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1 Introduction

The motivation for the discussion in this paper stemmed from our attempt to formalize in Lean 4
a short piece of real mathematics. We landed on Cauchy’s polygonal number theorem, which states
that for every integer m > 1, every nonnegative integer is the sum of m + 2 polygonal numbers of
order m + 2, where polygonal numbers of order m + 2 are the integers pp, (k) := % (k* — k) + k for
k =0,1,2,.... The short proof of the theorem by Nathanson [7] appeared to fit our purpose. In
fact, Nathanson proved the following strengthened version of the result, deferring the cases for the
original result when n < 120m to tables by Pepin [9] and Dickson [2].

Theorem 1 (Theorem 1 in [7]). Let m > 3 and n > 120m. Then n is the sum of m+1 polygonal
numbers of order m + 2, at most four of which are different from 0 or 1.

Nathanson also gave short a proof of a result of Legendre:

Theorem 2 (Theorem 2 in [7]). Let m > 3. If m is odd, then every sufficiently large integer is
the sum of four polygonal numbers of order m+ 2. If m is even, then every sufficiently large integer
is the sum of five polygonal numbers of order m + 2, one of which is either 0 or 1.

Nathanson gave the following updated versions in his book [8] published nearly a decade later:

Theorem 3 (Theorem 1.9 in [8]). If m >4 and N > 108m, then N can be written as the sum
of m + 1 polygonal numbers of order m + 2, at most four of which are different from 0 or 1. If
N > 324, then N can be written as the sum of five pentagonal numbers, at least one of which is 0
or 1.

Theorem 4 (Theorem 1.10 in [8]). Let m > 3 and N > 28m3>. If m is odd, then N is the sum
of four polygonal numbers of order m~+2. If m is even, then N is the sum of five polygonal numbers
of order m + 2, at least one of which is 0 or 1.
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As these updated versions were formalized in Isabelle quite recently by Lee et al. [1], we decided to
formalize the proof of the older Theorem 1 instead.

It was not immediately clear why the weaker Theorem 1, albeit with a better constant in the
inequality for the case when m > 4, appeared in Nathanson’s book. Even though the book does
include [7] in the bibliography, the results in the paper are not cited in the body of the text.
Incidentally, the same proof for Theorem 1 also appears in [1].

Our direct attempt at formalizing the proof of Theorem 1 was impeded by a gap in the beginning
of the proof:

Let b, and by be consecutive odd integers. The set of numbers of the form b + r, where
b e {by,ba} and r € {0,1,...,m — 3}, contains a complete set of residue classes modulo m.

Note that the statement fails to hold for m = 3. Since the rest of the proof requires an odd integer
b and an integer r € {0,...,m — 3} so that m divides n — b — r, an apparent fix is to establish the
following for m = 3:

Let by,bs,bs be consecutive odd integers. The set {b1,bs,b3} contains a complete set of
residue classes modulo 3.

In the process of implementing this fix, we decided to perform tighter analyses in some of the
technical lemmas, thus obtaining the following:

Theorem 5. Let n and m be positive integers. If either
(a) m >4 and n > 53m; or
(b) m =3 and n > 159m,

then n is the sum of m + 1 polygonal numbers of order m + 2, at most four of which are different
from 0 or 1.

From this, the next two results can be derived:

Theorem 6. FEvery positive integer n ¢ {9,21,31,43,55,89} can be expressed as the sum of at
most four positive pentagonal numbers.

Proof. From Theorem 5 part (b), we obtain that if n > 477, then n is the sum of four polygonal
numbers of order five (i.e. pentagonal numbers). For n < 476 and n ¢ {9,21,31,43, 55,89}, see
Table 1 and Table 2, noting that the only pentagonal numbers between 1 to 476, inclusive, are 1,
5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, and 425.

Theorem 7. Every positive integer n ¢ {11,26} can be expressed as the sum of at most five positive
hexagonal numbers.

Proof. From Theorem 5 part (a) with m = 4, we obtain that if n > 212 then n is the sum of
five polygonal numbers of order six (i.e. pentagonal numbers). For n < 211 and n ¢ {11, 26}, see
Table 3, noting that the only hexagonal numbers between 1 to 211, inclusive, are 1, 6, 15, 28, 45,
66, 91, 120, 153, and 190.
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Our formalization in Lean 4 of the last three results can be found in [5]. In our formalization, we take
the following theorem as an axiom since it has not yet been formalized in Lean 4 and formalizing
it is expected to be a huge undertaking.

Theorem 8 (Gauss’ Triangular Number Theorem). Let n be a positive integer. If n = 3
(mod 8), then there exist odd integers x >y > z > 0 such that

n=x2+y2—|—22.

In the rest of the paper, we provide a detailed informal proof of Theorem 5 and a brief description
of our formalization in the final section of the paper.

Some historical remarks

In light of Theorem 4, the assertions of Theorems 6 and 7 are certainly not new. Nevertheless, our
proofs involved manually checking far fewer cases and the theorems are stated explicitly here to
address some uncertainties that appeared as recently as October 2022.3

For instance, on the On-line Encyclopedia of Integer Sequences website, there is the following
comment for sequence A133929 (https://oeis.org/A133929):

Equivalently, integers m such that the smallest number of pentagonal numbers (A000326)
which sum to m is exactly five, that is, A100878(a(n)) = 5. Richard Blecksmith & John
Selfridge found these six integers among the first million, they believe that they have found
them all (Richard K. Guy reference). - Bernard Schott, Jul 22 2022

The relevant passage in Guy [3] appears on p. 222:

Richard Blecksmith & John Selfridge found six numbers among the first million, namely
9, 21, 31, 43, 55 and 89, which require five pentagonal numbers of positive rank, and two
hundred and four others, the largest of which is 33066, which require four. They believe
that they have found them all.

