently, we may think of

µ1 as belonging to the fixed-point set X∗(T̂ )θ̂ ⊗ C. We would like to proceed
from here to an element of X∗(T/ZG) ⊗ C and thence to X∗(SH) ⊗ C and
a character of SH(R). Some abstract algebra is required. Let us write the
homomorphism

t 7→ tθ(t)−1, t ∈ T
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additively as 1− θ. Then the exact sequence of tori

1→ (1− θ)T → T → T/(1− θ)T → 1

gives rise to an exact sequence of free Z-modules

1→ X∗(T/(1− θ)T )→ X∗(T )→ X∗((1− θ)T )→ 1

(Proposition 8.2 (c) [Bor91]). The third map in the latter sequence is restriction
to (1−θ)T , and so the image of the second map is the θ-fixed subgroup X∗(T )θ.
It is easily verified that (1− θ)T = ZG and thus it follows that

(15) X∗(T̂ )θ̂ ⊗C ∼= X∗(T )θ ⊗C ∼= X∗(T/ZG)⊗C.

Now returning to µ1 being thought of as an element in X∗(T̂ )θ̂ ⊗C, we make
the same adjustments to µ1 as in section 2.3.1, namely setting m1 = µ1−1/2 =
−m2. Next, we use (15) and identify T/ZG with SH to obtain the weight of
SH(R) which has values of the form ei(2µ1−1)a.

This weight corresponds to a discrete series representation of the identity
component of PGL(2,R) (in the real manifold topology). This identity compo-
nent is isomorphic to PSL(2,R) = SL(2,R)/{±I} and is of index two1. The
character of this discrete series representation has values of the form

−e
i(2µ1−1)a

1− e−2ia
= − e2iµ1a

eia − e−ia

on the regular elements of SH(R). Inducing this representation to PGL(2,R)
produces a discrete series representation whose character is again of the form
(13) on regular elements of SH(R). It is the only representation in the L-packet
ΠϕH .

2.3.3 L-packets of H(R) when µ1 is an integer

We are assuming that µ1 is an integer so that H(R) = U(1). The admissible
homomorphism ϕH : WR → LH satisfies ϕH(τ) = (I, τ) which acts by inversion

on Ĥ ∼= GL1. Furthermore,

ϕH(z) =

[
(z/z̄)µ1 0

0 (z/z̄)−µ1

]
, z ∈ C×.

The path from this admissible homomorphism to ΠϕH does not require Harish-
Chandra’s theory of discrete series for there is no semisimple Lie group asso-
ciated to U(1) from which one could induce. In this case we follow the more
direct correspondence for tori (2 [Lan89], 9.2 [Bor79]). In the correspondence for

tori we continue think of µ1 as an element of X∗(T̂ )θ̂ ⊗C, but no adjustment

1Warning! SL(2,R)/{±I} is not an algebraic group so that it is not equal to the split real
form of PSL2.

11



is made to µ1. That is, we take m1 = µ1 = −m2 as in (10). The isomor-
phisms of (15) remain valid in the present case and they yield the element in
X∗(T/ZG) ⊂ X∗(T/ZG)⊗C defined by

(16)

[
x 0
0 x−1

]
ZG 7→ x2µ1 .

In order to connect this element of X∗(T/ZG) to X∗(H) we remind ourselves

that Ĥ = (T̂ θ̂)0. As consequences we have that X∗(Ĥ) is isomorphic to the free

abelian subgroup of X∗(T̂
θ̂), and X∗(H)⊗C ∼= X∗(T/ZG)⊗C. The image of

the element (16) under the latter isomorphism determines the character

(17) eia 7→ e2iµ1a, a ∈ R

on H(R) = U(1) (9.4 (a) [Bor79]), and this character is equal to the unique
representation in ΠϕH .

2.3.4 Twisted characters for GL(2,R)

Having determined the L-packets for the endoscopic groups we revisit the L-
packets for GL(2,R). In section 2.3.1 we saw that the L-packet Πϕ consists of
a single representation π = πµ1 whose character is determined by (13). It is not
this character which is comparable with the character of the representation in
ΠϕH . Rather it is the twisted character of π which is comparable.

To define the twisted character we need to introduce the twisting automor-
phism θ into the picture. Equation (1) implies that π is equivalent to the
representation πθ = π ◦ θ (Lemma 1 [Mez13]). Let us denote an intertwining
operator which exhibits this equivalence by U, i.e.

Uπ(x) = πθ(x)U, x ∈ GL(2,R).

By Schur’s Lemma, the intertwining operator U is unique up to scalar mul-
tiplication. For GL(2,R) the circumstances are simple enough to describe a
canonical unitary operator U in terms of the inducing data in the definition of
π. We shall do this shortly. What this allows us to do is define the twisted
character of π as the distribution

(18) f 7→ tr

∫
GL(2,R)

f(x)π(x)U dx

defined on smooth compactly supported functions f : GL(2,R) → C (5.2
[Mez13]). As in the case of ordinary distribution characters (cf. (13)), this
twisted character may be identified with a function defined on the regular ele-
ments of the torus S(R) (Theorem 2.1.1 [Bou87], Theorem 15.1 [Ren97]).

Let us describe the operator U and compute the resulting twisted character.
Set π± = π±µ1

and let V ± be the space of the representations π±. Recall that

π = ind
GL(2,R)
ZSL(2,R)π

+. The subgroup Z SL(2,R) is of index two in GL(2,R), and

α =

[
−1 0

0 1

]

12



is a representative of the non-trivial coset. By virtue of the finite index, Mackey’s
decomposition theorem applies to π with the result that

π|Z SL(2,R)
∼= π+ ⊕ (π+)α.

