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1 Introduction

The motivation for the discussion in this paper stemmed from our attempt to formalize in Lean 4
a short piece of real mathematics. We landed on Cauchy’s polygonal number theorem, which states
that for every integer m ≥ 1, every nonnegative integer is the sum of m+ 2 polygonal numbers of
order m+2, where polygonal numbers of order m+2 are the integers pm(k) := m

2

(
k2 − k

)
+ k for

k = 0, 1, 2, . . . . The short proof of the theorem by Nathanson [7] appeared to fit our purpose. In
fact, Nathanson proved the following strengthened version of the result, deferring the cases for the
original result when n < 120m to tables by Pepin [9] and Dickson [2].

Theorem 1 (Theorem 1 in [7]). Let m ≥ 3 and n ≥ 120m. Then n is the sum of m+1 polygonal
numbers of order m+ 2, at most four of which are different from 0 or 1.

Nathanson also gave short a proof of a result of Legendre:

Theorem 2 (Theorem 2 in [7]). Let m ≥ 3. If m is odd, then every sufficiently large integer is
the sum of four polygonal numbers of order m+2. If m is even, then every sufficiently large integer
is the sum of five polygonal numbers of order m+ 2, one of which is either 0 or 1.

Nathanson gave the following updated versions in his book [8] published nearly a decade later:

Theorem 3 (Theorem 1.9 in [8]). If m ≥ 4 and N ≥ 108m, then N can be written as the sum
of m + 1 polygonal numbers of order m + 2, at most four of which are different from 0 or 1. If
N ≥ 324, then N can be written as the sum of five pentagonal numbers, at least one of which is 0
or 1.

Theorem 4 (Theorem 1.10 in [8]). Let m ≥ 3 and N ≥ 28m3. If m is odd, then N is the sum
of four polygonal numbers of order m+2. If m is even, then N is the sum of five polygonal numbers
of order m+ 2, at least one of which is 0 or 1.



2 K.K.H. Cheung, T. McNamer

As these updated versions were formalized in Isabelle quite recently by Lee et al. [4], we decided to
formalize the proof of the older Theorem 1 instead.

It was not immediately clear why the weaker Theorem 1, albeit with a better constant in the
inequality for the case when m ≥ 4, appeared in Nathanson’s book. Even though the book does
include [7] in the bibliography, the results in the paper are not cited in the body of the text.
Incidentally, the same proof for Theorem 1 also appears in [1].

Our direct attempt at formalizing the proof of Theorem 1 was impeded by a gap in the beginning
of the proof:

Let b1 and b2 be consecutive odd integers. The set of numbers of the form b + r, where
b ∈ {b1, b2} and r ∈ {0, 1, . . . ,m− 3}, contains a complete set of residue classes modulo m.

Note that the statement fails to hold for m = 3. Since the rest of the proof requires an odd integer
b and an integer r ∈ {0, . . . ,m− 3} so that m divides n− b− r, an apparent fix is to establish the
following for m = 3:

Let b1, b2, b3 be consecutive odd integers. The set {b1, b2, b3} contains a complete set of
residue classes modulo 3.

In the process of implementing this fix, we decided to perform tighter analyses in some of the
technical lemmas, thus obtaining the following:

Theorem 5. Let n and m be positive integers. If either

(a) m ≥ 4 and n ≥ 53m; or

(b) m = 3 and n ≥ 159m,

then n is the sum of m+ 1 polygonal numbers of order m+ 2, at most four of which are different
from 0 or 1.

From this, the next two results can be derived:

Theorem 6. Every positive integer n /∈ {9, 21, 31, 43, 55, 89} can be expressed as the sum of at
most four positive pentagonal numbers.

Proof. From Theorem 5 part (b), we obtain that if n ≥ 477, then n is the sum of four polygonal
numbers of order five (i.e. pentagonal numbers). For n < 476 and n /∈ {9, 21, 31, 43, 55, 89}, see
Table 1 and Table 2, noting that the only pentagonal numbers between 1 to 476, inclusive, are 1,
5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, and 425.

Theorem 7. Every positive integer n /∈ {11, 26} can be expressed as the sum of at most five positive
hexagonal numbers.

Proof. From Theorem 5 part (a) with m = 4, we obtain that if n ≥ 212, then n is the sum of
five polygonal numbers of order six (i.e. pentagonal numbers). For n < 211 and n /∈ {11, 26}, see
Table 3, noting that the only hexagonal numbers between 1 to 211, inclusive, are 1, 6, 15, 28, 45,
66, 91, 120, 153, and 190.
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Our formalization in Lean 4 of the last three results can be found in [5]. In our formalization, we take
the following theorem as an axiom since it has not yet been formalized in Lean 4 and formalizing
it is expected to be a huge undertaking.

Theorem 8 (Gauss’ Triangular Number Theorem). Let n be a positive integer. If n ≡ 3
(mod 8), then there exist odd integers x ≥ y ≥ z > 0 such that

n = x2 + y2 + z2.

In the rest of the paper, we provide a detailed informal proof of Theorem 5 and a brief description
of our formalization in the final section of the paper.

Some historical remarks

In light of Theorem 4, the assertions of Theorems 6 and 7 are certainly not new. Nevertheless, our
proofs involved manually checking far fewer cases and the theorems are stated explicitly here to
address some uncertainties that appeared as recently as October 2022.3

For instance, on the On-line Encyclopedia of Integer Sequences website, there is the following
comment for sequence A133929 (https://oeis.org/A133929):

Equivalently, integers m such that the smallest number of pentagonal numbers (A000326)
which sum to m is exactly five, that is, A100878(a(n)) = 5. Richard Blecksmith & John
Selfridge found these six integers among the first million, they believe that they have found
them all (Richard K. Guy reference). - Bernard Schott, Jul 22 2022

The relevant passage in Guy [3] appears on p. 222:

Richard Blecksmith & John Selfridge found six numbers among the first million, namely
9, 21, 31, 43, 55 and 89, which require five pentagonal numbers of positive rank, and two
hundred and four others, the largest of which is 33066, which require four. They believe
that they have found them all.

We were unable to locate the reference for Blecksmith by Selfridge as there appears to be no entry
for it in the bibliography of [3].

The paragraph that immediately follows concerns representation as hexagonal numbers:

Many numbers (what fraction of the whole, or are they of zero density?) require four hexag-
onal numbers of positive rank; several, e.g.,

5, 10, 20, 25, 38, 39, 54, 65, 70, 114, 130, . . . ,

require five, and 11 and 26 require six. Which numbers require five?