We were unable to locate the reference for Blecksmith by Selfridge as there appears to be no entry
for it in the bibliography of [3].

The paragraph that immediately follows concerns representation as hexagonal numbers:

Many numbers (what fraction of the whole, or are they of zero density?) require four hexag-
onal numbers of positive rank; several, e.g.,

5,10, 20, 25, 38, 39, 54, 65, 70, 114, 130, . .. ,

require five, and 11 and 26 require six. Which numbers require five?

Theorem 7 certainly does not quite answer this question—it only asserts that every positive integer
other than 11 and 26 is the sum of at most (but not necessarily exactly) five hexagonal numbers.

3 https://math.stackexchange.com/q/4560516
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1=1 2=1+1 3=1+1+1 4=1+1+1+1

5=5 6=1+5 7T=1+1+5 8=1+1+1+5

9=14+14+1+1+5 10=5+5 11=1+5+5 12 =12

13 =1+ 12 14=1+1+ 12 15=5+5+5 16=1+5+5+5

17 =5 + 12 18 =1+ 5+ 12 19=1+1+5+ 12 20=5+5+5+5

21=1+5+5+5+5 22 = 22 23 =1+ 22 24 =12 + 12

25 =1+ 12 + 12 26 =1+ 1+ 12 + 12 27 =5 + 22 28 =1+5+ 22

20 =5 4 12 + 12 30=1+5+ 12+ 12 3l=1+1+5+12+12(32 =5+ 5 + 22

33=1+5+5+22 34 =12 + 22 35 =35 36 =1+ 35

37=1+1+ 35 38=1+1+1+35 39 =5+ 12 + 22 40 =5 + 35

41=1+5+35 42=1+1+5+35 43=1+1+1+5+ 35 |44 =22 + 22

45 =1+ 22 + 22 46 = 12 + 12 + 22 47 =12 4 35 48 =1+ 12 + 35

49 =5 + 22 + 22 50=5+5+5+ 35 51 =51 52 =1+ 51

53 =1+ 1+ 51 54 =1+1+1+ 51 55=1+1+1+1+51 |56=25+ 51

57 =22 + 35 58 =1+ 22+ 35 59 = 12 + 12 + 35 60 =1+ 12 + 12 + 35

61 =5+5+ 51 62 =5+ 22 + 35 63 = 12 + 51 64 =1+ 12 + 51

65=1-+1+ 12 + 51 66 = 22 + 22 + 22 67=5+5+22+4 35 68 =5+ 12 + 51

69 = 12 + 22 + 35 70 = 70 1=1+70 72=14+1+4+70

73 =22 + 51 74 =1+ 22+ 51 75 =5+ 170 76 =1+5+70

"TT=14+1+5+70 78 =5+ 22 + 51 79 =22+ 22 + 35 80=5+5+70

81=1+5+5+70 82 =12 + 70 83 =1+12+ 70 84 =1+1+12+ 70

85 =12 + 22 4 51 86 = 35 + 51 87 =5+ 12 + 70 88 =1+5+ 12+ 70

89 =5+5+ 22+ 22 4 35|90 =5 + 12 + 22 + 51 91 =5 + 35 + 51 92 = 92

93 =1+ 92 94=1+1+92 95 =22 + 22 + 51 96 =5+ 5 + 35 + 51

97 =5 + 92 98 =1+ 5+ 92 9=1+1+5+92 100 =5 + 22 + 22 + 51

101 = 22 4 22 4 22 + 35 |102 = 51 + 51 103 =1 + 51 + 51 104 = 12 + 92

105 = 35 + 70 106 =1 + 35 + 70 107 =5 + 51 + 51 108 = 22 + 35 + 51

109 =5 + 12 + 92 110 =5+ 35 + 70 111 =1+5+ 35+ 70 112 =5+ 5 + 51 + 51

113 =5+ 22 + 35 + 51 [114 = 22 + 92 115 = 1 + 22 + 92 116 = 12 + 12 + 92

117 = 117 118 = 1 + 117 119 =1+ 1+ 117 120=1+1+ 1+ 117

121 = 51 + 70 122 =5 + 117 123 =1+ 5+ 117 124 = 22 + 51 + 51

125 =1+ 22 4+ 51 + 51 126 = 12 + 22 + 92 127 = 35 + 92 128 = 1 4 35 + 92

129 = 12 + 117 130 = 1 + 12 4 117 131 =1+ 1+ 124 117 |132 =15 + 35 + 92

133 = 12 + 51 + 70 134 = 5 + 12 + 117 135 =1+ 5+ 12 4+ 117 |136 = 22 + 22 + 92

137 = 35 + 51 + 51 138 =1+ 35 + 51 + 51 [139 = 22 + 117 140 = 70 + 70

141 = 12 + 12 + 117 142=1+1+70+ 70 [143 = 51 + 92 144 = 5 + 22 + 117

145 = 145 146 = 1 + 145 147 =1+ 1+ 145 148 =5 4 51 + 92

149 = 22 + 35 + 92 150 = 5 + 145 151 =1+ 5+ 145 152 = 35 + 117

153 = 51 + 51 + 51 154 =5+ 22 + 35 + 92 |155 = 12 + 51 + 92 156 = 35 + 51 + 70

157 = 12 + 145 158 = 1 + 12 + 145 159 =1+ 1+ 12 + 145 |160 =5 + 12 + 51 + 92

161 = 22 + 22 + 117 162 = 70 + 92 163 = 1 + 70 + 92 164 = 12 + 35 + 117

165 = 22 + 51 + 92 166 = 5 + 22 + 22 + 117 |167 = 22 + 145 168 = 51 + 117

169 = 12 + 12 + 145 170 =1+ 1 + 51 + 117|171 = 22 4 22 + 35 + 92 [172 = 51 + 51 + 70