Here (π+)α is defined as π+ ◦ Int(α). If one evaluates Int(α) on regular elements
of (9) and composes with π+’s character (12), one arrives at π−’s character (14).
It follows that (π+)α ∼= π−, and we may identify the space of π with

V + ⊕ π(α)V + ∼= V + ⊕ V −,

where π(x) acts as π+ on V + for all x ∈ Z SL(2,R).
Let U be the unitary operator on V + ⊕ π(α)V + defined by

U(v1 + π(α)v2) = v1 + (−1)2µ1+1π(α)v2, v1, v2 ∈ V +.

The factor (−1)2µ1+1 is significant as it is equal to π(−I). Observe that if
y ∈ SL(2,R) then θ(y) = y and

θ(yα) = y(−α) = −yα.

Therefore

Uπθ(y)(v1 + π(α)v2) = π(y)v1 + (−1)2µ1+1π(yα)v2 = π(y)U(v1 + π(α)v2),

and

Uπθ(yα)(v1 + π(α)v2) = (−1)2µ1+1U(π(y)π(α)v1 + π(y)v2)

= (−1)2µ1+1 ((−1)2µ1+1π(y)π(α)v1 + π(y)v2
)

= π(yα)(v1 + (−1)2µ1+1π(α)v2)

= π(yα)U(v1 + π(α)v2).

This proves that U intertwines πθ with π.
We may now compute the twisted character of π relative to U. For f as in

(18) we compute

tr

∫
G

f(x)π(x)U dx = tr

∫
Z SL(2,R)

f(x)π(x)U + f(xα)π(xα)U dx.

Fixing an orthonormal basis B relative to an inner product 〈·, ·〉 on V +, this
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becomes

∑
v∈B

1∑
j,k=0

∫
f(xαj) 〈π(xαj)Uπ(αk)v, π(αk)v〉 dx

=
∑
v∈B

1∑
j,k=0

∫
f(xαj) 〈π(x)π(αj)(−1)k(2µ1+1)π(αk)v, π(αk)v〉 dx

=
∑
v∈B

1∑
k=0

(−1)k(2µ1+1)

∫
f(x) 〈π(x)π(αk)v, π(αk)v〉 dx

= tr

∫
f(x)π(x)|V + dx+ (−1)2µ1+1 tr

∫
f(x)π(x)|π(α)V + dx

= tr

∫
f(x)π+(x) dx+ (−1)2µ1+1tr

∫
f(x)π−(x) dx,

where all integrals are over Z SL(2,R).
This computation shows that we may identify the twisted character of π

with the sum of the characters of π+ and π− when µ1 is half-integral, and the
difference of the characters of π+ and π− when µ1 is integral. In both cases,
the support of the twisted character lies in the subgroup Z SL(2,R).

When µ1 is half-integral the values of the twisted character on the regular
elements of (9) are again equal to (13), which is the sum of (12) and (14). By
contrast, when µ1 is integral the values of the twisted character on the regular
elements of (9) are equal to

(19) −e
2iµ1a + e−2iµ1a

eia − e−ia
,

which is the difference of (12) and (14). It is interesting to note that the latter
twisted character vanishes on the split tori of Z SL(2,R) (Proposition 10.14
[Kna86]). As with ordinary characters, the twisted characters are determined
by (13) and (19) (Theorem 15.1 [Ren97]).

2.4 Transfer

In this section we shall spell out the correspondence given in Theorem 3.3.A
[KS99] in the special case of G = GL2. This correspondence is given by a map
from semisimple conjugacy classes of an endoscopic group H and the twisted
semisimple conjugacy classes of GL2. The twisted conjugacy class of an element
x ∈ GL2 relative to the automorphism θ is by definition the set {g−1xθ(g) :
g ∈ GL2}. It is more precise to call this a θ-conjugacy class. One calls this a
semisimple θ-conjugacy class if x is a semisimple element of GL2.

Once this correspondence is made clear we may use it to compare the rep-
resentation in Πϕ with representations in ΠϕH . The comparison is effected by
identifying the representation in Πϕ with its twisted character as in section
2.3.4. Since this twisted character is determined by its values on semisimple
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θ-conjugacy classes, one may pull back this twisted character to a class func-
tion on H using the above correspondence. The resulting class function may be
then be compared with the character of the representation in ΠϕH . Through
such a comparison, a precise character identity will become apparent and this
identity constitutes a notion of transferring the representation in ΠϕH to the
representation in Πϕ.

2.4.1 The correspondence of twisted conjugacy classes

Recall from section 2.3.4 that the twisted character of π ∈ Πϕ is completely
determined by its values on the regular elements of S(R). We therefore identify
the twisted character of π with (13) when µ1 is a half-integer, and with (19)
when µ1 is an integer. We wish to pull back these twisted characters to the
endoscopic group H(R). In general, the torus S is not directly related to any
torus in H. There is an indirect relationship through the intermediate maximal
torus T , which relates θ-conjugacy classes of elements in S to conjugacy classes
of elements in a torus of H (3.3 [KS99]). The approach is to start with the
conjugacy class of a toral element in H, move to a twisted conjugacy class of an
element in T , and then end up with a twisted conjugacy class of an element in
S. Working backwards, we will present the passage from T to S in this approach
first.