Theorem 7 certainly does not quite answer this question—it only asserts that every positive integer
other than 11 and 26 is the sum of at most (but not necessarily exactly) five hexagonal numbers.
3 https://math.stackexchange.com/q/4560516

https://oeis.org/A133929
https://math.stackexchange.com/q/4560516
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1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1 + 1 + 1
5 = 5 6 = 1 + 5 7 = 1 + 1 + 5 8 = 1 + 1 + 1 + 5
9 = 1 + 1 + 1 + 1 + 5 10 = 5 + 5 11 = 1 + 5 + 5 12 = 12
13 = 1 + 12 14 = 1 + 1 + 12 15 = 5 + 5 + 5 16 = 1 + 5 + 5 + 5
17 = 5 + 12 18 = 1 + 5 + 12 19 = 1 + 1 + 5 + 12 20 = 5 + 5 + 5 + 5
21 = 1 + 5 + 5 + 5 + 5 22 = 22 23 = 1 + 22 24 = 12 + 12
25 = 1 + 12 + 12 26 = 1 + 1 + 12 + 12 27 = 5 + 22 28 = 1 + 5 + 22
29 = 5 + 12 + 12 30 = 1 + 5 + 12 + 12 31 = 1 + 1 + 5 + 12 + 12 32 = 5 + 5 + 22
33 = 1 + 5 + 5 + 22 34 = 12 + 22 35 = 35 36 = 1 + 35
37 = 1 + 1 + 35 38 = 1 + 1 + 1 + 35 39 = 5 + 12 + 22 40 = 5 + 35
41 = 1 + 5 + 35 42 = 1 + 1 + 5 + 35 43 = 1 + 1 + 1 + 5 + 35 44 = 22 + 22
45 = 1 + 22 + 22 46 = 12 + 12 + 22 47 = 12 + 35 48 = 1 + 12 + 35
49 = 5 + 22 + 22 50 = 5 + 5 + 5 + 35 51 = 51 52 = 1 + 51
53 = 1 + 1 + 51 54 = 1 + 1 + 1 + 51 55 = 1 + 1 + 1 + 1 + 51 56 = 5 + 51
57 = 22 + 35 58 = 1 + 22 + 35 59 = 12 + 12 + 35 60 = 1 + 12 + 12 + 35
61 = 5 + 5 + 51 62 = 5 + 22 + 35 63 = 12 + 51 64 = 1 + 12 + 51
65 = 1 + 1 + 12 + 51 66 = 22 + 22 + 22 67 = 5 + 5 + 22 + 35 68 = 5 + 12 + 51
69 = 12 + 22 + 35 70 = 70 71 = 1 + 70 72 = 1 + 1 + 70
73 = 22 + 51 74 = 1 + 22 + 51 75 = 5 + 70 76 = 1 + 5 + 70
77 = 1 + 1 + 5 + 70 78 = 5 + 22 + 51 79 = 22 + 22 + 35 80 = 5 + 5 + 70
81 = 1 + 5 + 5 + 70 82 = 12 + 70 83 = 1 + 12 + 70 84 = 1 + 1 + 12 + 70
85 = 12 + 22 + 51 86 = 35 + 51 87 = 5 + 12 + 70 88 = 1 + 5 + 12 + 70
89 = 5 + 5 + 22 + 22 + 35 90 = 5 + 12 + 22 + 51 91 = 5 + 35 + 51 92 = 92
93 = 1 + 92 94 = 1 + 1 + 92 95 = 22 + 22 + 51 96 = 5 + 5 + 35 + 51
97 = 5 + 92 98 = 1 + 5 + 92 99 = 1 + 1 + 5 + 92 100 = 5 + 22 + 22 + 51
101 = 22 + 22 + 22 + 35 102 = 51 + 51 103 = 1 + 51 + 51 104 = 12 + 92
105 = 35 + 70 106 = 1 + 35 + 70 107 = 5 + 51 + 51 108 = 22 + 35 + 51
109 = 5 + 12 + 92 110 = 5 + 35 + 70 111 = 1 + 5 + 35 + 70 112 = 5 + 5 + 51 + 51
113 = 5 + 22 + 35 + 51 114 = 22 + 92 115 = 1 + 22 + 92 116 = 12 + 12 + 92
117 = 117 118 = 1 + 117 119 = 1 + 1 + 117 120 = 1 + 1 + 1 + 117
121 = 51 + 70 122 = 5 + 117 123 = 1 + 5 + 117 124 = 22 + 51 + 51
125 = 1 + 22 + 51 + 51 126 = 12 + 22 + 92 127 = 35 + 92 128 = 1 + 35 + 92
129 = 12 + 117 130 = 1 + 12 + 117 131 = 1 + 1 + 12 + 117 132 = 5 + 35 + 92
133 = 12 + 51 + 70 134 = 5 + 12 + 117 135 = 1 + 5 + 12 + 117 136 = 22 + 22 + 92
137 = 35 + 51 + 51 138 = 1 + 35 + 51 + 51 139 = 22 + 117 140 = 70 + 70
141 = 12 + 12 + 117 142 = 1 + 1 + 70 + 70 143 = 51 + 92 144 = 5 + 22 + 117
145 = 145 146 = 1 + 145 147 = 1 + 1 + 145 148 = 5 + 51 + 92
149 = 22 + 35 + 92 150 = 5 + 145 151 = 1 + 5 + 145 152 = 35 + 117
153 = 51 + 51 + 51 154 = 5 + 22 + 35 + 92 155 = 12 + 51 + 92 156 = 35 + 51 + 70
157 = 12 + 145 158 = 1 + 12 + 145 159 = 1 + 1 + 12 + 145 160 = 5 + 12 + 51 + 92
161 = 22 + 22 + 117 162 = 70 + 92 163 = 1 + 70 + 92 164 = 12 + 35 + 117
165 = 22 + 51 + 92 166 = 5 + 22 + 22 + 117 167 = 22 + 145 168 = 51 + 117
169 = 12 + 12 + 145 170 = 1 + 1 + 51 + 117 171 = 22 + 22 + 35 + 92 172 = 51 + 51 + 70
173 = 5 + 51 + 117 174 = 22 + 35 + 117 175 = 35 + 70 + 70 176 = 176
177 = 1 + 176 178 = 1 + 1 + 176 179 = 12 + 22 + 145 180 = 35 + 145
181 = 5 + 176 182 = 1 + 5 + 176 183 = 1 + 1 + 5 + 176 184 = 92 + 92
185 = 1 + 92 + 92 186 = 5 + 5 + 176 187 = 70 + 117 188 = 12 + 176
189 = 1 + 12 + 176 190 = 22 + 51 + 117 191 = 51 + 70 + 70 192 = 5 + 70 + 117
193 = 5 + 12 + 176 194 = 51 + 51 + 92 195 = 5 + 22 + 51 + 117 196 = 51 + 145
197 = 35 + 70 + 92 198 = 22 + 176 199 = 12 + 70 + 117 200 = 12 + 12 + 176
201 = 5 + 51 + 145 202 = 22 + 35 + 145 203 = 5 + 22 + 176 204 = 51 + 51 + 51 + 51
205 = 5 + 12 + 12 + 176 206 = 22 + 92 + 92 207 = 5 + 22 + 35 + 145 208 = 12 + 51 + 145
209 = 92 + 117 210 = 210 211 = 1 + 210 212 = 1 + 1 + 210
213 = 51 + 70 + 92 214 = 5 + 92 + 117 215 = 5 + 210 216 = 1 + 5 + 210
217 = 1 + 1 + 5 + 210 218 = 22 + 51 + 145 219 = 51 + 51 + 117 220 = 5 + 5 + 210
221 = 12 + 92 + 117 222 = 12 + 210 223 = 1 + 12 + 210 224 = 1 + 12 + 35 + 176
225 = 5 + 22 + 22 + 176 226 = 35 + 51 + 70 + 70 227 = 51 + 176 228 = 1 + 51 + 176
229 = 1 + 1 + 51 + 176 230 = 12 + 22 + 51 + 145 231 = 35 + 51 + 145 232 = 22 + 210
233 = 22 + 35 + 176 234 = 117 + 117 235 = 51 + 92 + 92 236 = 1 + 51 + 92 + 92
237 = 92 + 145 238 = 51 + 70 + 117 239 = 12 + 51 + 176 240 = 1 + 5 + 117 + 117