173 =5 + 51 + 117 174 = 22 + 35 + 117 175 = 35 + 70 + 70 176 = 176

177 =1 + 176 178 =1+ 1+ 176 179 = 12 + 22 + 145 180 = 35 + 145

181 =5 + 176 182 =1+ 5 + 176 183 =1+1+ 5+ 176 184 = 92 + 92

185 =1+ 92 + 92 186 =5 + 5 + 176 187 = 70 + 117 188 = 12 + 176

189 =1+ 12 + 176 190 = 22 + 51 + 117 191 = 51 + 70 + 70 192 =5 + 70 + 117

193 =5+ 12 + 176 194 = 51 + 51 + 92 195 =5 + 22 + 51 + 117 196 = 51 + 145

197 = 35 + 70 + 92 198 = 22 + 176 199 = 12 + 70 + 117 200 = 12 + 12 + 176

201 = 5 + 51 4 145 202 = 22 + 35 + 145 203 =5 + 22 + 176 204 = 51 + 51 + 51 + 51

205 =5 + 12 4+ 12 + 176|206 = 22 + 92 + 92 207 =5 + 22 + 35 + 145 (208 = 12 + 51 + 145

209 = 92 + 117 210 = 210 211 =1 + 210 212 =1+ 1+ 210

213 =51 + 70 + 92 214 =5+ 92 + 117 215 =5 + 210 216 =1+ 5 + 210

217 =1+ 1+ 5 + 210 218 = 22 + 51 + 145 219 = 51 + 51 + 117 220 =5 + 5 + 210

221 = 12 + 92 + 117 222 = 12 + 210 223 =1+ 12 + 210 224 =1 + 12 + 35 + 176

225 =5+ 22 + 22 + 176 |226 = 35 + 51 + 70 + 70 |227 = 51 + 176 228 =1 + 51 + 176

229 =1+ 1+ 51+ 176 230 = 12 + 22 + 51 + 145/231 = 35 + 51 + 145 232 = 22 + 210

233 = 22 + 35 + 176 234 = 117 + 117 235 = 51 + 92 + 92 236 =14 51 + 92 4+ 92

237 = 92 + 145 238 = 51 + 70 + 117 239 = 12 + 51 + 176 240 = 1 4+ 5 + 117 + 117
Table 1. Representations as sum of pentagonal numbers (1 — 240)
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210

+ 5 + 12 4 247
22 + 247
12 4+ 51 + 210
1+ 92 4 92 + 92
35 + 70 + 176
54 70 + 210
1+ 1+ 287
117 + 176
5+ 5+ 287
92 + 92 + 117
12 + 117 + 176
22 + 287
51 4 117 + 145
70 + 247
145 + 176
35 + 145 4 145
12 + 70 + 247
12 4 145 + 176
35 + 92 + 210
51 + 145 + 145
12 + 12 + 145 + 176
51 + 51 4 247
1+ 22 4 330
70 + 287
22 4 92 4 247
35 4 330
12 4 70 + 287
35 4 51 4 287
1+ 376
5+ 376
92 + 117 4 176
1+ 12 4 376
12 + 51 + 330
70 + 117 4 210
22 + 92 + 287
14 117 + 287
5+ 117 4 287
92 4 145 + 176
14 12 4 117 + 287
1+ 210 + 210
425
1+ 1+ 51+ 376
22 + 35 + 376
12 + 425
22 + 92 + 117 + 210
22 + 176 4 247
70 4 92 4 287
1+ 5+ 117 4 330
210 + 247
1+ 35 + 425
+ 35 4 425
+ 92 + 376

5
1
51 4+ 92 4 330

474

5+ 92 + 145
70 + 176

5+ 35 + 210
70 + 92 + 92
12 + 70 + 176
117 + 145

51 + 70 + 145
1+ 22 + 247
5+ 22 + 247
51 4 51 4 176
35 + 247
1+5+ 70+ 210
145 + 145

14 117 + 176
51 4 247

92 + 210

22 + 22 + 117 + 145
12 + 51 + 247
5 + 22 + 287
14 70 4 247
35 + 287

92 + 117 4 117
330

12 + 35 + 287
51 + 287

12 + 330

70 + 92 + 92 + 92
70 4+ 70 + 210
92 4 117 + 145
1+ 70 + 287
35 + 117 4 210
1+ 35+ 330
5+ 35 + 330
35 4 92 4 247
+ 376

+ 376
210

145 + 210
92 + 210

o+ +

1
5
+

33
[=2)

0+ 117 + 145
45 + 210
2 + 376
2 + 287
2 4+ 117 + 117
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2 + 92 + 330
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35 + 51 + 376
145 + 145 4 176
70 + 70 + 330
51 + 176 + 247