Although it is mathematically pointless, we will make some notational dis-
tinctions which have the advantage of being in line with the exposition of 3.3
[KS99]. Set G∗ = G = GL2 and θ∗ = θ. We assemble two triples, (G, θ, S)
and (G∗, θ∗, T ). Our task is to specify a bijection between the set Clss(G, θ)
of semisimple θ-conjugacy classes of G and the set Clss(G

∗, θ∗) of of semisim-
ple θ∗-conjugacy classes of G∗. Upon completion, we shall do away with the
notational distinctions and recover the passage between T and S sought above.

Let ψ = Int(c) where

c =
1√
2

[
1 i
i 1

]
∈ GL2.

We may regard ψ as an isomorphism ψ : G→ G∗. Some readers will recognize
this map as a Cayley transform (pp. 417-418 [Kna86]) and that ψ(S) = T . The
reader may wish to verify that θ∗ = ψθψ−1 (cf. 1.2 [KS99]), and that ψ induces
a bijection

(20) Clss(G, θ)→ Clss(G
∗, θ∗)

(cf. 3.1 [KS99]) by way of the map

gxθ(g−1) 7→ g(cxc−1) θ(g−1) = (gc)x θ∗((gc)−1), x, g ∈ G.

Let us now begin to remove the artificial distinction between G∗ and G by
expressing bijection (20) in terms of the tori S and T . Let Ω(G,S) and Ω(G,T )
be the Weyl groups of S and T respectively. It follows from the fact that all
maximal tori are conjugate that the semisimple conjugacy classes of G are in
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bijection with the equivalence classes T/Ω(G,T ) (or S/Ω(S, T )). Lemma 3.2.A
[KS99] extends this result to a bijection between Clss(G, θ) and Tθ/Ω(G,T )θ.
Here, Tθ is the quotient T/(1 − θ)T and Ω(G,T )θ is the subgroup elements in
Ω(G,T ) whose action on T commutes with θ. Recall from section 2.3.2 that
T/(1 − θ)T = T/ZG. It is easily verified that Ω(G,T ) = Ω(G,T )θ. Similarly,
S/(1 − θ)S = S/ZG and Ω(G,S) = Ω(G,S)θ. In conclusion, the bijection (20)
of semisimple θ-conjugacy classes may be expressed as a bijection

(S/ZG)/Ω(G,S)→ (T/ZG)/Ω(G,T ).

We now make the final connection between (T/ZG)/Ω(G,T ) and the con-
jugacy classes of toral elements in H. In the case that µ1 is a half-integer we
have an isomorphism between T/ZG and SH which is again given by Int(c). Let
us call this isomorphism ψH and let us denote the set of semisimple conjugacy
classes of H by Clss(H). Then we may combine our results to form the map
(21)

Clss(H)→ SH/Ω(H,SH)
ψH→ (T/ZG)/Ω(G,T )

ψ−1

→ (S/ZG)/Ω(G,S)→ Clss(G, θ).

This is the map AH/G of Theorem 3.3.A [KS99]. If we truncate this map to
SH/Ω(H,SH)→ (S/ZG)/Ω(G,S) we see that it is defined over R, and given by

(22)

[
cos(a) sin(a)
− sin(a) cos(a)

]
Z 7→

[
cos(a) sin(a)
− sin(a) cos(a)

]
Z, a ∈ R.

This exposes that the middle portion of our map AH/G is the identity map and
that one could have just as well done without ψ and ψH . This also hints at
a more general phenomenon which ensures that AH/G may be defined from a
map of tori defined over R (Lemma 3.3.B [KS99]).

In the case that µ1 is an integer, the endoscopic group H itself is a rank one
torus so that Clss(H) = H. In this case the map AH/G is of the form

(23) H
ψH→ (T/ZG)/Ω(G,T )

ψ−1

→ (S/ZG)/Ω(G,S)→ Clss(G, θ),

where ψH is defined by

(24) eia 7→
[
eia 0
0 e−ia

]
Z, a ∈ C

(cf. (16)). The truncated map H → (S/ZG)/Ω(G,S) is again defined over R
and is defined by

(25) eia 7→
[

cos(a) sin(a)
− sin(a) cos(a)

]
Z, a ∈ R.

Unlike the half-integral case, the map H → (S/ZG)/Ω(G,S) is not injective.
Indeed, conjugation by [

0 1
1 0

]
acts as inversion on S and lies in the Weyl group Ω(G,S). Therefore both eia

and e−ia in H(R) have the same image in (S/ZG)/Ω(G,S).
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2.4.2 Spectral transfer

We are now ready to compare the twisted character of π ∈ Πϕ with the charac-
ter of πH ∈ ΠϕH . The twisted character is determined by its values on the real
representatives of Clss(G, θ), or alternatively, by its values on the real represen-
tatives of (S/ZG)/Ω(G,S) (section 2.4.1). Analogously, the ordinary character
of πH is determined by its values on the real representatives of SH/Ω(H,SH)
when µ1 is half-integral, and by its values on H(R) when µ1 is integral.

If we compose the twisted character of π with the map AH/G we obtain
an invariant distribution on H(R). Let us compare this distribution with the
distribution of πH in the separate cases of µ1 being half-integral and integral.

When µ1 is a half-integer, the twisted character on S(R) is (13), and its
composition with (22) is equal to itself. This is also equal the character of πH
on SH(R) (section 2.3.2). The twisted character identity between π and πH in
this case is deceptively obvious.