Table 1. Representations as sum of pentagonal numbers (1 – 240)

.
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241 = 22 + 35 + 92 + 92 242 = 5 + 92 + 145 243 = 1 + 5 + 92 + 145 244 = 12 + 22 + 210
245 = 35 + 210 246 = 70 + 176 247 = 247 248 = 1 + 247
249 = 1 + 1 + 247 250 = 5 + 35 + 210 251 = 5 + 70 + 176 252 = 5 + 247
253 = 1 + 5 + 247 254 = 70 + 92 + 92 255 = 22 + 22 + 35 + 176 256 = 22 + 117 + 117
257 = 5 + 5 + 247 258 = 12 + 70 + 176 259 = 12 + 247 260 = 1 + 12 + 247
261 = 51 + 210 262 = 117 + 145 263 = 1 + 117 + 145 264 = 5 + 12 + 247
265 = 1 + 5 + 12 + 247 266 = 51 + 70 + 145 267 = 22 + 35 + 210 268 = 92 + 176
269 = 22 + 247 270 = 1 + 22 + 247 271 = 12 + 12 + 247 272 = 35 + 92 + 145
273 = 12 + 51 + 210 274 = 5 + 22 + 247 275 = 1 + 12 + 117 + 145 276 = 92 + 92 + 92
277 = 1 + 92 + 92 + 92 278 = 51 + 51 + 176 279 = 70 + 92 + 117 280 = 70 + 210
281 = 35 + 70 + 176 282 = 35 + 247 283 = 1 + 35 + 247 284 = 22 + 117 + 145
285 = 5 + 70 + 210 286 = 1 + 5 + 70 + 210 287 = 287 288 = 1 + 287
289 = 1 + 1 + 287 290 = 145 + 145 291 = 22 + 22 + 247 292 = 5 + 287
293 = 117 + 176 294 = 1 + 117 + 176 295 = 5 + 145 + 145 296 = 35 + 51 + 210
297 = 5 + 5 + 287 298 = 51 + 247 299 = 12 + 287 300 = 1 + 12 + 287
301 = 92 + 92 + 117 302 = 92 + 210 303 = 5 + 51 + 247 304 = 70 + 117 + 117
305 = 12 + 117 + 176 306 = 22 + 22 + 117 + 145 307 = 70 + 92 + 145 308 = 1 + 5 + 92 + 210
309 = 22 + 287 310 = 12 + 51 + 247 311 = 12 + 12 + 287 312 = 51 + 51 + 210
313 = 51 + 117 + 145 314 = 5 + 22 + 287 315 = 22 + 117 + 176 316 = 70 + 70 + 176
317 = 70 + 247 318 = 1 + 70 + 247 319 = 51 + 92 + 176 320 = 22 + 51 + 247
321 = 145 + 176 322 = 35 + 287 323 = 1 + 35 + 287 324 = 22 + 92 + 210
325 = 35 + 145 + 145 326 = 92 + 117 + 117 327 = 117 + 210 328 = 1 + 117 + 210
329 = 12 + 70 + 247 330 = 330 331 = 1 + 330 332 = 1 + 1 + 330
333 = 12 + 145 + 176 334 = 12 + 35 + 287 335 = 5 + 330 336 = 1 + 5 + 330
337 = 35 + 92 + 210 338 = 51 + 287 339 = 92 + 247 340 = 1 + 92 + 247
341 = 51 + 145 + 145 342 = 12 + 330 343 = 1 + 12 + 330 344 = 5 + 92 + 247
345 = 12 + 12 + 145 + 176 346 = 70 + 92 + 92 + 92 347 = 5 + 12 + 330 348 = 1 + 5 + 12 + 330
349 = 51 + 51 + 247 350 = 70 + 70 + 210 351 = 12 + 92 + 247 352 = 22 + 330
353 = 1 + 22 + 330 354 = 92 + 117 + 145 355 = 145 + 210 356 = 1 + 145 + 210
357 = 70 + 287 358 = 1 + 70 + 287 359 = 1 + 1 + 70 + 287 360 = 70 + 145 + 145
361 = 22 + 92 + 247 362 = 35 + 117 + 210 363 = 70 + 117 + 176 364 = 117 + 247
365 = 35 + 330 366 = 1 + 35 + 330 367 = 12 + 145 + 210 368 = 51 + 70 + 247
369 = 12 + 70 + 287 370 = 5 + 35 + 330 371 = 70 + 92 + 92 + 117 372 = 70 + 92 + 210
373 = 35 + 51 + 287 374 = 35 + 92 + 247 375 = 5 + 5 + 35 + 330 376 = 376
377 = 1 + 376 378 = 1 + 1 + 376 379 = 92 + 287 380 = 1 + 92 + 287
381 = 5 + 376 382 = 1 + 5 + 376 383 = 1 + 1 + 5 + 376 384 = 5 + 92 + 287
385 = 92 + 117 + 176 386 = 176 + 210 387 = 35 + 176 + 176 388 = 12 + 376
389 = 1 + 12 + 376 390 = 35 + 145 + 210 391 = 5 + 176 + 210 392 = 145 + 247
393 = 12 + 51 + 330 394 = 92 + 92 + 210 395 = 5 + 51 + 92 + 247 396 = 22 + 22 + 22 + 330
397 = 70 + 117 + 210 398 = 22 + 376 399 = 1 + 22 + 376 400 = 70 + 330
401 = 22 + 92 + 287 402 = 70 + 70 + 117 + 145 403 = 51 + 176 + 176 404 = 117 + 287
405 = 1 + 117 + 287 406 = 51 + 145 + 210 407 = 117 + 145 + 145 408 = 51 + 70 + 287
409 = 5 + 117 + 287 410 = 12 + 22 + 376 411 = 35 + 376 412 = 1 + 35 + 376
413 = 92 + 145 + 176 414 = 35 + 92 + 287 415 = 51 + 117 + 247 416 = 35 + 51 + 330
417 = 1 + 12 + 117 + 287 418 = 92 + 92 + 117 + 117 419 = 92 + 117 + 210 420 = 210 + 210
421 = 1 + 210 + 210 422 = 92 + 330 423 = 176 + 247 424 = 1 + 176 + 247
425 = 425 426 = 1 + 425 427 = 51 + 376 428 = 5 + 176 + 247
429 = 1 + 1 + 51 + 376 430 = 5 + 425 431 = 1 + 5 + 425 432 = 145 + 287
433 = 22 + 35 + 376 434 = 12 + 92 + 330 435 = 145 + 145 + 145 436 = 1 + 5 + 5 + 425
437 = 12 + 425 438 = 1 + 12 + 425 439 = 35 + 117 + 287 440 = 1 + 35 + 117 + 287
441 = 22 + 92 + 117 + 210 442 = 5 + 12 + 425 443 = 51 + 145 + 247 444 = 22 + 92 + 330
445 = 22 + 176 + 247 446 = 70 + 376 447 = 22 + 425 448 = 1 + 117 + 330
449 = 70 + 92 + 287 450 = 35 + 51 + 117 + 247 451 = 5 + 70 + 376 452 = 5 + 22 + 425
453 = 1 + 5 + 117 + 330 454 = 22 + 145 + 287 455 = 35 + 210 + 210 456 = 92 + 117 + 247
457 = 210 + 247 458 = 1 + 210 + 247 459 = 12 + 117 + 330 460 = 35 + 425
461 = 1 + 35 + 425 462 = 35 + 51 + 376 463 = 176 + 287 464 = 1 + 176 + 287
465 = 5 + 35 + 425 466 = 145 + 145 + 176 467 = 35 + 145 + 287 468 = 92 + 376
469 = 1 + 92 + 376 470 = 70 + 70 + 330 471 = 51 + 210 + 210 472 = 117 + 145 + 210
473 = 51 + 92 + 330 474 = 51 + 176 + 247 475 = 145 + 330 476 = 51 + 425