467
471
475

1+5+ 92+ 145
247

5+ 70 + 176

22 + 22 + 35 + 176
12 4 247

14 117 + 145

22 + 35 + 210

12 + 12 + 247
1+ 12 4 117 4 145
70 4+ 92 4 117
1+ 35 + 247

287

22 + 22 + 247

5 + 145 + 145

12 + 287

5 + 51 + 247

70 + 92 + 145

12 + 12 + 287

22 4 117 + 176
51 + 92 + 176
1+ 35 + 287

117 + 210

1+ 330

5 + 330

92 + 247

1+ 12 + 330
5+ 12 + 330

12 + 92 4 247
145 + 210

1+ 1+ 70+ 287
70 + 117 4+ 176
12 4 145 + 210
70 + 92 + 92 + 117
5+ 5+ 35+ 330
92 + 287
1+1+5+ 37
35 + 176 4 176

5 4 176 + 210
5+ 51 + 92 + 247
1+ 22+ 376

51 + 176 4 176
117 4 145 4 145
35 + 376

51 4 117 + 247
92 + 117 + 210
176 + 247

51 + 376

1+ 5 4 425

145 + 145 + 145
35 + 117 + 287
51 + 145 + 247
22 + 425

5+ 70 + 376

35 + 210 + 210
12 + 117 + 330
176 + 287

35 + 145 + 287
51 + 210 + 210
145 + 330

244
248
252
256
260
264
268

12 4+ 22 + 210
1 + 247

5 + 247

22 + 117 4 117
1+ 12 4 247
5+ 12 + 247
92 + 176

35 + 92 + 145
92 + 92 + 92
70 + 210

22 4 117 + 145
1+ 287

5 + 287
35 + 51 + 210
14 12 4 287
70 + 117 + 117
14+ 5+ 92+ 210
51 + 51 + 210
70 + 70 + 176
247

[\l V]

Ol =R NN

1 4 145 + 210
70 + 145 + 145
117 4 247

51 + 70 + 247
70 + 92 + 210
376

1+ 92 + 287
5+ 92 + 287
12 + 376

145 + 247

22 + 22 + 22 + 330
70 + 330

117 + 287

51 + 70 + 287
1+ 35+ 376
35 + 51 + 330
210 + 210

1+ 176 + 247
+ 176 + 247
45 + 287

5+ 5 + 425

5
1
1+
1+ 35 + 117 + 287
2
1
5

117 + 145 + 210
51 + 425

Table 2. Representations as sum of pentagonal numbers (241 — 476)




6 K.K.H. Cheung, T. McNamer

1=1 2=1+1 3=1+1+1 4=14+14+1+1
5=14+1+1+1+1 6 =06 7T=1+4+6 8=14+14+6
9=1+14+1+6 0=1+1+1+1+6 M=14+14+14+14+14+6/12=6+6
13=1+6+6 14=1+14+6+6 15 =15 16=1+15
17=1+1+4 15 18=6+6+4+6 19=14+64+6+6 20=1+1+64+6+6
21 =6+ 15 22=1+6+15 23=1+1+6+15 24=6+6+6+6
25=14+6+6+6+6 [26=1+14+6+6+6+6(27=6+6+ 15 28 = 28

29 =1+ 28 30 =15+ 15 31=1+ 15+ 15 32=14+1+15+4+15
33=6+6+ 6+ 15 34 =6 + 28 35=14+6 4 28 36 =64+ 15 + 15
37T=1+6+ 15+ 15 38=1+1+6+15+15 [39=6+4+6+4+6+ 6+ 15 40 =6 + 6 + 28

41 =146 4 6 4+ 28 42 =646 4+ 15 + 15 43 =15 + 28 44 =1+ 15 + 28

45 = 45 46 =1 + 45 47 =1+ 1445 48=14+14+1+4 45
49 =6 + 15 + 28 50=1+6 + 15 4 28 51 =6 + 45 52 =146 + 45

53 =141+ 6+ 45 54=14+1+1+46+4 45 55 =6+ 6 + 15 + 28 56 = 28 + 28

57 =1+ 28 + 28 58 = 15 + 15 + 28 59 =1+ 15 4+ 15 + 28 60 = 15 + 45

61 =1+ 15+ 45 62 =6 + 28 + 28 63 =64+ 64 6 4 45 64 =6+ 15 + 15 4+ 28
65 =1+ 6+ 15 + 15 + 28|66 = 66 67 =1 + 66 68 =1+ 1+ 66
69=1+4+1+1+4 66 MM=14+1+14+1+466 71 =15+ 28 4+ 28 72 =6 + 66

73 =28 4 45 74 =1+ 28 + 45 75 =154 15 + 45 76 =14 15 + 15 + 45
77 =6+ 15 4+ 28 + 28 78 =6 + 6 + 66 79 =6 + 28 + 45 80=1+ 6+ 28 + 45
81 = 15 + 66 82 =1+ 15 + 66 83 =1+1+4 15+ 66 84 = 28 + 28 4 28

85 =6+ 6 + 28 + 45 86 = 15 + 15 + 28 + 28 87 =6 + 15 + 66 88 = 15 4 28 4 45

89 =1+ 15 + 28 4+ 45 90 = 45 + 45 91 =91 92 =1+ 91
93=1+4+1+091 94 = 28 + 66 95 =14 28 + 66 96 = 6 + 45 + 45

97 =6 + 91 98 =1+ 6+ 91 9=14+14+6+491 100 = 6 + 28 + 66

101 = 28 4 28 + 45 102 = 6 + 15 + 15 + 66 103 =6 + 6 + 91 104 =146+ 6+ 91
105 = 15 4 45 4 45 106 = 15 + 91 107 =1+ 15 + 91 108 =14+1+4 15+ 091
109 = 15 + 28 + 66 110 = 1 + 15 + 28 + 66 111 = 45 + 66 112 = 1 4 45 + 66
113=1+4+ 6+ 15 + 91 114 =14+14+1+ 45+ 66 [115 =6 + 15 + 28 4 66 116 = 15 4+ 28 + 28 4 45
117 = 6 + 45 + 66 118 = 28 + 45 + 45 119 = 28 4+ 91 120 = 120