On the other hand, when µ1 is an integer the twisted character is equal to
(19) on S(R) and its composition with (25) is the distribution on H(R) given
by the function

(26) eia 7→ −e
2iµ1a + e−2iµ1a

eia − e−ia
, a ∈ R.

We are to compare this function with (17). There are two apparent distinguish-
ing features. First, there is the distinguishing factor of −1/(eia− e−ia). This is
the negative reciprocal of the Weyl denominator for GL(2,R) (p. 141 [Kna86]).
The corresponding Weyl denominator does not occur for H(R) for it has no
roots. Thus, one sees that more generally a comparison of characters requires
adjustment by Weyl denominators.

The second distinguishing feature is that the numerator of (26) contains not
only e2iµ1a, but also its inverse e−2iµ1a. This is mirrored by the two-to-one
nature of map (25). The occurrence of both e2iµ1a and e−2iµ1a is necessitated
by the principle that endoscopy should be invariant under conjugation. One can
see this by hearkening back to the end of section 2.3.1 where conjugation of ϕ by
(3) had the effect of replacing the positive number µ1 by the negative number
−µ1. If one were to follow through our arguments using this modification of ϕ
then one would arrive to the same L-packet of G. By contrast, one would arrive
to the L-packet of of H containing the representation eia 7→ e−2µ1a (cf. (17)).

Yet another reason of seeing why both e2iµ1a and e−2iµ1a must occur is in
the choice of the map (24). One could equally well have chosen

e−ia 7→
[
eia 0
0 e−ia

]
Z, a ∈ C

and this modification too would have again forced the representation eia 7→
e−2µ1a into the picture. The choice of map (24) is actually again a manifestation
principle of invariance under conjugation. Indeed, the choices of map stem from
choices of Borel subgroups (see proof of Theorem 3.3.A [KS99]), and these are
all equivalent under conjugation.
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In conclusion, one obtains an identity between (26) and (17) after accounting
for the Weyl denominator and the invariance under conjugation. In general there
is much more to account for. For example, we have said nothing about the minus
sign in front of the Weyl denominator.

3 Twisted endoscopy for SU(2, 1)

The special unitary group SU(2, 1) may be defined as

SU(2, 1) = {g ∈ SL3 : ḡᵀI2,1g = I2,1}

where I2,1 is the matrix  1 0 0
0 1 0
0 0 −1

 .
Its real Lie algebra su(2, 1) is given by the set of elements of the form ia X12 X13

−X12 −ia+ ib X23

X13 X23 −ib

 , a, b ∈ R, X12, X13, X23 ∈ C

(I.8, I.14 [Kna96]). The group SU(2, 1) is a real form of SL3. This is evident
from the isomorphism su(2, 1) ⊗C ∼= sl(2,C). We therefore set G′ = SL3 and
G′(R) = SU(2, 1). The dual group Ĝ′ may be computed to equal PGL3 by
modifying the computations 6.6.4 [Mez09].

3.1 The L-group and discrete parameters

Unlike the case of GL(2,R), the group SU(2, 1) is not split and so the L-group
is no longer a direct product of Ĝ′ with WR. Indeed, the maximally R-split tori
of SU(2, 1) are all conjugate and not split (p. 432 [Kna86]). It is an elementary
computation to show that the centralizer of any maximally R-split torus is equal
to itself. From this it follows that SU(2, 1) is quasisplit, i.e. that there is a Borel
subgroup B′ of G′ which is defined over R (Proposition 16.2.2 [Spr98]). The
Galois group Gal(C/R) acts on B′ through the resulting R-structure and one
can show that this action is the restriction of an outer automorphism of G′

of order two (1.3 [Bor79]). This outer automorphism determines an algebraic
automorphism of Ĝ′ (2.3 [Bor79]). The L-group LG′ of SU(2, 1) is defined as
the semidirect product

Ĝ′ oWR = PGL3 oWR

in which C× ⊂WR acts trivially on Ĝ′ and τ acts on Ĝ′ by the outer automor-
phism above.

In order to pin down the outer automorphism above, one could explicitly
compute B′ and make the necessary choices in 1-2 [Bor79]. To avoid these
gruesome computations, one may note that there is a unique outer automor-
phism of PGL3 which fixes a Borel subgroup and a choice of simple root spaces
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thereof (27.4 [Hum75]). If one were to take the Borel subgroup to be the upper-
triangular subgroup, with corresponding simple roots {α1, α2}, then the outer
automorphism is given by composing inverse, transpose and the action of the
longest Weyl group element. For reasons to be made clear later, we shall choose
our Borel subgroup B̂′ ⊂ Ĝ′ to correspond to the pair of roots {−α2, α1 + α2}.
Hence, the elements of B̂′ look like ∗ ∗ ∗

0 ∗ 0
0 ∗ ∗

Z′
where Z ′ is the centre of GL3, and the outer automorphism of WR on PGL3 is
defined by

(27) τ · gZ ′ = w1(gᵀ)−1w−11 Z ′, g ∈ PGL3

where

w1 =

 0 1 0
1 0 0
0 0 −1

 .
This completes our description of the L-group and so we turn to finding

discrete admissible homomorphisms. The basic requirements given in section
2.1 lead us to seek homomorphisms ϕ : WR → LG′ satisfying

1. For all w ∈WR there exists gZ ′ ∈ PGL3 such that ϕ(w) = (gZ ′, w).

2. There exists µ1, µ2, ν1, ν2 ∈ C, with µk − νk ∈ Z for each k = 1, 2, such
that g = diag(wµ1wν1 , wµ2wν2 , 1) when w ∈ C× in 1.