Table 2. Representations as sum of pentagonal numbers (241 – 476)

.
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1 = 1 2 = 1 + 1 3 = 1 + 1 + 1 4 = 1 + 1 + 1 + 1
5 = 1 + 1 + 1 + 1 + 1 6 = 6 7 = 1 + 6 8 = 1 + 1 + 6
9 = 1 + 1 + 1 + 6 10 = 1 + 1 + 1 + 1 + 6 11 = 1 + 1 + 1 + 1 + 1 + 6 12 = 6 + 6
13 = 1 + 6 + 6 14 = 1 + 1 + 6 + 6 15 = 15 16 = 1 + 15
17 = 1 + 1 + 15 18 = 6 + 6 + 6 19 = 1 + 6 + 6 + 6 20 = 1 + 1 + 6 + 6 + 6
21 = 6 + 15 22 = 1 + 6 + 15 23 = 1 + 1 + 6 + 15 24 = 6 + 6 + 6 + 6
25 = 1 + 6 + 6 + 6 + 6 26 = 1 + 1 + 6 + 6 + 6 + 6 27 = 6 + 6 + 15 28 = 28
29 = 1 + 28 30 = 15 + 15 31 = 1 + 15 + 15 32 = 1 + 1 + 15 + 15
33 = 6 + 6 + 6 + 15 34 = 6 + 28 35 = 1 + 6 + 28 36 = 6 + 15 + 15
37 = 1 + 6 + 15 + 15 38 = 1 + 1 + 6 + 15 + 15 39 = 6 + 6 + 6 + 6 + 15 40 = 6 + 6 + 28
41 = 1 + 6 + 6 + 28 42 = 6 + 6 + 15 + 15 43 = 15 + 28 44 = 1 + 15 + 28
45 = 45 46 = 1 + 45 47 = 1 + 1 + 45 48 = 1 + 1 + 1 + 45
49 = 6 + 15 + 28 50 = 1 + 6 + 15 + 28 51 = 6 + 45 52 = 1 + 6 + 45
53 = 1 + 1 + 6 + 45 54 = 1 + 1 + 1 + 6 + 45 55 = 6 + 6 + 15 + 28 56 = 28 + 28
57 = 1 + 28 + 28 58 = 15 + 15 + 28 59 = 1 + 15 + 15 + 28 60 = 15 + 45
61 = 1 + 15 + 45 62 = 6 + 28 + 28 63 = 6 + 6 + 6 + 45 64 = 6 + 15 + 15 + 28
65 = 1 + 6 + 15 + 15 + 28 66 = 66 67 = 1 + 66 68 = 1 + 1 + 66
69 = 1 + 1 + 1 + 66 70 = 1 + 1 + 1 + 1 + 66 71 = 15 + 28 + 28 72 = 6 + 66
73 = 28 + 45 74 = 1 + 28 + 45 75 = 15 + 15 + 45 76 = 1 + 15 + 15 + 45
77 = 6 + 15 + 28 + 28 78 = 6 + 6 + 66 79 = 6 + 28 + 45 80 = 1 + 6 + 28 + 45
81 = 15 + 66 82 = 1 + 15 + 66 83 = 1 + 1 + 15 + 66 84 = 28 + 28 + 28
85 = 6 + 6 + 28 + 45 86 = 15 + 15 + 28 + 28 87 = 6 + 15 + 66 88 = 15 + 28 + 45
89 = 1 + 15 + 28 + 45 90 = 45 + 45 91 = 91 92 = 1 + 91
93 = 1 + 1 + 91 94 = 28 + 66 95 = 1 + 28 + 66 96 = 6 + 45 + 45
97 = 6 + 91 98 = 1 + 6 + 91 99 = 1 + 1 + 6 + 91 100 = 6 + 28 + 66
101 = 28 + 28 + 45 102 = 6 + 15 + 15 + 66 103 = 6 + 6 + 91 104 = 1 + 6 + 6 + 91
105 = 15 + 45 + 45 106 = 15 + 91 107 = 1 + 15 + 91 108 = 1 + 1 + 15 + 91
109 = 15 + 28 + 66 110 = 1 + 15 + 28 + 66 111 = 45 + 66 112 = 1 + 45 + 66
113 = 1 + 6 + 15 + 91 114 = 1 + 1 + 1 + 45 + 66 115 = 6 + 15 + 28 + 66 116 = 15 + 28 + 28 + 45
117 = 6 + 45 + 66 118 = 28 + 45 + 45 119 = 28 + 91 120 = 120
121 = 1 + 120 122 = 1 + 1 + 120 123 = 1 + 1 + 1 + 120 124 = 6 + 28 + 45 + 45
125 = 6 + 28 + 91 126 = 6 + 120 127 = 1 + 6 + 120 128 = 1 + 1 + 6 + 120
129 = 28 + 28 + 28 + 45 130 = 6 + 6 + 28 + 45 + 45 131 = 6 + 6 + 28 + 91 132 = 66 + 66
133 = 1 + 66 + 66 134 = 15 + 28 + 91 135 = 15 + 120 136 = 45 + 91
137 = 1 + 45 + 91 138 = 6 + 66 + 66 139 = 28 + 45 + 66 140 = 6 + 15 + 28 + 91
141 = 6 + 15 + 120 142 = 6 + 45 + 91 143 = 1 + 6 + 45 + 91 144 = 6 + 6 + 66 + 66
145 = 6 + 28 + 45 + 66 146 = 28 + 28 + 45 + 45 147 = 15 + 66 + 66 148 = 28 + 120
149 = 1 + 28 + 120 150 = 15 + 15 + 120 151 = 15 + 45 + 91 152 = 1 + 15 + 45 + 91