121 =1 4 120 122 =1+ 1 4 120 123=141+4 1+ 120 124 = 6 4 28 + 45 + 45
125 =6 + 28 4+ 91 126 = 6 4+ 120 127 =1+ 6 4 120 128=1+4+1+4 6 + 120
129 =28 + 28 + 28 +45 (130 =6 4+ 6 + 28 + 45 4+ 45|131 =6 + 6 + 28 4+ 91 132 = 66 + 66

133 =1 + 66 + 66 134 = 15 + 28 + 91 135 = 15 + 120 136 = 45 + 91

137 =1+ 45 + 91 138 = 6 + 66 + 66 139 = 28 + 45 4 66 140 = 6 + 15 + 28 + 91
141 = 6 + 15 + 120 142 = 6 + 45 + 91 143 =1+ 6 + 45 4+ 91 144 = 6 + 6 + 66 + 66
145 = 6 4 28 + 45 4 66 146 = 28 + 28 + 45 + 45 147 = 15 4 66 + 66 148 = 28 + 120

149 = 1 4 28 + 120 150 = 15 + 15 + 120 151 = 15 + 45 + 91 152 =14 15 + 45 + 91
153 = 153 154 =1 4+ 153 155 =1+ 1+ 153 156 = 45 + 45 + 66
157 = 66 + 91 158 =1 + 66 + 91 159 = 6 + 153 160 =1 + 6 + 153

161 =14+ 14 6 + 153 162 = 6 + 45 + 45 + 66 163 = 6 + 66 + 91 164 = 28 4 45 4 91
165 = 45 + 120 166 = 1 + 45 + 120 167 = 28 4+ 28 + 45 4 66 168 = 15 + 153

169 =1 + 15 4+ 153 170 =1+ 1+ 15 + 153 171 =6 + 45 + 120 172 = 15 + 66 + 91
173 =14 15 + 66 + 91 174 = 6 + 15 + 153 175 = 28 4+ 28 + 28 4+ 91 176 = 28 + 28 + 120
177 = 45 4 66 + 66 178 = 15 4+ 15 + 28 + 120 (179 = 15 4 28 + 45 4+ 91 180 = 15 + 45 + 120
181 = 28 4 153 182 =91 + 91 183 = 15 + 15 + 153 184 =1+ 15 + 15 + 153
185 = 28 4 66 + 91 186 = 66 + 120 187 = 6 + 28 + 153 188 =6 + 91 4+ 91

189 =6 + 15 4+ 15 + 153 |190 = 190 191 =1 + 190 192 =1+ 1+ 190
193 = 28 + 45 + 120 194 =6 4+ 6 + 91 + 91 195 = 15 + 15 + 45 + 120 196 = 6 + 190

197 =14 6 + 190 198 = 45 + 153 199 =1 4 45 + 153 200=1+ 1+ 45 + 153
201 = 15 + 66 + 120 202 =6 + 6 + 190 203 =1 + 45 + 66 + 91 204 = 6 + 45 + 153
205 = 15 + 190 206 =1+ 15 + 190 207=14+1+ 15+ 190 208 =6+ 6 4+ 6 4+ 190
209 = 28 + 28 + 153 210 = 28 4+ 91 + 91 211 = 91 4 120

Table 3. Representations as sum of hexagonal numbers
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2 Proof of Theorem 5

We follow the structure of the proof of Thereom 1 in [7]. The original argument is reorganized and
considerably expanded so that it is more straightforward to formalize.

Lemma 1 (Cauchy’s Lemma). Let a and b be odd positive integers such that b*> < 4a and
3a < b% +2b+ 4. Then there exist nonnegative integers s,t,u,v such that

a232+t2—|—u2—|—v2,
b=s+t+u+w.

Proof. Since a and b are odd, there exist nonnegative integers p and ¢ such that a = 2p 4+ 1 and
b=2¢+1. Then 4a —b*> =8p+4—4¢*> —4g— 1 =8p+4q(qg+1) +3 = 3 (mod 8). By Theorem 8,
there exist odd integers x > y > z > 0 such that

da —b? = 2% +y> + 22

Claim:  +y + z < b+ 4. Indeed, by the Cauchy-Schwarz inequality, we have
(z+y+2)? <@ +y*+ )12+ 12 +1%)

Hence,

THy+2<3E2+12 4 22) = V120 — 302 < \/4(b2 +2b+ 4) — 302 = b+ 4.

Writing x,y, z as 2a+ 1, 28 + 1, 2y 4+ 1 gives
a=(+o®+ 5 +9°) + (g +a+f+7)+1

and
a+p+y<q. (1)

We consider two cases.
Case 1: g+ a+ B+~ is even.
Set

s:q+a+ﬁ+7
2
t=q+a+1-—s,
u=q+pf+1-s,
v=q+7vy+1-s.

+1,

Then s,t,u,v are integers satisfying

a:s2+t2+u2+v2
b=s+t+u+wv,
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and s >t > u > v. It remains to show that v > 0. Note that

q+a+6+7+g

vq+’y+1( 5

_g-a-f+y
2
>0

by (1).

Case 2: ¢+ a+ B+ v is odd.