3. The first coordinate of φ(τ) normalizes the diagonal subgroup in PGL3.

4. The diagonal subgroup in PGL3 has a finite number of fixed points under
conjugation by φ(τ).

The first three items in this list originate from ϕ being an admissible homomor-
phism (8.2 [Bor79]). The final item originates from ϕ being discrete. Indeed, if
the fixed-point subgroup is infinite then it contains a torus, and the centralizer
of this torus would be a proper Levi subgroup of LG′ containing the image of
ϕ (Lemma 3.5 [Bor79]).

A healthy calculation under the above four constraints reveals that, up to
conjugation by elements of Ĝ′, the admissible homomorphism ϕ is given by
ϕ(τ) = (g′Z ′, τ) where

g′ =

 0 1 0
1 0 0
0 0 1


and for all z ∈ C×

(28) ϕ(z) =

 (z/z)µ1 0 0
0 (z/z)µ2 0
0 0 1

Z′, z
 .
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From the equation ϕ(−1) = ϕ(τ2) = (z,−1), one finds that µk ∈ Z for each
k = 1, 2. Finally, we discard the possibility that µ1 = µ2 = 0, for this implies
that the image of ϕ is semisimple and abelian, and is thus contained in a minimal
Levi subgroup of LG′.

3.2 Endoscopic data

Let θ′ be the outer automorphism of G′ = SL3 given by composing inverse-
transpose with conjugation by w1 ∈ SU(2, 1), that is

θ′(x) = w1(x−1)ᵀw−11 , x ∈ SL3.

Conjugation by w1 is included in this definition so that θ′ preserves the Borel
subgroup

B =


 ∗ ∗ ∗

0 ∗ 0
0 ∗ ∗

 ⊂ G′
dual to B̂′. It is straightforward to verify that θ′ is an algebraic involution
which preserves SU(2, 1), i.e. θ′ is defined over R. The automorphism θ̂′ of Ĝ′

induced by θ′ coincides with the action of τ in (27). We shall also denote by θ̂′

the automorphism of LG′ extended trivially on WR.
To find endoscopic data we shall solve (1) where ϕ is an admissible homo-

morphism defined in the previous section. We are looking for

s−1 =

 a b c
d e f
k h j

 ∈ GL3

such that θ̂′ ◦ ϕ(w) = Int(s−1) ◦ ϕ(w) for all w ∈ WR. When w = z ∈ C× this
is equivalent to azµ1 bzµ2 c

dzµ1 ezµ2 f
kzµ1 hzµ2 j

 = λ

 az−µ2 bz−µ2 cz−µ2

dz−µ1 ez−µ1 fz−µ1

k h j


for some λ ∈ C× with λ3 = z2(µ1+µ2). By discarding the case that µ1 = µ2 = 0,
one may deduce from this equation that µ1 6= 0 and µ2 6= 0. The latter in turn
implies that λ = 1, s = diag(a, e, j) and µ1 = −µ2. Next, from the equation

θ̂′◦ϕ(τ) = Int(s−1)◦ϕ(τ) we deduce that a2 = e2 = j2. As we are only interested
in s modulo Z ′, we may take j = 1 and s−1 = diag(a, e, 1) with a2 = e2 = 1. In
conclusion, equation (1) has solutions if and only if µ1 = −µ2 ∈ Z is non-zero,
and in this case s = diag(±1,±1, 1)Z ′.

We are now ready to find the group H attached to each s. The dual group
Ĥ ′ is equal to the identity component of the fixed-point subgroup {x ∈ Ĝ′ : x =

sθ̂′(x)s−1}. As it happens, the group Ĥ ′ is isomorphic to SL2 for every choice
of s. We shall justify this isomorphism only for the case s = diag(a, e, 1) with

a = −e. The Borel subgroup B̂′ contains the diagonal subgroup T̂ ′ in Ĝ′, and θ̂′

preserves each of these subgroups. Work of Steinberg (Theorem 1.1.A [KS99],
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Lemma I.1.1 [Lab04]) tells us that the θ̂′-fixed-point subgroups of B̂′ and T̂ ′ are

respectively a Borel subgroup and maximal torus of Ĥ ′. It is simple to compute
the Lie algebras of these fixed-point subgroups. If X is in the Lie algebra of B̂′

and sw1(−Xᵀ)w−11 s−1 = X then it is of the form

X =

 x1 x2 0
0 −x1 0
0 0 0

 , x1, x2 ∈ C.

Clearly, the Borel subalgebra generated by such X is isomorphic to the upper-
triangular Borel subalgebra in sl(2,C). It is simple to verify that Xᵀ also

belongs to Ĥ ′ and generates the opposite Borel subalgebra under the isomor-
phism. The group Ĥ ′ is generated by the exponentials of these two subalgebras
(Proposition 8.1.1 (ii) [Spr98]) so that

Ĥ ′ =

{[
A 0
0 1

]
Z′ : A ∈ SL2

}
∼= SL2.