153 = 153 154 = 1 + 153 155 = 1 + 1 + 153 156 = 45 + 45 + 66
157 = 66 + 91 158 = 1 + 66 + 91 159 = 6 + 153 160 = 1 + 6 + 153
161 = 1 + 1 + 6 + 153 162 = 6 + 45 + 45 + 66 163 = 6 + 66 + 91 164 = 28 + 45 + 91
165 = 45 + 120 166 = 1 + 45 + 120 167 = 28 + 28 + 45 + 66 168 = 15 + 153
169 = 1 + 15 + 153 170 = 1 + 1 + 15 + 153 171 = 6 + 45 + 120 172 = 15 + 66 + 91
173 = 1 + 15 + 66 + 91 174 = 6 + 15 + 153 175 = 28 + 28 + 28 + 91 176 = 28 + 28 + 120
177 = 45 + 66 + 66 178 = 15 + 15 + 28 + 120 179 = 15 + 28 + 45 + 91 180 = 15 + 45 + 120
181 = 28 + 153 182 = 91 + 91 183 = 15 + 15 + 153 184 = 1 + 15 + 15 + 153
185 = 28 + 66 + 91 186 = 66 + 120 187 = 6 + 28 + 153 188 = 6 + 91 + 91
189 = 6 + 15 + 15 + 153 190 = 190 191 = 1 + 190 192 = 1 + 1 + 190
193 = 28 + 45 + 120 194 = 6 + 6 + 91 + 91 195 = 15 + 15 + 45 + 120 196 = 6 + 190
197 = 1 + 6 + 190 198 = 45 + 153 199 = 1 + 45 + 153 200 = 1 + 1 + 45 + 153
201 = 15 + 66 + 120 202 = 6 + 6 + 190 203 = 1 + 45 + 66 + 91 204 = 6 + 45 + 153
205 = 15 + 190 206 = 1 + 15 + 190 207 = 1 + 1 + 15 + 190 208 = 6 + 6 + 6 + 190
209 = 28 + 28 + 153 210 = 28 + 91 + 91 211 = 91 + 120

Table 3. Representations as sum of hexagonal numbers

.
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2 Proof of Theorem 5

We follow the structure of the proof of Thereom 1 in [7]. The original argument is reorganized and
considerably expanded so that it is more straightforward to formalize.

Lemma 1 (Cauchy’s Lemma). Let a and b be odd positive integers such that b2 < 4a and
3a < b2 + 2b+ 4. Then there exist nonnegative integers s, t, u, v such that

a = s2 + t2 + u2 + v2,

b = s+ t+ u+ v.

Proof. Since a and b are odd, there exist nonnegative integers p and q such that a = 2p + 1 and
b = 2q+1. Then 4a− b2 = 8p+4− 4q2 − 4q− 1 = 8p+4q(q+1)+ 3 ≡ 3 (mod 8). By Theorem 8,
there exist odd integers x ≥ y ≥ z > 0 such that

4a− b2 = x2 + y2 + z2.

Claim: x+ y + z < b+ 4. Indeed, by the Cauchy-Schwarz inequality, we have

(x+ y + z)2 ≤ (x2 + y2 + z2)(12 + 12 + 12)

Hence,

x+ y + z ≤
√
3(x2 + y2 + z2) =

√
12a− 3b2 <

√
4(b2 + 2b+ 4)− 3b2 = b+ 4.

Writing x, y, z as 2α+ 1, 2β + 1, 2γ + 1 gives

a = (q2 + α2 + β2 + γ2) + (q + α+ β + γ) + 1

and
α+ β + γ ≤ q. (1)

We consider two cases.

Case 1: q + α+ β + γ is even.

Set

s =
q + α+ β + γ

2
+ 1,

t = q + α+ 1− s,

u = q + β + 1− s,

v = q + γ + 1− s.

Then s, t, u, v are integers satisfying

a = s2 + t2 + u2 + v2

b = s+ t+ u+ v,
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and s ≥ t ≥ u ≥ v. It remains to show that v ≥ 0. Note that

v = q + γ + 1−
(
q + α+ β + γ

2
+ 1

)
=

q − α− β + γ

2
≥ 0

by (1).

Case 2: q + α+ β + γ is odd.

Hence, q + α+ β − γ + 1 is even. Set

s =
q + α+ β − γ + 1

2
,

t = q + α+ 1− s,

u = q + β + 1− s,

v = q − γ − s.