Hence, ¢4+ a+ 8 — v+ 1 is even. Set
siq+a+6—7+1

= 5 ,

t=q+a+1-—s,
u=q+p+1-s,
v=g—"y—S8s.

Then s,t,u,v are integers satisfying

a:s2+t2—|—u2+v2
b=s+t+u+v,

and s >t > u > v. It remains to show that v > 0. Note that

gta+B8—-—v+1
v=q—7— 5
g—a—-pf—-—y-1
2

—1
>
- 2

by (1). Since v is an integer at least —3, it must be at least 0.

We now establish a series of technical lemmas from which Theorem 5 readily follows.

Define
mmmy_2<y—i)+vQ<y—;)2+8<”%Z:ﬂ)—am1

o(m,n) = (;—S’) +\/<;— Z)ZG(Z) — 44 0.001.

Lemma 2. Let n and m be positive integers. If m > 4 An > 53m or m = 3An > 159m, then there
exist integers b and r such that b is odd, £L(n,m) < b < u(n,m), 0 < r < m —3, and m divides
n—b—r.

and
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Lemma 3. Let nym,b,r € Z. If m > 3, n >2m, 0 <r <m—3, {(n,m) < b < u(n,m) and
mln—>b—r, thena:z?(”fTb*T)—i—b satisfies b — 4a < 0 and b? + 2b +4 — 3a > 0.

We postpone the proofs of these lemmas to the next section.
Proof (of Theorem 5). By Lemma 2, there exist integers b and r such that b is odd, £(n,m) <b <
u(n,m), 0 <r <m —3, and m dividesn —b —r.
By Lemma 3, a := 2 (”_Tb_’”) + b is an integer such that b — 4a < 0 and b 4+ 2b+ 4 — 3a > 0.
By Lemma 1, there exist nonnegative integers s, t, u, v such that
a:s2+t2+u2—|—v2,
b=s+t+u+w.

Hence,

n =

(a=b)+b+r

SE

= 5(52—3)+5+%(t2ft)thJr%(uzfu)Jrqu%(vzfv)quJrr
= pm(s) + pm(t) + Pm (u) + pm(v) +r.

The result now follows.

3 Proofs of technical lemmas

In this section, we give proofs of Lemma 2 and Lemma 3.

We first address Lemma 3. The following is straightforward to show:

Lemma 4. Let x,p,c € R with ¢ > 0.

(a) If0§m<§+\/(§)2+c, then z* — pxr — ¢ < 0.
(b) Ifx>§+\/(§)2+c, then x? — px — ¢ > 0.

Proof. Since ¢ > 0, we have £ + 4/ (%)2 +e>£8+ |g| > 0.

(a) The statement holds trivially when = = 0.

Assume that = > 0. Since z < § + (%)2 + ¢, we have z —p < — & + (g)z + ¢. Thus,

2 —pr—c=x(xr—p)—c

S CORNE
<[5V ) (5o )

=0.
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(b) Since z > §+\/(§)2+c>07 we have x —p > —g+\/(§)2+c> —§+\/(§)2+c>0. Hence,

2 —pr—c=x(x—p)—c

>(g+ (g)ﬂc)(w)c
(5@ ) (5o )

Proof (of Lemma 3). Note that
b > l(n,m) = (;—:D +\/(;—§;>2+6(:l) — 440.001
(-G )

Note that n —r > 2m — (m — 3) = m + 3. Settingpszlf%andc::fi(”*’” —4, we have ¢ > 0
6

m

and so, by Lemma 4 part (b), we obtain that b +2b+4—3a =b?— (1 — ) b— (6 (%=L) —4) > 0.

m

We can also see from the above derivation that b > 0.

s ) b 2) o () o
(-2 62 ()

Setting p :=4 (1 — 2) and ¢ := 8 (%), we have ¢ > 0 and so, by Lemma 4 part (a), we obtain
that 0% —4a =% — 4 (1 — 2)p— 82T <,

Now,

Our proof of Lemma 2 relies on the next two lemmas:

Lemma 5. Let p,q € R. Let k be a positive integer such that ¢ —p > 2k. Then there exists an
integer m such that fori=0,....k—1, ifb; =2(m+1) + 1, then p <b; <q.

Proof. Let £ = [p]. Note that p > £— 1. We can take m to be the least integer such that 2m+1 > /.
Indeed, for all i = 0,...,k—1,b; > bp =2m+1>pand b; < b1 =2(m+ (k—-1))+1 =
2m+1+2(k—1).

If ¢ is even, then 2m+1 = ¢+ 1. Hence, 2m+14+2(k—1) ={+1+2(k—1)=¢—1+2k <p+2k <
p+q—p=q.
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If £ is odd, then 2m+1 = £. Hence, 2m+1+2(k—1) =4 +2(k—1) =4 —-14+2k—-1<p+2k—-1<
ptrqg—p—1<gq

Lemma 6. Let m and n be positive integers.

(a) If m > 4 and n > 53m, then u(n,m) — €(n,m) > 4.

(b) If m =3 and n > 159m, then u(n,m) —£(n,m) > 6

Before we prove this, we first establish a technical result to obtain two key inequalities which allow
us to obtain a tighter analysis of what was in Nathanson’s original proof.