We appear to be in the same situation as in section 2.2.1. Indeed, the
dual endoscopic group Ĥ ′ is isomorphic to SL2. Moreover, since SL2 has no
outer automorphisms (27.4 [Hum75]), the L-group must be a direct product
LH ′ = Ĥ ′×WR (2.3 [Bor79]). It follows that H ′ = PGL2 is split and H ′(R) =
PGL(2,R). Despite these similarities with section 2.2.1, the L-group LH ′ is not

isomorphic to H. This can be proved by first observing that ϕ(τ) acts on Ĥ ′

by inverse-transpose. This action is the same as conjugation on Ĥ ′ by

w2 =

 0 −1 0
1 0 0
0 0 1

Z′ ∈ Ĥ ′.
Consequently, the only elements of H = Ĥ ′ϕ(WR) whose second coordinate is

τ and whose action on Ĥ ′ under conjugation is trivial are the elements

(29)

±
 0 −1 0

1 0 0
0 0 1

Z′, τ
 = (±w2, 1)ϕ(τ) ∈ Ĥ ′.

If there were an isomorphism ι : LH ′ → H then ι(1, τ) would equal one of the
two elements in (29) and

ι(1,−1) = ι(1, τ)2 = ((±w2, 1)ϕ(τ))2 =

 −1 0 0
0 −1 0
0 0 1

Z′,−1

 .

On the other hand, when z ∈ C× we would have ι(1, z) = (ε(z), z) for some
continuous homomorphism ε : C× → ZĤ′ into the centre of Ĥ ′. Since the centre

of Ĥ ′ is a group of order two, ε is trivial and ι(1,−1) = (Z ′,−1)–a contradiction.
To remedy this situation, one turns to a z-extension of H ′ = PGL2 (2.2

[KS99]), which we may choose to be GL2. There is an obvious exact sequence

1→ ZG → GL2 → PGL2 → 1
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in which ZG is the centre of GL2. Now we may define a monomorphism ξ1 from
H into LGL2 = GL2 ×WR by

ξ1((w2, 1)ϕ(τ)) = (iI, τ),

ξ1(Z′, z) = (I, z), z ∈ C× and

ξ1

([
A 0
0 1

]
Z′, 1

)
= (A, 1), A ∈ SL2.

This monomorphism may be regarded as an extension of the inclusion of Ĥ ′ ∼=
SL2 into ĜL2 = GL2 (cf. Lemma 2.2.A [KS99]). The so-called z-pair (GL2, ξ1)
will give us a way of defining an admissible homomorphisms through ϕ and H
in much the same way that the pair (H, ξH) did in section 2.3.

3.3 Spectral data

We assume that ϕ : WR → SL3 oWR is an admissible homomorphism as in
section 3.2 with µ1 = −µ2 ∈ Z being non-zero (cf. (28)). Set ϕ1 = ξ1 ◦ ϕ so
that ϕ1 : WR → GL2 ×WR is an admissible homomorphism of GL(2,R). One
may simplify the discussion by noting that conjugation of ϕ by w1 has the sole
effect of replacing µ1 by −µ1. We may therefore assume that µ1 ∈ Z is positive
(cf. section 2.1).

As before, our aim is to describe the L-packets Πϕ and Πϕ1
in terms of the

characters of the representations which they contain. Most of this has already
been done in section 2.3.1 for Πϕ1

. If one truncates ϕ1 to its image in GL2 then
it is given by

ϕ1(z) =

[
(z/z̄)µ1 0

0 (z/z̄)−µ1

]
, z ∈ C×

ϕ1(τ) = ξ1(w2, 1)−1 ξ1((w2, 1)ϕ(τ)) =

[
0 i
−i 0

]
.

After conjugating ϕ1 by (2) with t1 = −i we arrive at the admissible homomor-
phism of (8). As L-packets are insensitive to conjugation, the conclusions of
sections 2.2.2 and 2.3.1 apply to ϕ1 as well. Hence, the L-packet of Πϕ1

consists
of the representation πµ1

whose character is given by (13).
We continue with the description of Πϕ. As in section 2.3.1, we will describe

the representations in Πϕ by giving character values on a maximally compact
torus. A maximal torus in SU(2, 1) is given by

(30) T ′(R) =


 eia 0 0

0 ei(−a+b) 0
0 0 e−ib

 : a, b ∈ R


Here, T ′ is the diagonal subgroup of SL3 and T ′(R) is actually compact. We are

to identify LT ′ with T̂ ′ o ϕ(WR), where T̂ ′ is the diagonal subgroup of PGL3.

The lattice of cocharacters X∗(T̂
′) is isomorphic to 〈λ1, λ2〉/〈λ1λ2λ3〉 where

λ1(z) =

 z 0 0
0 1 0
0 0 1

 , λ2(z) =

 1 0 0
0 z 0
0 0 1

 , λ3(z) =

 1 0 0
0 1 0
0 0 z

 , z ∈ C×.
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Recall that we have fixed a positive system of roots {−α2, α1 + α2, α1} corre-

sponding to the Borel subgroup B̂′ in section 3.1. The half-sum of these roots
is α1. One assigns the parameter µ1 to the element λm1

1 λ−m1
2 〈λ1λ2λ3〉 with

m1 = µ1 − 1. This element of X∗(T̂
′) ⊗C yields a weight of T ′ by identifying

〈λ1, λ2〉/〈λ1λ2λ3〉 with 〈ε1, ε2〉/〈ε1ε2ε3〉, where

εj

 z1 0 0
0 z2 0
0 0 z3

 = zj ∈ C×, j = 1, 2, 3.