Then s, t, u, v are integers satisfying

a = s2 + t2 + u2 + v2

b = s+ t+ u+ v,

and s ≥ t ≥ u ≥ v. It remains to show that v ≥ 0. Note that

v = q − γ − q + α+ β − γ + 1

2

=
q − α− β − γ − 1

2

≥ −1

2

by (1). Since v is an integer at least − 1
2 , it must be at least 0.

We now establish a series of technical lemmas from which Theorem 5 readily follows.

Define

u(m,n) := 2

(
1− 2

m

)
+

√
4

(
1− 2

m

)2

+ 8

(
n− (m− 3)

m

)
− 0.001

and

ℓ(m,n) :=

(
1

2
− 3

m

)
+

√(
1

2
− 3

m

)2

+ 6
( n

m

)
− 4 + 0.001.

Lemma 2. Let n and m be positive integers. If m ≥ 4∧n ≥ 53m or m = 3∧n ≥ 159m, then there
exist integers b and r such that b is odd, ℓ(n,m) ≤ b ≤ u(n,m), 0 ≤ r ≤ m − 3, and m divides
n− b− r.
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Lemma 3. Let n,m, b, r ∈ Z. If m ≥ 3, n ≥ 2m, 0 ≤ r ≤ m − 3, ℓ(n,m) ≤ b ≤ u(n,m) and
m | n− b− r, then a := 2

(
n−b−r

m

)
+ b satisfies b2 − 4a < 0 and b2 + 2b+ 4− 3a > 0.

We postpone the proofs of these lemmas to the next section.

Proof (of Theorem 5). By Lemma 2, there exist integers b and r such that b is odd, ℓ(n,m) ≤ b ≤
u(n,m), 0 ≤ r ≤ m− 3, and m divides n− b− r.

By Lemma 3, a := 2
(
n−b−r

m

)
+ b is an integer such that b2 − 4a < 0 and b2 + 2b+ 4− 3a > 0.

By Lemma 1, there exist nonnegative integers s, t, u, v such that

a = s2 + t2 + u2 + v2,

b = s+ t+ u+ v.

Hence,

n =
m

2
(a− b) + b+ r

=
m

2
(s2 − s) + s+

m

2
(t2 − t) + t+

m

2
(u2 − u) + u+

m

2
(v2 − v) + v + r

= pm(s) + pm(t) + pm(u) + pm(v) + r.

The result now follows.

3 Proofs of technical lemmas
In this section, we give proofs of Lemma 2 and Lemma 3.

We first address Lemma 3. The following is straightforward to show:

Lemma 4. Let x, p, c ∈ R with c > 0.

(a) If 0 ≤ x < p
2 +

√(
p
2

)2
+ c, then x2 − px− c < 0.

(b) If x > p
2 +

√(
p
2

)2
+ c, then x2 − px− c > 0.

Proof. Since c > 0, we have ±p
2 +

√(
p
2

)2
+ c > ±p

2 +
∣∣p
2

∣∣ ≥ 0.

(a) The statement holds trivially when x = 0.

Assume that x > 0. Since x < p
2 +

√(
p
2

)2
+ c, we have x− p < −p

2 +

√(
p
2

)2
+ c. Thus,

x2 − px− c = x(x− p)− c

< x

(
−p

2
+

√(p
2

)2
+ c)

)
− c

<

(
p

2
+

√(p
2

)2
+ c

)(
−p

2
+

√(p
2

)2
+ c)

)
− c

= 0.
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(b) Since x > p
2 +

√(
p
2

)2
+ c > 0, we have x−p > −p

2 +

√(
p
2

)2
+ c > −p

2 +

√(
p
2

)2
+ c > 0. Hence,

x2 − px− c = x(x− p)− c

>

(
p

2
+

√(p
2

)2
+ c

)
(x− p)− c

>

(
p

2
+

√(p
2

)2
+ c

)(
−p

2
+

√(p
2

)2
+ c)

)
− c

= 0.

Proof (of Lemma 3). Note that

b ≥ ℓ(n,m) =

(
1

2
− 3

m

)
+

√(
1

2
− 3

m

)2

+ 6
( n

m

)
− 4 + 0.001

>

(
1− 6

m

)
/2 +

√((
1− 6

m

)
/2

)2

+ 6

(
n− r

m

)
− 4

Note that n− r ≥ 2m− (m− 3) = m+ 3. Setting p := 1− 6
m and c := 6

(
n−r
m

)
− 4, we have c > 0

and so, by Lemma 4 part (b), we obtain that b2+2b+4− 3a = b2−
(
1− 6

m

)
b−
(
6
(
n−r
m

)
− 4
)
> 0.

We can also see from the above derivation that b > 0.

Now,

b ≤ u(n,m) = 2

(
1− 2

m

)
+

√
4

(
1− 2

m

)2

+ 8

(
n− (m− 3)

m

)
− 0.001

<

(
4

(
1− 2

m

)
/2

)
+

√(
4

(
1− 2

m

)
/2

)2

+ 8

(
n− r

m

)
.

Setting p := 4
(
1− 2

m

)
and c := 8

(
n−r
m

)
, we have c > 0 and so, by Lemma 4 part (a), we obtain

that b2 − 4a = b2 − 4
(
1− 2

m

)
b− 8n−r

m < 0.

Our proof of Lemma 2 relies on the next two lemmas:

Lemma 5. Let p, q ∈ R. Let k be a positive integer such that q − p ≥ 2k. Then there exists an
integer m such that for i = 0, . . . , k − 1, if bi = 2(m+ i) + 1, then p ≤ bi ≤ q.

Proof. Let ℓ = ⌈p⌉. Note that p > ℓ−1. We can take m to be the least integer such that 2m+1 ≥ ℓ.
Indeed, for all i = 0, . . . , k − 1, bi ≥ b0 = 2m + 1 ≥ p and bi ≤ bk−1 = 2(m + (k − 1)) + 1 =
2m+ 1 + 2(k − 1).

If ℓ is even, then 2m+1 = ℓ+1. Hence, 2m+1+2(k−1) = ℓ+1+2(k−1) = ℓ−1+2k < p+2k ≤
p+ q − p = q.
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If ℓ is odd, then 2m+1 = ℓ. Hence, 2m+1+2(k− 1) = ℓ+2(k− 1) = ℓ− 1+2k− 1 < p+2k− 1 ≤
p+ q − p− 1 < q.

Lemma 6. Let m and n be positive integers.

(a) If m ≥ 4 and n ≥ 53m, then u(n,m)− ℓ(n,m) ≥ 4.

(b) If m = 3 and n ≥ 159m, then u(n,m)− ℓ(n,m) ≥ 6.