Lemma 7. Let a,b,p,q € R such that a > b > 0. Define f(t) :=+/at + p— /bt + q. Then for all x

b%p — a’q
and y such thatx >y > ——— ay+p >0 and by +q > 0,
ab(a — b)
fla) = f(y).
b*p — a%q . )
Proof. Let x and y be such that x >y > m. If x = y, there is nothing to prove.
. b%p — a’q
Assume that = > y. Then there exist § and ~, where § > v > 0, such that x = m + 6, and
b%p — a2q bp — aq
= — . Let 6 = . Th
Y ab(a—b)Jr’y ¢ a—1b o
b%p — a%q
ax—l—p—a((zb(ab)—i—(S) +p
b?p — a’q + bap — b?p
= 6
b(a —b) ta
a(bp — aq)
=——2+4ad
ba—1b) ¢
= %9 +ad,
and
b%p — a’q
b$+q—b(ab(ab)+6) +q
2, _ 2 2.
:bp a®q+ a“q abq+b6
a(a —b)
b(bp — aq)
=——4b0
ala —b) +
= é(9 + bo.
a

b
Similarly, ay + p = %0 +ayand by+q = 59 + by.
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Then

a a VIOt ad)’ — ‘/90+a72
\/beﬂa_\/beﬂv_ ( :/29+¢)15+(\/Z?9+a7)
_ a(d —7)
V0 +ad+ /30 +ay
a(d —7)
VEWVO+D5+ I+ by)
b(6 —7)
\/g(\/9+b5+\/9+b7)
b(6 — )
- \/g(\/9+a6+\/9+a7)

_(yam) - (o)

\/29+b5+\/§9+b’y

:\/b9+b§—\/b9+b'y.

a a

,/99—}—@5—1/904—17521/39+a7—\/99+b%
b a b a

f(x) = f(y).

2

Hence,
giving

Corollary 1. If x > 53, then % +8xr —4— 4/6x — % —0.002 > 4.

Proof. By Lemma 7 with a =8,b=6, p=—4, and g = —%7 we have

1 1
Z + 8z —4—/6z — Z5 ~0.002 > g +/8(53) —4— 1/6(53) — f ~0.002
> 4.

Corollary 2. If x > 159, then % + \/8:10 + % — \/6:10 — % —0.002 > 6.

15
-

7 1 15 7 1 15
o Jse+ 2 Jer— 2 —0002> L4 /8(150) + 2 — /6(159) — 22 — 0.002
6+\/m+9 \/x 4 _6+\/( )3 \/( )=

> 6.

Proof. By Lemma 7 with a =8, b =6, p = g, and ¢ = we have
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Proof (of Lemma 6). With m > 4, we have

u(n,m)—é(n,m)z3—7711—#\/8(:1)—!-;62—#2—4—\/6(;)—;(1—:1) —%—0002
2;’_i+\/8(;)—4—\/6(;2)—f—o.ooz
ZZJF 8(%)_4_ 6(%)_§—0.002
>4

by Corollary 1 with z = .

When m = 3, we have

u(n,m)—ﬁ(n,m)zg—&-\/S (%) —&-3—\/6 (%) —%—0.002
6

by Corollary 2 with z = *.

Proof (of Lemma 2). First, consider the case when m > 4 and n > 53m. By Lemma 6 part (a),
we have u(n,m) — £(n,m) > 4. It follows from Lemma 5 that there exist odd integers by, b; in the
interval [¢(n,m),u(n, m)] such that by = by + 2.

Let 7’ be the remainder when n — bg is divided by m. Note that v < m — 1 and n — by — r’ =

(mod m).

If ' > m—2,set r tor —2. Since ' < m — 1, we have that r = v/ — 2 < m — 3. Also,
r=1"—-2>m-2-2=m—4>4—4=0. Then setting b to by, we have that n — b —r =
n—>b—(r'—2)=n—>by—r' =0 (mod m). Hence, m divides n —b —r.

Otherwise, we have r’ < m — 3. Setting r to r’ and b to by, we have that n —b—r=n—bg—1r' =0
(mod m). Hence, m divides n — b — .

Next, consider the case when m = 3 and n > 159m. We set r to 0. By Lemma 6 part (b), we have
u(n,m)—~€(n,m) > 6. It follows from Lemma 5 that there exist odd integers bo, b1, by in the interval
[¢(n,m),u(n, m)] such that by = by + 2 and by = by + 2.

Since by = by + 2 (mod 3) and by = b1 +2 = by +4 = by + 1 (mod 3), it follows that for some
b € {bo,b1,b2}, we haven —b—r=n—>b=0 (mod 3).

4 On our formalization in Lean 4

We formalized the proofs of Theorem 6 and Theorem 7 in the Lean 4 Theorem Prover [6], asserting
Theorem 8 without proof. In the following, we outline the essential details. The full proof can be
found in the Lean files [5].

We defined the proposition
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def IsnPolygonal (s : Z) (- : s23) (n:N) :=n=20
vIck:N, (((s:0)-2)/72)%(k=*(k-1)+k=n

for stating if n is a polygonal number of order s. (The letter s is sometimes used in the extant
literature to denote the order, i.e. s = m + 2 with m > 1, as it corresponds more clearly to the
number of sides. For example, a triangular number is a polygonal number of order 3.)

We chose Z instead of N for the type of s for two reasons. The first is to accommodate future
extensions to polygonal numbers of negative orders (which do exist). The second is that subtraction
of natural numbers in Lean is truncated. For example, 2 — 4 = 0. This means that something like
a — b+ b cannot be rewritten as a unless one has a proof that a > b.

In addition, we could have avoided an explicit requirement of a proof that s 2 3 by defining a
subtype for the argument s. However, it is rather inconvenient to work with such a subtype and we
decided that it was not worth the trouble for having a cleaner interface.