On an element of the form diag(z1, z
−1
1 z2, z

−1
2 ) ∈ T ′ the element εm1

1 ε−m1
2 〈ε1ε2ε3〉

takes the value z2µ1−2
1 z−µ1+1

2 . Upon passing to T ′(R), one obtains a weight
which has values ei(2µ1−2)aei(−µ1+1)b on the elements of (30). This weight may
be written more compactly as e(µ1−1)α1 by abusively identifying the root α1 of
T̂ ′ with its obvious counterpart on the Lie algebra of T ′.

This weight fixes a unique discrete series representation π′µ1α1
of SU(2, 1) up

to equivalence. The distribution character of π′µ1α1
is determined by its values

on the regular elements of T ′(R) or its real Lie algebra t′. On t′ it is equal to

(31)
−eµ1α1 + e−µ1α1

(eα2/2 − e−α2/2)(e(α1+α2)/2 − e−(α1+α2)/2)(eα1/2 − e−α1/2)

(Theorem 12.7 [Kna86]). Here, α1 and α2 are (abusively) the simple roots of
sl(3,C) coming from the Borel subalgebra of upper-triangular matrices, the
denominator is the Weyl denominator in which the factors are taken over the
positive system {−α2, α1 + α2, α1} (Remark 2 p. 105 [Kna86]). The sum in
the numerator is taken over elements in the the Weyl group ΩK of the maximal
compact subgroup

K =

{[
A 0
0 det(A)−1

]
: A ∈ U(2)

}
∼= U(2)

((1.123) [Kna96]).
There is an equivalence of π′µ1α1

under ΩK (Theorem 9.20 [Kna86]), but
this equivalence does not extend to the Weyl group Ω(G′, T ′) of SL3. In fact,
the representations occurring in the L-packet Πϕ are, by definition, represen-
tations in the orbit of π′µ1α1

under Ω(G′, T ′)/ΩK . The group ΩK is generated
by the reflection wα1

corresponding to α1, and the nontrivial representatives of
Ω(G′, T ′)/ΩK may be taken to be wα2 and wα1+α2 . Consequently, the L-packet
is equal to

Πϕ = {π′µ1α1
, π′µ1wα2

·α1
, π′µ1wα1+α2

·α1
} = {π′µ1α1

, π′µ1(α1+α2)
, π′−µ1α2

}.

The discrete series representations π′µ1(α1+α2)
and π′−µ1α2

are determined by the

values of their characters on the regular elements of T ′(R) and have analogues
to (31) when α1 is replaced by α1 + α2 or −α2.

For the remainder of this section we will examine how the automorphism θ′

acts on Πϕ and the corresponding characters. The differential of θ′ sends α1 to
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itself, and sends α1 + α2 to −α2. This implies that the character of π′µ1α1
is

invariant under composition by θ′, and the characters of π′µ1(α1+α2)
and π′−µ1α2

are interchanged under composition by θ′. This means that (π′µ1α1
)θ
′ ∼= π′µ1α1

and (π′µ1(α1+α2)
)θ
′ ∼= π′−µ1α2

so that we may write Πϕ ◦ θ′ = Πϕ. Since π′µ1α1
is

the only representation stable under θ′, it is the only representation of Πϕ with
a twisted character. The other two representations do not contribute to twisted
spectral transfer.

We close by displaying the values of the twisted character of π′µ1α1
on the

θ′-fixed subgroup

(T ′)θ
′
(R) =


 eia 0 0

0 e−ia 0
0 0 1

 : a ∈ R


of T ′(R). The methods of section 2.3.4 are not applicable in the present context
as the representation π′µ1α1

is not induced from some convenient subgroup of
SU(2, 1). Luckily, Bouaziz provides the desired formula using the characteri-
zation of discrete series representations of Duflo (Proposition 6.1.2 [Bou87], III
[Duf82]). There are several details to work out (cf. (47) [Mez13]), but the final
result is that on the regular set of the real Lie algebra (t′)θ

′ ∼= (T ′)θ
′
(R) the

character is

(32) ±e
µ1α1 − e−µ1α1

eα1 − e−α1
.

The denominator of this quotient may be thought of as a Weyl denominator for
the disconnected group SU(2, 1) o 〈θ′〉. The numerator of this expression is a
sum over θ′-invariant Weyl group elements in ΩK . The indeterminacy in sign
is a remnant of the possible choices for an operator intertwining (π′µ1α1

)θ
′

with
π′µ1α1

.

As an aside, let us justify the peculiar choice of Borel subgroup B̂′ and the
appearance of w1. It may be verified that the only ΩK-orbits of weights of t′

which are preserved by negative-transpose are of the form {mα1,−mα1}, m ∈ Z.
These are ΩK-orbits of positive multiples of α1 and the Weyl chamber contain-
ing these multiples fixes in turn the unique positive system {−α2, α1 + α2, α1}
and the Borel subgroup B̂′. As a consequence, it is tidier to tailor the theory
about the representations π′mα which are stable under an outer automorphism
by choosing B̂′ as we have and to inlcude conjugation by w1 in the outer auto-
morphism θ′ so that B̂′ is preserved.

3.4 Transfer

3.4.1 The correspondence of twisted conjugacy classes

The purpose of this section is to define a sequence of maps analogous to (21),
when considering G′ = SL3 in the place of G = GL2. In this consideration the
task is both simplified and complicated. It is simplified by the fact that there
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is no distinction between tori in G′ analogous to the distinction between S and
T in G. There is only T ′ and so one would expect a sequence
(33)

Clss(H
′)→ SH′/Ω(H ′, SH′)

ψH′→ (T ′/(1− θ′)T ′)/Ω(G′, T ′)θ
′
→ Clss(G

′, θ′).