Before we prove this, we first establish a technical result to obtain two key inequalities which allow
us to obtain a tighter analysis of what was in Nathanson’s original proof.

Lemma 7. Let a, b, p, q ∈ R such that a > b > 0. Define f(t) :=
√
at+ p−

√
bt+ q. Then for all x

and y such that x ≥ y ≥ b2p− a2q

ab(a− b)
, ay + p ≥ 0 and by + q ≥ 0,

f(x) ≥ f(y).

Proof. Let x and y be such that x ≥ y ≥ b2p− a2q

ab(a− b)
. If x = y, there is nothing to prove.

Assume that x > y. Then there exist δ and γ, where δ > γ ≥ 0, such that x =
b2p− a2q

ab(a− b)
+ δ, and

y =
b2p− a2q

ab(a− b)
+ γ. Let θ =

bp− aq

a− b
. Then

ax+ p = a

(
b2p− a2q

ab(a− b)
+ δ

)
+ p

=
b2p− a2q + bap− b2p

b(a− b)
+ aδ

=
a(bp− aq)

b(a− b)
+ aδ

=
a

b
θ + aδ,

and

bx+ q = b

(
b2p− a2q

ab(a− b)
+ δ

)
+ q

=
b2p− a2q + a2q − abq

a(a− b)
+ bδ

=
b(bp− aq)

a(a− b)
+ bδ

=
b

a
θ + bδ.

Similarly, ay + p =
a

b
θ + aγ and by + q =

b

a
θ + bγ.
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Then √
a

b
θ + aδ −

√
a

b
θ + aγ =

(√
a
b θ + aδ

)2 − (√a
b θ + aγ

)2√
a
b θ + aδ +

√
a
b θ + aγ

=
a(δ − γ)√

a
b θ + aδ +

√
a
b θ + aγ

=
a(δ − γ)√

a
b

(√
θ + bδ +

√
θ + bγ

)
=

b(δ − γ)√
b
a

(√
θ + bδ +

√
θ + bγ

)
≥ b(δ − γ)√

b
a

(√
θ + aδ +

√
θ + aγ

)

=

(√
b
aθ + bδ

)2

−
(√

b
aθ + bγ

)2

√
b
aθ + bδ +

√
b
aθ + bγ

=

√
b

a
θ + bδ −

√
b

a
θ + bγ.

Hence, √
a

b
θ + aδ −

√
b

a
θ + bδ ≥

√
a

b
θ + aγ −

√
b

a
θ + bγ,

giving
f(x) ≥ f(y).

Corollary 1. If x ≥ 53, then 5
4 +

√
8x− 4−

√
6x− 15

4 − 0.002 ≥ 4.

Proof. By Lemma 7 with a = 8, b = 6, p = −4, and q = − 15
4 , we have

5

4
+

√
8x− 4−

√
6x− 15

4
− 0.002 ≥ 5

4
+
√
8(53)− 4−

√
6(53)− 15

4
− 0.002

≥ 4.

Corollary 2. If x ≥ 159, then 7
6 +

√
8x+ 4

9 −
√
6x− 15

4 − 0.002 ≥ 6.

Proof. By Lemma 7 with a = 8, b = 6, p = 4
9 , and q = − 15

4 , we have

7

6
+

√
8x+

4

9
−
√
6x− 15

4
− 0.002 ≥ 7

6
+

√
8(159) +

4

9
−
√
6(159)− 15

4
− 0.002

≥ 6.
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Proof (of Lemma 6). With m ≥ 4, we have

u(n,m)− ℓ(n,m) =
3

2
− 1

m
+

√
8
( n

m

)
+

16

m2
+

8

m
− 4−

√
6
( n

m

)
− 3

m

(
1− 3

m

)
− 15

4
− 0.002

≥ 3

2
− 1

4
+

√
8
( n

m

)
− 4−

√
6
( n

m

)
− 15

4
− 0.002

=
5

4
+

√
8
( n

m

)
− 4−

√
6
( n

m

)
− 15

4
− 0.002

≥ 4

by Corollary 1 with x = n
m .

When m = 3, we have

u(n,m)− ℓ(n,m) =
7

6
+

√
8
( n

m

)
+

4

9
−
√

6
( n

m

)
− 15

4
− 0.002

≥ 6

by Corollary 2 with x = n
m .

Proof (of Lemma 2). First, consider the case when m ≥ 4 and n ≥ 53m. By Lemma 6 part (a),
we have u(n,m)− ℓ(n,m) ≥ 4. It follows from Lemma 5 that there exist odd integers b0, b1 in the
interval [ℓ(n,m), u(n,m)] such that b1 = b0 + 2.

Let r′ be the remainder when n − b0 is divided by m. Note that r′ ≤ m − 1 and n − b0 − r′ ≡ 0
(mod m).

If r′ ≥ m − 2, set r to r′ − 2. Since r′ ≤ m − 1, we have that r = r′ − 2 ≤ m − 3. Also,
r = r′ − 2 ≥ m − 2 − 2 = m − 4 ≥ 4 − 4 = 0. Then setting b to b1, we have that n − b − r =
n− b1 − (r′ − 2) = n− b0 − r′ ≡ 0 (mod m). Hence, m divides n− b− r.

Otherwise, we have r′ ≤ m− 3. Setting r to r′ and b to b0, we have that n− b− r = n− b0 − r′ ≡ 0
(mod m). Hence, m divides n− b− r.

Next, consider the case when m = 3 and n ≥ 159m. We set r to 0. By Lemma 6 part (b), we have
u(n,m)−ℓ(n,m) ≥ 6. It follows from Lemma 5 that there exist odd integers b0, b1, b2 in the interval
[ℓ(n,m), u(n,m)] such that b1 = b0 + 2 and b2 = b1 + 2.

Since b1 ≡ b0 + 2 (mod 3) and b2 ≡ b1 + 2 ≡ b0 + 4 ≡ b0 + 1 (mod 3), it follows that for some
b ∈ {b0, b1, b2}, we have n− b− r ≡ n− b ≡ 0 (mod 3).

4 On our formalization in Lean 4

We formalized the proofs of Theorem 6 and Theorem 7 in the Lean 4 Theorem Prover [6], asserting
Theorem 8 without proof. In the following, we outline the essential details. The full proof can be
found in the Lean files [5].

We defined the proposition
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def IsnPolygonal (s : ℤ) (_ : s ≥ 3) (n : ℕ) := n = 0
∨ ∃ (k : ℕ), (((s : ℚ) - 2) / 2) * (k * (k - 1)) + k = n

for stating if n is a polygonal number of order s. (The letter s is sometimes used in the extant
literature to denote the order, i.e. s = m + 2 with m ≥ 1, as it corresponds more clearly to the
number of sides. For example, a triangular number is a polygonal number of order 3.)