With the above definition, we can establish that 13 is a triangular number as follows:
example : IsnPolygonal 3 (by show 3 = 3; simp) 36 := by right; use 8; norm_num

However, proving that a number is not polygonal of some particular order is not necessarily trivial
as it might involve a detailed case analysis:

example : -IsnPolygonal 3 (by show 3 = 3; simp) 2 := by
dsimp [IsnPolygonal]
push_neg
constructor
. norm_num
. intro k
by_cases hk : k = 2
. interval_cases k <j;> norm_num
. qify at hk; nlinarith

To facilitate automated proof generation via the decide tactic, we used the following equivalent
definition:

def IsnPolygonale (s : Z) (- : s23) (n: N) :=
n=0v (IsSquare (8 * (s - 2) *n + (s - 4) *2)
A (Int.sgrt (8 % (s - 2) *n+ (s -4)22)+ (s-4))% (2% (s-2)) =0)

Since in Mathlib, there is already a decidable instance for IsSquare, it is straightforward to define
a decidable instance for IsnPolygonale:

instance : Decidable (IsnPolygonale s n h) := by
dsimp [IsnPolygonale]
exact instDecidableOr

example : IsnPolygonale 5 (by show 5 2 3; simp) 5 := by decide +kernel
example : -IsnPolygonale 3 (by show 3 = 3; simp) 2 := by decide +kernel

Note that +kernel is needed since decide alone does not work for IsSquare. The reason is technical
and is beyond the scope of this paper. Nevertheless, the reduction is performed in the kernel and
does not reduce the trustworthiness of the result.
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A decidable instance for IsnPolygonal can then be obtained as follows:

instance : Decidable (IsnPolygonal s n h) := by
apply decidable_of_iff (IsnPolygonale s n h)
refine Eq.to_iff ?_
-- Equivalence proof omitted.

The proof that IsnPolygonal and IsnPolygonale are equivalent is rather involved. Readers interested
in the details are referred to the Lean files [5].

Unfortunately, proving by decide turned out to be quite slow. The bottleneck was the decidable
instance for IsSquare. Therefore, in the case analyses for our formalization of the proofs of Theorem 6
and Theorem 7, we avoided using decide.

We also defined the following proposition

def IsNKPolygonal (s : Z) (hs : s 2 3) (k : N) (n : N) :=
3 S : List N, S.all (IsnPolygonal s hs) A S.length = k A S.sum = n

With this definition, the statement of Theorem 6 can be formalized as

def pentaExceptions : Finset N := {9, 21, 31, 43, 55, 89}

theorem SumOfFourPentagonalNumber : ¥V n : N, - (n € pentaExceptions)
> IsNKPolygonal 5 (by norm_num) 4 n := by sorry

For efficiency, we first defined all the pentagonal numbers less than 477:

def pO : IsnPolygonal 5 (by norm_num) 0 := by simp [IsnPolygonall];

def p1 : IsnPolygonal 5 (by norm_num) 1 := by simp [IsnPolygonal]; use 1; ring

def p5 : IsnPolygonal 5 (by norm_num) 5 := by simp [IsnPolygonal]; use 2; ring

def p12 : IsnPolygonal 5 (by norm_num) 12 := by simp [IsnPolygonal]; use 3; ring
def p22 : IsnPolygonal 5 (by norm_num) 22 := by simp [IsnPolygonall]; use 4; ring
def p35 : IsnPolygonal 5 (by norm_num) 35 := by simp [IsnPolygonall]; use 5; ring
def p51 : IsnPolygonal 5 (by norm_num) 51 := by simp [IsnPolygonal]; use 6; ring
def p70 : IsnPolygonal 5 (by norm_num) 70 := by simp [IsnPolygonall]; use 7; ring
def p92 : IsnPolygonal 5 (by norm_num) 92 := by simp [IsnPolygonal]; use 8; ring
def p117 : IsnPolygonal 5 (by norm_num) 117 := by simp [IsnPolygonall]; use 9; ring
def p145 : IsnPolygonal 5 (by norm_num) 145 := by simp [IsnPolygonal]; use 10; ring
def p176 : IsnPolygonal 5 (by norm_num) 176 := by simp [IsnPolygonal]; use 11; ring
def p210 : IsnPolygonal 5 (by norm_num) 210 := by simp [IsnPolygonal]; use 12; ring
def p247 : IsnPolygonal 5 (by norm_num) 247 := by simp [IsnPolygonall]; use 13; ring
def p287 : IsnPolygonal 5 (by norm_num) 287 := by simp [IsnPolygonall]; use 14; ring
def p330 : IsnPolygonal 5 (by norm_num) 330 := by simp [IsnPolygonall]; use 15; ring
def p376 : IsnPolygonal 5 (by norm_num) 376 := by simp [IsnPolygonal]; use 16; ring
def p425 : IsnPolygonal 5 (by norm_num) 425 := by simp [IsnPolygonal]; use 17; ring

(S, BN, RIS, BNG) BINS) RS, NG, BIN S, INe)]

One can then handle each number less than 477 by directly making use of these definitions. For
instance, we can prove that 113 is the sum of four pentagonal numbers as follows:
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example : IsNKPolygonal 3 (by norm_num) 4 113 := by
use [5, 22, 35, 51]
simp [p5, p22, p35, p51]

Finally, the statement of Theorem 7 is formalized as

def hexaExceptions : Finset N := {11, 26}

theorem SumOfFiveHexagonalNumber : ¥ n : N, - (n € hexaExceptions)
> IsNKPolygonal 6 (by norm_num) 5 n := by sorry

We employed a similar strategy as for Theorem 6 to improve efficiency. Both theorems could be
type-checked by Lean within minutes.
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