Things are complicated by the fact that we have introduced the z-extension
GL2 of H ′ = PGL2. In our spectral transfer we shall have to compare char-
acter values on semisimple conjugacy classes of GL(2,R), not PGL(2,R). We
therefore require a bridge between Clss(PGL2) and Clss(GL2).

Let us tend to (33) first. In the half-integral case of section 2.4.1 H =
PGL2 = H ′. Thus, we define SH′ = SH = S/ZG and the leftmost map of (33)
is the usual bijection. Towards defining ψH′ , one may calculate that

(1− θ′)T ′ =


 y 0 0

0 y 0
0 0 y−2

 : y ∈ C×

 .

This implies that there is an isomorphism T/ZG → T ′/(1− θ′)T ′ defined by[
x 0
0 x−1

]
ZG 7→

 x 0 0
0 x−1 0
0 0 1

 (1− θ′)T ′, x ∈ C×.

Define the map ψH′ to be the composition of this isomorphism with the isomor-
phism ψH : SH → T/ZG of section 2.4.1 induced by Int(c). The isomorphism
ψH′ : SH′ → T ′/(1− θ′)T ′ is defined over R as one may verify that

ψH′

([
cos(a) sin(a)
− sin(a) cos(a)

]
Z

)
=

 e−ia 0 0
0 eia 0
0 0 1

 (1− θ′)T ′.

We must still show that ψH′ passes to a map of equivalence classes under the
action of the groups Ω(H ′, SH′) and Ω(G′, T ′)θ

′
. The former group is generated

by w0ZG and latter group is

{w ∈ Ω(G′, T ′) : θ′w(θ′)−1|T ′ = w} = {w ∈ Ω(G′, T ′) : w1ww
−1
1 = w} = 〈w1〉.

Each equivalence class with respect to either of these groups is comprised of an
element and its inverse. Apparently, the isomorphism ψH′ passes to a bijection
of equivalence classes, as desired.

The rightmost map of (33) is again the bijection of Lemma 3.2.A [KS99], so
we have completed the correspondence between twisted conjugacy classes of G′

and conjugacy classes of H ′. One could denote (33) by AH′/G′ as in Lemma
3.3.A [KS99]. Note that this map is a bijection.

We now define the bridge between the conjugacy classes Clss(G) of the z-
extension G = GL2 and Clss(H

′) through a map

(34) Clss(G)→ S/Ω(G,S)→ SH′/Ω(H ′, SH′)→ Clss(H
′).

The maps on the left and right are the usual bijections. The map in the middle
is the surjection induced by S → S/ZG = SH′ . This second correspondence
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is defined over R in the sense that the conjugacy class of an element in (9) is
mapped to the conjugacy class of

(35)

[
cos(a) sin(a)
− sin(a) cos(a)

]
Z ∈ H ′(R).

3.4.2 Spectral transfer

The two maps (33) and (34) allow us to compare the twisted character of the
representation π′µ1α1

∈ Πϕ with the character of the representation πµ1 ∈ Πϕ1 of
GL(2,R). The twisted character of π′µ1α1

is determined by (32) and it’s values
are invariant under θ′-conjugacy. Let us begin with the real θ′-conjugacy class
of  e−ia 0 0

0 eia 0
0 0 1

 ∈ (T ′)θ
′
(R).

The pre-image of this element under (33) is the conjugacy class of (35) in
PGL(2,R). The pre-image of (35) under (34) is the collection of conjugacy
classes in GL(2,R) of the elements in (9) for fixed a ∈ R. Fortunately and
not coincidentally, the character (13) of πµ1 is constant on each conjugacy class
in this collection over b ∈ R. In consequence, we may compare the twisted
character value of (32)

(36) ±e
2iµ1a − e−2iµ1a

e2ia − e−2ia
.

with the character value (13). There are two obvious differences. The first
difference is in the Weyl denominators: e2ia − e−2ia as opposed to eia − e−ia.
The second difference lies in the ambiguity of sign in (36). Differences in Weyl
denominators and sign also occurred in the integral case of section 2.4.2. The
distinction between the numerators in the integral case of section 2.4.2 is not
present here. This is because (33) is a bijection, whereas (23) is not.

In closing, one may wonder how special these examples of twisted spectral
transfer are. There are two serious hurdles we have not encountered in our
examples. The first has been alluded to in mentioning choices of sign. Such
choices become complicated when more than one representation in an L-packet is
equivalent to itself under twisting. In that case one must choose an appropriate
coefficient for each twisted character so that the resulting linear combination of
twisted characters is comparable to the sum of the characters in the L-packet(s)
of the endoscopic group. This is the subject of spectral transfer factors ([She],
6.3 [Mez13] ).

The other hurdle has to do with the maps from conjugacy classes of an en-
doscopic group to twisted conjugacy classes. In our examples these maps AH/G
and AH′/G′ sent real conjugacy classes to real conjugacy classes. Whenever the
initial group is quasisplit this can always be arranged without much trouble. In
general, twisting must be introduced on the endoscopic group (5.4 [KS99]). Then
real twisted conjugacy classes of the endoscopic group are mapped to twisted
conjugacy classes, and sums of twisted characters of the endoscopic group must
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be compared with linear combinations of twisted characters of the initial group.
Spectral transfer in this generality is an open problem at present.
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