We chose ℤ instead of ℕ for the type of s for two reasons. The first is to accommodate future
extensions to polygonal numbers of negative orders (which do exist). The second is that subtraction
of natural numbers in Lean is truncated. For example, 2 − 4 = 0. This means that something like
a− b+ b cannot be rewritten as a unless one has a proof that a ≥ b.

In addition, we could have avoided an explicit requirement of a proof that s ≥ 3 by defining a
subtype for the argument s. However, it is rather inconvenient to work with such a subtype and we
decided that it was not worth the trouble for having a cleaner interface.

With the above definition, we can establish that 13 is a triangular number as follows:

example : IsnPolygonal 3 (by show 3 ≥ 3; simp) 36 := by right; use 8; norm_num

However, proving that a number is not polygonal of some particular order is not necessarily trivial
as it might involve a detailed case analysis:

example : ¬IsnPolygonal 3 (by show 3 ≥ 3; simp) 2 := by
dsimp [IsnPolygonal]
push_neg
constructor
. norm_num
. intro k
by_cases hk : k ≤ 2
. interval_cases k <;> norm_num
. qify at hk; nlinarith

To facilitate automated proof generation via the decide tactic, we used the following equivalent
definition:

def IsnPolygonal₀ (s : ℤ) (_ : s ≥ 3) (n : ℕ) :=
n = 0 ∨ (IsSquare (8 * (s - 2) * n + (s - 4) ^ 2)

∧ (Int.sqrt (8 * (s - 2) * n + (s - 4) ^ 2) + (s - 4)) % (2 * (s - 2)) = 0)

Since in Mathlib, there is already a decidable instance for IsSquare, it is straightforward to define
a decidable instance for IsnPolygonal₀:

instance : Decidable (IsnPolygonal₀ s n h) := by
dsimp [IsnPolygonal₀]
exact instDecidableOr

example : IsnPolygonal₀ 5 (by show 5 ≥ 3; simp) 5 := by decide +kernel
example : ¬IsnPolygonal₀ 3 (by show 3 ≥ 3; simp) 2 := by decide +kernel

Note that +kernel is needed since decide alone does not work for IsSquare. The reason is technical
and is beyond the scope of this paper. Nevertheless, the reduction is performed in the kernel and
does not reduce the trustworthiness of the result.
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A decidable instance for IsnPolygonal can then be obtained as follows:

instance : Decidable (IsnPolygonal s n h) := by
apply decidable_of_iff (IsnPolygonal₀ s n h)
refine Eq.to_iff ?_
-- Equivalence proof omitted.

The proof that IsnPolygonal and IsnPolygonal₀ are equivalent is rather involved. Readers interested
in the details are referred to the Lean files [5].

Unfortunately, proving by decide turned out to be quite slow. The bottleneck was the decidable
instance for IsSquare. Therefore, in the case analyses for our formalization of the proofs of Theorem 6
and Theorem 7, we avoided using decide.

We also defined the following proposition

def IsNKPolygonal (s : ℤ) (hs : s ≥ 3) (k : ℕ) (n : ℕ) :=
∃ S : List ℕ, S.all (IsnPolygonal s hs) ∧ S.length = k ∧ S.sum = n

With this definition, the statement of Theorem 6 can be formalized as

def pentaExceptions : Finset ℕ := {9, 21, 31, 43, 55, 89}

theorem SumOfFourPentagonalNumber : ∀ n : ℕ, ¬ (n ∈ pentaExceptions)
→ IsNKPolygonal 5 (by norm_num) 4 n := by sorry

For efficiency, we first defined all the pentagonal numbers less than 477:

def p0 : IsnPolygonal 5 (by norm_num) 0 := by simp [IsnPolygonal];
def p1 : IsnPolygonal 5 (by norm_num) 1 := by simp [IsnPolygonal]; use 1; ring
def p5 : IsnPolygonal 5 (by norm_num) 5 := by simp [IsnPolygonal]; use 2; ring
def p12 : IsnPolygonal 5 (by norm_num) 12 := by simp [IsnPolygonal]; use 3; ring
def p22 : IsnPolygonal 5 (by norm_num) 22 := by simp [IsnPolygonal]; use 4; ring
def p35 : IsnPolygonal 5 (by norm_num) 35 := by simp [IsnPolygonal]; use 5; ring
def p51 : IsnPolygonal 5 (by norm_num) 51 := by simp [IsnPolygonal]; use 6; ring
def p70 : IsnPolygonal 5 (by norm_num) 70 := by simp [IsnPolygonal]; use 7; ring
def p92 : IsnPolygonal 5 (by norm_num) 92 := by simp [IsnPolygonal]; use 8; ring
def p117 : IsnPolygonal 5 (by norm_num) 117 := by simp [IsnPolygonal]; use 9; ring
def p145 : IsnPolygonal 5 (by norm_num) 145 := by simp [IsnPolygonal]; use 10; ring
def p176 : IsnPolygonal 5 (by norm_num) 176 := by simp [IsnPolygonal]; use 11; ring
def p210 : IsnPolygonal 5 (by norm_num) 210 := by simp [IsnPolygonal]; use 12; ring
def p247 : IsnPolygonal 5 (by norm_num) 247 := by simp [IsnPolygonal]; use 13; ring
def p287 : IsnPolygonal 5 (by norm_num) 287 := by simp [IsnPolygonal]; use 14; ring
def p330 : IsnPolygonal 5 (by norm_num) 330 := by simp [IsnPolygonal]; use 15; ring
def p376 : IsnPolygonal 5 (by norm_num) 376 := by simp [IsnPolygonal]; use 16; ring
def p425 : IsnPolygonal 5 (by norm_num) 425 := by simp [IsnPolygonal]; use 17; ring

One can then handle each number less than 477 by directly making use of these definitions. For
instance, we can prove that 113 is the sum of four pentagonal numbers as follows:
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example : IsNKPolygonal 3 (by norm_num) 4 113 := by
use [5, 22, 35, 51]
simp [p5, p22, p35, p51]

Finally, the statement of Theorem 7 is formalized as

def hexaExceptions : Finset ℕ := {11, 26}

theorem SumOfFiveHexagonalNumber : ∀ n : ℕ, ¬ (n ∈ hexaExceptions)
→ IsNKPolygonal 6 (by norm_num) 5 n := by sorry

We employed a similar strategy as for Theorem 6 to improve efficiency. Both theorems could be
type-checked by Lean within minutes.
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